Collect. Math. 45, 3 (1994), 263-270

(c) 1995 Universitat de Barcelona

La propiedad de Radon-Nikodým en espacios de Banach duales

B. Cascales y A.J. Pallarés*

Departamento de Matemáticas, Facultad de Matemáticas, Universidad de Murcia, 30 100 Espinardo, Murcia, Spain

Received May 23, 1994

Abstract

In this note we refine some classical characterizations of the Radon-Nikodým property (briefly RNP) for dual Banach spaces. We prove that the dual space X^* , of a given Banach space $(X, \|\ \|)$, has the RNP if, and only if, for every probability space (Ω, Σ, μ) and for every μ -Bochner measurable function $f: \Omega \to X$ there exists a μ -Bochner measurable function $g: \Omega \to X^*$ such that $\|f(\omega)\| = \langle g(\omega), f(\omega) \rangle$ for every ω in Ω . In the process we point out that spaces of X-valued Bochner integrable functions have properties similar to those of spaces of scalar integrable functions if, and only if, the RNP holds in the dual X^* of the range Banach space. We also show what is required for a Banach space not containing ℓ^1 to have a dual with the RNP.

1. Introducción y resultados

En lo que sigue (Ω, Σ, μ) será un espacio de probabilidad, $(X, \| \|)$ un espacio de Banach y B_X y X^* la bola unidad y el espacio dual de X, respectivamente. Vamos a denotar por $L^1(\mu, X)$ al espacio de Banach de (las clases de equivalencia de) las funciones μ -integrables Bochner $f: \Omega \to X$, con la norma dada por:

$$\parallel f \parallel_1 = \int_{\Omega} \parallel f \parallel d\mu.$$

^{*} Este artículo ha sido financiado parcialmente por la DGICYT PB 91-0575.

El espacio dual $L^1(\mu, X)^*$ puede indentificarse con el espacio de las funciones débil* escalarmente medibles acotadas $g: \Omega \to X^*$ con la norma

$$\parallel g \parallel = \sup \big\{ \parallel \langle g(.), x \rangle \parallel_{\infty} : x \in X, \parallel x \parallel \le 1 \big\},\$$

Esta identificación viene dada por la fórmula:

$$\langle g, f \rangle = \int \langle g(\omega), f(\omega) \rangle d\mu(\omega), \ f \in L^1(\mu, X).$$

El subconjunto $L^{\infty}(\mu, X^*)$ de $L^1(\mu, X)^*$ formado por los elementos $g: \Omega \to X^*$ que son medibles Bochner, es un subespacio normante para $(L^1(\mu, X), \| \|_1)$, esto es, la bola unidad $B_{L^{\infty}(\mu, X^*)}$ es débil* densa en $B_{L^1(\mu, X)^*}$. Así, $< L^1(\mu, X), L^{\infty}(\mu, X^*) >$ es un par dual y la topología $\sigma_w = \sigma(L^1(\mu, X), L^{\infty}(\mu, X^*))$ es una topología Hausdorff más gruesa que la topología débil $\sigma(L^1(\mu, X), L^1(\mu, X)^*)$. Esta topología σ_w y sus subconjuntos compactos han sido investigados, entre otros, en [1], [2], [5] y [16].

Recordemos que un espacio de Banach X se dice que tiene la Propiedad de Radon-Nikodým (abreviaremos, RNP) si para cada espacio de probabilidad (Ω, Σ, μ) y cada medida vectorial numerablemente aditiva de variación acotada $m: \Sigma \to X$ que sea absolutamente continua con respecto a μ , existe una función f in $L^1(\mu, X)$, tal que

$$m(E) = \int_{E} f d\mu$$

para cada $E \in \Sigma$. Una referencia estandard para la RNP es [6]. El desarrollo de la teoría de los espacios de Banach X y los espacios de Banach duales X^* con la RNP, ha sido complejo y muchos matemáticos han contribuido a ello. De entre las condiciones clásicas equivalentes a la RNP en los espacios duales X^* destacamos las siguientes que guardan relación con la exposición que vamos a hacer:

