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Abstract

The Hilbert space structure of totally even functions (mod r) which depend
on extended Ramanujan sums is described. The function εk defined as the
quotient of Jordan’s Jk-function and Euler’s φ-function is introduced as a new
generalization of the Dedekind ψ-function. Using the basic methods of totally
even functions (mod r), we point out that εk has also a purpose to serve in
obtaining the k-dimensional analogue of an identity due to P. Kesava Menon.

1. Introduction

Let r be an arbitrary but fixed positive integer, and let Z/rZ denote the cyclic
group of integers (mod r) under addition modulo r. The Euler totient function
φ(r) is defined as the number of integers a (mod r) such that (a, r) = 1. For
k ≥ 1, Z

k/rZk is the group of k-vectors {ai} (mod r) under pointwise addition
modulo r. Jordan’s totient Jk(r) is the number of k-vectors {ai} (mod r) such that
((ai), r) = 1, where (ai) is the g.c.d. of a1, a2, . . . , ak. Jordan’s totient Jk is clearly a
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generalization of Euler’s totient φ. For properties of Jk, see Eckford Cohen [1, 2, 4],
or Sivaramakrishnan [15].

It is easy to see that

Z
k/rZk = Z/rZ ⊕ Z/rZ ⊕ · · · ⊕ Z/rZ = (Z/rZ)k

and Z
k/rZk is thus a direct sum of k (≥ 1) cyclic groups each of order r. For this

reason, Z
k/rZk is a homogeneous finite abelian group of order rk. Jordan’s totient

Jk has a bearing on this aspect of Z
k/rZk, see Eckford Cohen [3].

Ramanujan’s sum C(n, r) is defined by

(1.1) C(n, r) =
∑

a (mod r)
(a,r)=1

exp(2πina/r),

where n ∈ Z. The arithmetical representation of C(n, r) is given [2] by

(1.2) C(n, r) =
∑

d | (n,r)
dµ(r/d),

where µ is the Möbius function.
We could naturally anticipate the k-dimensional analogue of Ramanujan’s sum

C(n, r). This was achieved by Eckford Cohen [2] in the following manner. The
extended Ramanujan sum C(k)(n, r) is defined by

(1.3) C(k)(n, r) =
∑

{ai} (mod r)
((ai),r)=1

exp(2πin(a1 + · · · + ak)/r).

The evaluation of C(k)(n, r) in terms of Jk(r) is

(1.4) C(k)(n, r) =
Jk(r)µ(m)
Jk(m)

, m =
r

(n, r)
.

Details are given in [2]. In [5] Eckford Cohen also considers the sum

(1.5) C(n1, . . . , nk; r) =
∑

{ai} (mod r)
((ai),r)=1

exp(2πi(n1a1 + · · · + nkak)/r).

If n = (n1, . . . , nk), it is shown [5] that

(1.6) C(n1, . . . , nk; r) = C(k)(n, r).
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In applications we need the following evaluation [2]:

(1.7) C(k)(n, r) =
∑

d | (n,r)
dkµ(r/d).

The main features of this paper are as detailed below:
(i) An arithmetical function f is said to be an even function of n (mod r) if

f(n, r) = f((n, r), r) for all n [2]. Totally even functions (mod r) is a k-vector gener-
alization of even functions (mod r) [5]. We here describe the Hilbert space structure
of the class of totally even functions (mod r) in terms of extended Ramanujan sums.
See Section 2. This is a generalization of a previous result for even functions (mod r)
published in [8].

(ii) The Dedekind ψ-function is given by

(1.8) ψ(r) = r
∏
p | r

(1 + p−1),

and is known to be a totient [11]. Further,

(1.9) ψ(r) =
J2(r)
φ(r)

,

where Jk is the Jordan totient and φ is the Euler totient. In Section 3, we introduce
the function εk given by

(1.10) εk(r) =
Jk(r)
φ(r)

(k ≥ 1).