 $Dado\ un\ espacio\ de\ Banach\ X,\ las\ siguientes\ condiciones\ son\ equivalentes:$

- (a) X^* tiene la RNP;
- (β) $L^1(μ, X)^* = L^\infty(μ, X^*)$ para cada probabilidad μ;
- (γ) La topología débil de $L^1(\mu, X)$ coincide con la topología $\sigma(L^1(\mu, X), L^{\infty}(\mu, X^*))$ para cada probabilidad μ ;
- (δ) Las medidas de Radon sobre la bola unidad del dual (B_{X^*} , débil *) son medidas de Radon sobre (B_{X^*} , norma);
- (λ) Existe una función $\Phi: X \to B_{X^*}$ que es el límite puntual en norma de una sucesión de funciones continuas para la norma tal que

$$\parallel x \parallel = \langle \Phi(x), x \rangle$$
, para cada elemento $x \in X$.

La equivalencia $(a) \Leftrightarrow (\beta)$ puede encontrarse en [6, IV.1.1]. (γ) es una reformulación de (β) . $(a) \Leftrightarrow (\delta)$ puede hallarse en [16, th. 7.2.7]. Por último, la equivalencia $(a) \Leftrightarrow (\lambda)$ viene dada por el teorema de selección de Jayne y Rogers [11, th. 10] (otra prueba puede encontrarse en [12, th. 26]).

Esta nota aborda el problema de estudiar la RNP en X^* utilizando como herramienta la topología σ_w . Probamos el siguiente teorema:

Teorema A

Dado un espacio de Banach X, las condiciones siguientes son equivalentes:

- (a) X^* tiene la RNP;
- (b) Las medidas de Radon sobre $(B_{X^*}, d\acute{e}bil^*)$ que son maximales en el orden de Choquet son medidas de Radon sobre $(B_{X^*}, norma)$;
- (c) El conjunto de los puntos extremales $Ext(B_{L^1(\mu,X)^*})$ de la bola unidad dual $B_{L^1(\mu,X)^*}$ es un subconjunto de $L^{\infty}(\mu,X^*)$, para cada probabilidad μ ;
- (d) Para cada espacio de probabilidad (Ω, Σ, μ) y para cada $f : \Omega \to X$ μ -medible Bochner existe $g \in B_{L^{\infty}(\mu, X^*)}$ tal que $\| f(\omega) \| = \langle g(\omega), f(\omega) \rangle$ cualquiera que sea $\omega \in \Omega$;
- (e) Para cada probabilidad μ , la bola unidad $B_{L^{\infty}(\mu,X^*)}$ es una "boundary" para $B_{L^{1}(\mu,X)^*}$, esto es, para cada $f \in L^{1}(\mu,X)$ existe $g \in B_{L^{\infty}(\mu,X^*)}$ tal que $\|f\|_{1} = \langle g,f \rangle$;
- (f) Los subconjuntos $\sigma(L^1(\mu, X), L^{\infty}(\mu, X^*))$ -compactos de $L^1(\mu, X)$ son débilmente compactos, para cada probabilidad μ ;
- (g) Para cada probabilidad μ , las sucesiones $\sigma = (L^1(\mu, X), L^{\infty}(\mu, X^*))$ -convergentes en el espacio $L^1(\mu, X)$ son débilmente convergentes;
- (h) X no contiene copias de ℓ^1 , y la topología débil de $L^1(\mu, X)$ tiene una base de entornos del origen formada por subconjuntos $\sigma(L^1(\mu, X), L^{\infty}(\mu, X^*))$ -cerrados, para cada probabilidad μ .

Recordemos que el orden de Choquet \prec para las medidas de Radon ν and μ sobre el compacto convexo $(B_{X^*}, \text{débil}^*)$ está definido por:

$$\nu \prec \mu$$
 si, y sólo si, $\int h d\nu \leq \int h d\mu$

para cada función real convexa h definida en $(B_X^*, \text{ débil}^*)$.