It appears that εk gives the most-suited generalization of ψ.
(iii) Finally, εk has also a purpose to serve in obtaining a k-vector extension of

the following identity due to P. Kesava Menon [9]

(1.11)
∑

a (mod r)
(a,r)=1

(a− 1, r) = φ(r)τ(r),

where τ(r) denotes the number of divisors of r. This is shown in Theorem 9. See
Section 4. The method adopted is on the lines of the generalization of (1.11) given
by Nageswara Rao in [13]. This needs the notion of totally even functions (mod r)
considered in Section 2.
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2. The Hilbert space of totally even functions (mod r)

We recall that a complex-valued function f of the integral variable n, written f(n, r),
is called [2] an even function of n (mod r) if f(n, r) = f((n, r), r). Ramanujan’s sum
C(n, r) is an example of an even function (mod r). It is known that the set Br(C)
of even functions (mod r) forms a finite-dimensional normed linear space with

(2.1) {(rφ(d))−1/2C(n, d) : d | r}

forming an orthonormal basis. See [8].
If f ∈ Br(C), f can be uniquely expressed as

(2.2) f(n, r) =
∑
d | r
α(d, r)C(n, d),

where

(2.3) α(d, r) = r−1
∑
δ | r
f(r/δ, r)C(r/d, δ).

For d | r, α(d, r) are referred to as the Fourier coefficients of f. For f, g ∈ Br(C),
their Cauchy product is defined by

(2.4) (f ◦ g)(n, r) =
∑

a+b≡n (mod r)

f(a, r) g(b, r),

where the summation is over residues a, b (mod r) such that a + b ≡ n (mod r).
Cauchy multiplication is both commutative and associative, and this gives Br(C)
the structure of a finite-dimensional algebra. We do not go into the details.

If g(n, r) is given by

(2.5) g(n, r) =
∑
d | r
β(d, r)C(n, d),

it is known [11, 14] that

(2.6) (f ◦ g)(n, r) = r
∑
d | r
α(d, r)β(d, r)C(n, d).

The generalization of Br(C) to the space of k-vectors (mod r) has been achieved by
Eckford Cohen in [5], and in the generalized set-up we confine ourselves to the space
of totally even functions (mod r) about which we make a study now.
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Definition. A complex-valued function f(n1, . . . , nk; r) is said to be totally even
(mod r) if there exists an even function F (n, r) (mod r) such that

(2.7) f(n1, . . . , nk; r) = F ((n1, . . . , nk), r).

Definition. In Z
k/rZk, two k-vectors {ai} and {bi} are called “associates” (or

{ai} is an associate of {bi}), written {ai} ∼ {bi}, if and only if

(2.8) ((a1, . . . , ak), r) = ((b1, . . . , bk), r).

It is clear that “associate of” is an equivalence relation on Z
k/rZk and it par-

titions Z
k/rZk into mutually disjoint classes [1], . . . , [t], . . . , [r], where a class [t] is

uniquely determined by the divisor t of r. Obviously there are τ(r), the number of
divisors of r, associate classes.

It is easy to see that a totally even function (mod r) is completely determined
if for each associate class [t], where t | r, the function value is known in one k-vector
of [t].

Definition. If f and g are totally even functions (mod r) in the variables n1, . . . , nk,
then their Cauchy product, written f ◦ g, is defined by

(2.9) (f ◦ g)(n1, . . . , nk; r) =
∑

ai+bi≡ni (mod r)
(i=1,...,k)

f(a1, . . . , ak; r) g(b1, . . . , bk; r),

where ai, bi range over residues (mod r) such that ai + bi ≡ ni (mod r) for i =
1, 2, . . . , k.

We write Tk,r(C) to denote the set of totally even functions (mod r) in the
variables n1, n2, . . . , nk. It is known [5] that f ∈ Tk,r(C) has the representation

(2.10) f(n1, . . . , nk; r) =
∑
d | r
α(d, r)C(n1, . . . , nk; d),

where

(2.11) α(d, r) = r−k
∑
δ | r
F (r/δ, r)C(k)(r/d, δ)

with F (n, r) being the even function (mod r) associated with f ∈ Tk,r(C), or

(2.12) α(d, r) = r−k[Jk(d)]−1
∑

{ai} (mod r)

f(a1, . . . , ak; d)C(a1, . . . , ak; d).

In (2.11) or (2.12), α(d, r), for d | r, are called the Fourier coefficients of f.
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If f, g ∈ Tk,r(C) have Fourier coefficients α(d, r) and β(d, r), respectively, then
their Cauchy product (2.9) has the representation

(2.13) (f ◦ g)(n1, . . . , nk; r) = rk
∑
d | r
α(d, r)β(d, r)C(n1, . . . , nk; d).

It is easy to verify that Tk,r(C) has the structure of a finite-dimensional algebra
using Cauchy multiplication. Just as Br(C) is a normed linear space, we can make
Tk,r(C) a normed linear space. This is shown by obtaining an inner product for
pairs of elements in Tk,r(C).

Theorem 1

For f, g ∈ Tk,r(C), let F and G be the respective associated even functions

(mod r). Further, let f̄ (resp. F̄ ) denote the complex conjugate of f (resp. F ).

Then

(2.14) 〈f, g〉 =
∑
d | r
Jk(r/d) F (d, r) G(d, r)

defines an inner product in Tk,r(C), and

(2.15) 〈f, g〉 = rk
∑
d | r
α(d, r)β(d, r)Jk(d),

where α and β are respectively the Fourier coefficients of f and g.

Proof. It is easy to check that for f1, f2, g ∈ Tk,r(C) and z ∈ C

(i) 〈f1 + f2, g〉 = 〈f1, g〉 + 〈f2, g〉,
(ii) 〈z f1, g〉 = z 〈f1, g〉,
(iii) 〈g, f1〉 = 〈f1, g〉,
(iv) 〈f1, f1〉 > 0 if f1 �= 0.

Now, by (2.11), the right side of (2.15) is equal to

r−k
∑
d | r

{∑
e1 | r

F (r/e1, r)C(k)(r/d, e1)
∑
e2 | r

G(r/e2, r)C(k)(r/d, e2)
}
Jk(d)

or

(2.16) r−k
∑
e1 | r

∑
e2 | r

F (r/e1, r)G(r/e2, r)
∑
d | r
C(k)(r/d, e1)C(k)(r/d, e2)Jk(d).
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Since
C(k)(r/d, e1)Jk(d) = Jk(e1)C(k)(r/e1, d),

the inner sum in (2.16) can be written as

Jk(e1)
∑
d | r
C(k)(r/e1, d)C(k)(r/d, e2).

Further, by the orthogonal property [11] of C(k)(n, r),

∑
d | r
C(k)(r/e1, d)C(k)(r/d, e2) =

{
rk if e1 = e2,

0 if e1 �= e2.

Thus, (2.16), or the right side of (2.15), is equal to∑
e1 | r

F (r/e1, r)G(r/e1, r)Jk(e1).

Therefore (2.15) is a consequence of (2.14). This completes the proof of
Theorem 1. �
Remark. By (2.13) and (2.15), for f, g ∈ Tk,r(C),

(2.17) 〈f, g〉 = (f ◦ g)(0, . . . , 0; r)

as C(0, . . . , 0; d) = Jk(d).

Theorem 2

Tk,r(C) forms a Hilbert space under the inner product defined in (2.14).

Proof. As in the case of the Hilbert space of even functions (mod r) [8], we make
use of a measure-theoretic approach to get at the structure of Tk,r(C).

Let X denote the set of associate classes [t] considered in (2.8). If B denotes
the power set of X, then (X,B) is a measurable space. We define a measure m on
B by writing

m([t]) = Jk(r/t) for all t | r.
This yields a measure space (X,B,m). For a complex-valued function f on X, the
integral of f over X is given by∫

X

fdm =
∑
t | r
f([t])Jk(r/t).



252 Haukkanen and Sivaramakrishnan

The vector space L2(X,B,m) of all measurable functions f : X → C such that |f |2
is integrable over X forms a Hilbert space under the inner product

〈f, g〉 =
∫
X

fḡ dm.

It is clear that L2(X,B,m) consists of all complex-valued functions on X. Since
every totally even function f (mod r) is completely determined by its values on
X, the vector-spaces L2(X,B,m) and Tk,r(C) are identical. We thus arrive at
Theorem 2. �

Analogous to the case Br(C) of even functions (mod r) [8], an orthonormal
basis for Tk,r(C) could be given in terms of C(n1, . . . , nk; r).