2. Pruebas

En la prueba del Teorema A usaremos el siguiente hecho: Si $T: X \longrightarrow Y$ es un operador lineal acotado entre los espacios de Banach X e Y, el operador lineal $\tilde{T}: L^1(\mu, X) \longrightarrow L^1(\mu, Y)$, definido por $\tilde{T}(f) = T \circ f$, también es acotado y continuo para las topologías σ_w . Usaremos también que $L^1(\mu, X)$ es un espacio angélico para la topología σ_w . Recordemos que un espacio topológico Hausdorff se dice que es angélico cuando cada subconjunto relativamente numerablemente compacto A también es relativamente compacto y cada uno de los puntos de su adherencia A es el límite de una sucesión de elementos de A. Una prueba de la angelicidad de $L^1(\mu, X)[\sigma_w]$ se encuentra en A [16, th. 16.5.6] (puede verse también en A [5]).

Demostración del Teorema A.

 $(a) \Leftrightarrow (\delta) \Rightarrow (b)$ de forma clara.

 $(b) \Rightarrow (c)$.

Talagrand caracterizó en [15] los puntos extremales de la bola unidad de $L^1(\mu, X)^*$ como las funciones débil*-escalarmente medibles $g \in B_{L^1(\mu, X)^*}$ cuyas medidas imágenes sobre $(B_{X^*}, \text{ débil}^*)$ son maximales para el orden de Choquet. Es conocido [16, th. 3.4.1] que g es débil*-escalarmente equivalente a una función medible Bochner de $L^{\infty}(\mu, X^*)$ cuando su medida imagen también es de Radon sobre $(B_{X^*}, \text{ norma})$ [16, th. 3.4.1]. Así se tiene la implicación $(b) \Rightarrow (c)$. $(c) \Rightarrow (e)$

El conjunto de puntos extremales $Ext(B_{L^1(\mu,X)^*})$ es una "boundary" de $B_{L^1(\mu,X)^*}$ por la demostración del teorema de Krein-Milman [14, 10.3]. Por lo tanto, si suponemos que se cumple (c), tendremos que $B_{L^\infty(\mu,X^*)}$ también es una "boundary".

$$(e) \Rightarrow (f)$$

Sea K un subconjunto de $L^1(\mu, X)$ σ_w -compacto. K está acotado en el espacio de Banach $L^1(\mu, X)$ por el teorema de Banach-Steinhaus, y también es σ_w -secuencialmente compacto porque $L^1(\mu, X)$ es angélico para la topología $[\sigma_w]$. Si suponemos que $B_{L^\infty(\mu, X^*)}$ es una "boundary" para $B_{L^1(\mu, X)}$, el corolario 4 de [9, pág. 101] nos permite concluir que K es débilmente (secuencialmente) compacto en el espacio de Banach $L^1(\mu, X)$.

$$(f) \Rightarrow (g) \Rightarrow (a).$$

La implicación $(f) \Rightarrow (g)$ es obvia. Para probar que $(g) \Rightarrow (a)$ usaremos las ideas de una prueba de [10] basada en la factorización del operador de Haar realizada por Stegall [13].

Sea $\Delta = \{0,1\}^{\mathbb{N}}$ el compacto de Cantor con la medida de Haar ν , y $\{\Delta_{n,i} : 1 \le i \le 2^n\}$ la n-ésima partición canónica de Δ , de forma que $\nu(\Delta_{n,i}) = 2^{-n}$, $\Delta_{0,1} = \Delta$,

y $\Delta_{n,i} = \Delta_{n+1,2i-1} \cup \Delta_{n+1,2i}$. Las funciones de Haar $h_{n,i} : \Delta \to \mathbb{R}$ están definidas por $h_{n,i} = \chi_{\Delta_{n+1,2i-1}} - \chi_{\Delta_{n+1,2i}}$, y el operador de Haar $H : \ell^1 \to L^{\infty}(\Delta, \nu)$ está definido por $H(e_{n,i}) = h_{n,i}$ donde $\{e_{n,i} : n \geq 0, 1 \leq i \leq 2^n\}$ es una reenumeración de la base usual de ℓ^1 .

En [7] y [10] se ha considerado la siguiente sucesión de funciones de $L^1(\nu, \ell^1)$:

$$f_n : \Delta \to \ell^1$$
 $f_n(w) = \frac{1}{n} \sum_{j=1}^n \left(\sum_{i=1}^{2^j} h_{j,i}(w) e_{j,i} \right).$

Esta sucesión verifica que $||f_n(w)|| = 1$ para cada $w \in \Delta$, y que $\lim_n ||f_n|| = 0$ para cada subconjunto de Borel B de Δ (ver [7, pág. 464]). En consecuencia, la sucesión f_n está acotada, es uniformemente integrable y converge hacia cero en la topología σ_w .

Si negamos (a), el espacio dual X^* no tiene la RNP, entonces el teorema de factorización de Stegall nos proporciona dos operadores lineales acotados $U:\ell^1 \to X$ y $V:X\to L^\infty(\nu)$ tales que $H=V\circ U$. En [10, pág. 69] se probó que $\tilde{H}(f_n)$ no tiene subsucesiones débilmente convergentes en $L^1(\nu,L^\infty(\nu))$. Como $\tilde{V}(\tilde{U}(f_n))=\tilde{H}(f_n)$, la sucesión $\tilde{U}(f_n)$ no es débilmente convergente en $L^1(\nu,X)$ aunque si que converge hacia cero en la topología σ_w . Llegamos así a la negación de (f), con lo que termina la prueba de esta implicación.

$$(a) \Rightarrow (d) \Rightarrow (e)$$

Sabemos que (a) es equivalente a (λ) . Sea Φ el selector dado en esta última condición que es límite puntual de una sucesión de funciones continuas en norma. Si $f:\Omega\to X$ es una función μ -medible Bochner, es fácil comprobar que $g=\Phi\circ f$ es una función medible Bochner de $B_{L^\infty(\mu,X^*)}$ tal que $\parallel f(\omega)\parallel=\langle g(\omega),f(\omega)\rangle$ en todo punto ω . La implicación $(d)\Rightarrow (e)$ es evidente.

$$(a) \Rightarrow (h) \Rightarrow (g)$$

Como la implicación $(a) \Rightarrow (h)$ está clara, para terminar la prueba del teorema probaremos que $(h) \Rightarrow (g)$. Supongamos que se cumple la condición (h) y que (f_n) es una sucesión en $L^1(\mu, X)$ que converge a cero en la topología σ_w . La sucesión (f_n) es uniformemente integrable y dado que X no contiene una copia de ℓ^1 , podemos aplicar el corolario 9 de [3] para obtener que cualquier subsucesión de (f_n) tiene una subsucesión débilmente de Cauchy. Así, utilizando que la topología débil de $L^1(\mu, X)$ tiene una base de entornos formada por subconjuntos σ_w -cerrados concluimos que (f_n) converge débilmente a cero porque cada una de sus subsucesiones posee una subsucesión que converge débilmente a cero. \square

3. Comentarios

(1).— La equivalencia entre (c) y (β) nos dice que si el conjunto $Ext(B_{L^1(\mu,X)^*})$ está contenido en $L^{\infty}(\mu,X^*)$ podemos deducir que

$$B_{L^1(\mu,X)^*} = \overline{co(Ext(B_{L^1(\mu,X)^*}))}^{\text{débil}^*} \subset L^{\infty}(\mu,X^*).$$

Obsérvese que esta inclusión sería obvia si $L^{\infty}(\mu, X^*)$ fuese un subespacio débil*-cerrado de $L^1(\mu, X)^*$. Sin embargo, $L^{\infty}(\mu, X^*)$ es cerrado en norma y débil*-denso en $L^1(\mu, X)^*$.

- (2).— La equivalencia entre (γ) , (f) and (g) nos dice que la topología σ_w y la topología débil de $L^1(\mu, X)$ coinciden si tienen los mismos subconjuntos compactos o si tienen las mismas sucesiones convergentes. Para cualquier espacio de Banach X los subconjuntos σ_w -compactos de $L^1(\mu, X)$ son siempre compactos de Eberlein, [16, 16-5-6], esto es, son homeomorfos a débil compactos de algún espacio de Banach. La equivalencia entre (γ) y (f) nos dice que si pedimos que los subconjuntos σ_w -compactos de $L^1(\mu, X)$ sean débilmente compactos precisamente en el espacio de Banach donde están, entonces la topología σ_w tiene que ser la topología débil, $\sigma(L^1(\mu, X), L^1(\mu, X)^*)$, o en otras palabras, X^* tiene que tener la RNP.
- (3).— En [4, Th. 4] se prueba que las sucesiones f_n en $L^1(\mu, X)$ que son σ_w -convergentes a cero son aquellas sucesiones que son acotadas, uniformemente integrables y tales que $\int_E f_n d\mu$ converge a cero en la topología débil de X, para cada conjunto $E \in \Sigma$. Así la equivalencia entre (a) y (g) (también entre (a) y (e)) nos esta diciendo que a la hora de tener en $L^1(\mu, X)$ propiedades similares a las del caso escalar, $L^1(\mu)$, no podemos evitar la RNP in X^* (Recuérdese que para el caso escalar tenemos de forma evidente que para cada $f \in L^1(\mu)$ existe $g \in B_{L^\infty(\mu)}$ tal que $||f||_1 = \int_\Omega f g d\mu$, y por otro lado, gracias a un resultado clásico de Dunford-Pettis (ver [9, pág. 108]) una sucesión (f_n) en $L^1(\mu)$ converge débilmente a cero si, y solo si, $\int_A f_n d\mu$ converge a cero, para cada A en Σ .
- (4).— En [6, IV.2], [10] y [8], ha sido probado que el espacio X y su dual X^* tienen la RNP si, y solo si, para cada espacio de probabilidad (Ω, Σ, μ) los subconjuntos relativamente débilmente compactos $K \subset L^1(\mu, X)$ pueden caracterizarse por la propiedad
- $[\mathcal{P}]$ K es acotado, uniformemente integrable, y para cada $E \in \Sigma$ el conjunto $\{\int_E f d\mu : f \in K\}$ es relativamente débilmente compacto en X.

La topología σ_w puede usarse para aislar que propiedades en esta caracterización implican que X tiene la RNP y que propiedades implican que X^* tiene la RNP.

Una mirada a [6, IV. 2], teniendo presente que $L^1(\mu, X)[\sigma_w]$ es un espacio angélico, nos da la caracterización de los espacios X que tienen la RNP como aquellos espacios donde los subconjuntos σ_w -relativamente compactos de $L^1(\mu, X)$ son exactamente los subconjuntos que verifican la propiedad $[\mathcal{P}]$.

Por otro lado, la equivalencia entre (a) y (f) en el Teorema A, nos dice que X^* tiene la RNP si, y solo si, para cada probabilidad μ los subconjuntos σ_w -relativamente compactos de $L^1(\mu, X)$ son débilmente relativamente compactos.

(5).— Como el espacio $L^1(\nu, \ell^1)$ es débilmente secuencialmente completo, [4. pág. 184], la sucesión f_n in $L^1(\nu, \ell^1)$ utilizada en la demostración de la implicación $(g) \Rightarrow (a)$ es σ_w -convergente a cero y no tiene subsucesiones de Cauchy para la topología débil. Por tanto, si X es un espacio de Banach que contiene una copia de ℓ^1 , entonces existe una sucesión σ_w -convergente a cero en $L^1(\nu, X)$ sin subsucesiones de Cauchy para la topología débil.

Recíprocamente, supongamos que el espacio de Banach X no contiene una copia de ℓ^1 y que existe una sucesión (f_n) en $L^1(\mu, X)$ que es σ_w -convergente a cero y que no tiene subsucesiones débil de Cauchy. Teniendo presente la caracterización de Rosenthal de los espacios de Banach que no contienen a ℓ^1 [6, pág. 215], y tomando la parte no atómica de μ , podemos suponer que μ es la medida de Lebesgue en el intervalo unidad de la recta real y que (f_n) es una sucesión acotada, uniformemente integrable en $L^1(\mu, X)$ equivalente a la base de ℓ^1 . En este contexto, un resultado de Bourgain-Pisier, [3, Coroll. 9], nos da una copia de ℓ^1 en X, en contradicción con lo supuesto. Resumiendo,

Los espacios de Banach X sin copias de ℓ^1 son aquellos para los que las sucesiones en el espacio $L^1(\mu, X)$ que convergen a cero en la topología σ_w tienen subsucesiones que son de Cauchy para la topología débil, cualquiera que sea la probabilidad μ .

Así la hipótesis de que para cada probabilidad μ la topología débil de $L^1(\mu, X)$ tenga una base de entornos formada por conjuntos σ_w -cerrados es exactamente lo que hace falta para que un espacio de Banach que no contiene a ℓ^1 tenga un dual con la RNP.

Bibliografía

- 1. J. Batt and W. Hiermeyer, On compactness in $L_p(\mu, X)$ in the weak Topology and in the Topology $\sigma(L_p(\mu, X), L_q(\mu, X^*))$, Math. Z. **182**, (1983), 409–423.
- 2. F. Bombal, Sobre los espacios de Orlicz vectoriales, Collectanea Math. 32, 1 (1981), 1-12.
- 3. J. Bourgain, An averaging result for ℓ^1 sequences and applications to weakly conditionally compact sets in L^1_X , Israel J. Math. **32**, (1979), 289–298.
- 4. J.K. Brooks and N. Dinculeanu, Weak compactness in Spaces of Bochner integrable functions and applications, *Adv. in Math.* **24**, (1977), 172–188.
- 5. B. Cascales and G. Vera, Topologies weaker than the weak topology of a Banach space, *Aparecerá en J. of Math. Ana. and App.*
- 6. J. Diestel and J. Uhl, Vector measures, Math. Surveys, no 15. Amer. Math. Soc. (1977).
- 7. G.A. Edgar, Asplund operators and a.e. convergence, J. Multivariate Anal. 10, (1980), 460-466.
- 8. C. Fierro, Compacidad débil en espacios de funciones integrables-Bochner, y la propiedad de Radon-Nikodým, *Rev. Real. Acad. Cienc. Exact. Fis. Natur. Madrid* **81** (1987), 707–712.
- 9. K. Floret, Weakly compact sets, LNM 801, Springer-Verlag 1980.
- 10. N. Ghoussoub and P. Saab, Weak compactness in spaces of Bochner integrable functions and the Radon-Nikodým property, *Pacific J. Math.* **110,1** (1984), 65–70.
- 11. J.E. Jayne and C.A. Rogers, Borel selectors for upper semi-continuous set-valued maps *Acta Math.* **155** (1985), 41–79.
- 12. J.E. Jayne, J. Orihuela, A.J. Pallares and G. Vera, σ -fragmentability of Multivalued Maps and Selection Theorems, *J. Funct. Anal.* **117**, (1993), 243–273.
- 13. C. Stegall, The Radon-Nikodým property in conjugate Banach spaces II, *Trans. Amer. Math. Soc.* **264** (1981), 507–519.
- 14. H.H. Schaeffer, Topological vector spaces, GTM 3, Springer-Verlag (1980)
- 15. M. Talagrand, Points extremaux dans le dual de $L^1(\mu, E)$, Proc. Amer. Math. Soc. 99,2, (1984), 265–269.
- 16. M. Talagrand, Pettis integral and measure theory, Mem. Amer. Math. Soc. 307 1984.