Theorem 3

The set

(2.18) {C(n1, . . . , nk; d)(rkJk(d))−1/2 : d | r}

forms an orthonormal basis of the vector space Tk,r(C) under the inner product

(2.14).

Proof. It is easy to see that the dimension of the vector space of complex-valued
functions on X is τ(r), the number of divisors of r. That is, the dimension of Tk,r(C)
is τ(r). Further, it can be proved that the set (2.18) is orthonormal (cf. [8]). We
thus obtain Theorem 3. �

Remark. The finite Fourier series representation of f ∈ Tk,r(C) with respect to the
orthonormal basis (2.18) leads to (2.10) and the application of the inner product
expressions (2.14) and (2.15) gives the Fourier coefficient expressions (2.11) and
(2.12), respectively.

3. An analogue of the Dedekind ψ-function

In (1.10), we gave the expression for εk which reduces to the Dedekind ψ-function
when k = 2. We note that εk is the quotient of two totients for k ≥ 2 and is itself a
totient only for k = 2.

It is known [3] that Jordan’s totient Jk(r) gives the number of elements of
order r in a homogeneous finite abelian group G(k)

r = C
(1)
r ⊕ C(2)

r ⊕ · · · ⊕ C(k)
r ,
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where C(i)
r is a cyclic group of order r (i = 1, 2, . . . , k), see [12] also. In fact,

G
(k)
r is isomorphic to (Z/rZ)k, and {ai} ∈ (Z/rZ)k is of order r if and only if the

l.c.m.[o(a1), o(a2), . . . , o(ak)] = r, where o(ai), i = 1, 2, . . . , k, is the order of ai in
Z/rZ. Since o(ai) = r/(r, ai), we see that

[
o(a1), o(a2), . . . , o(ak)

]
= r ⇐⇒ ((ai), r) = 1.

This proves the group-theoretic interpretation of Jk(r). Analogously, we have

Theorem 4

εk(r) counts the number of cyclic subgroups of order r in G
(k)
r .

In [2], Eckford Cohen has proved among other things the following identity (see
(41) of Section 5)

(3.1)
Jk((n, r))

(n, r)k
=
Jk+1(r)
rk+1

∑
d | r

µ(d)
Jk+1(d)

C(n, d),

where µ is the Möbius function. Taking n = 0 in (3.1) and noting that C(0, r) = φ(r),
we obtain

(3.2)
r εk(r)
εk+1(r)

=
∑
d | r

µ(d)
εk+1(d)

(k ≥ 1).

Next, for k ≥ 2, let Dk denote the set of positive integers which are k-free in the
sense that the highest power of a prime occurring as a factor of an integer t (> 1)
in Dk is ≤ (k − 1). Let Lk denote the set of positive integers which are k-full, that
is, every integer s ∈ Lk has the property that all its prime factors occur to a power
≥ k. By convention, we take Dk ∩ Lk = {1}.

Theorem 5

εk has the arithmetical representation

(3.3) εk(r) =
∑

dδ=rk−1

d qk(δ) (k ≥ 2),

where qk is the characteristic function of Dk.
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Proof. We write Fk(r) =
∑

dδ=rk−1

d qk(δ), the right side of (3.3). It is easy to see that

Fk is multiplicative, that is,

Fk(r)Fk(s) = Fk(rs) whenever (r, s) = 1.

Therefore it suffices to verify the truth of (3.3) when r = pm, p a prime, m ≥ 1. We
have

Fk(pm) = pm(k−1)qk(1) + pm(k−1)−1qk(p) + · · · + pm(k−1)−(k−1)qk(pk−1),

since qk(pn) = 0 for n ≥ k. Then

Fk(pm) = pm(k−1)(1 + p−1 + p−2 + · · · + p−(k−1)) = εk(pm).

This completes the proof of Theorem 5. �

Remark. The case k = 2 of (3.3) reads

(3.4) ψ(r) =
∑
dδ=r

d q2(δ),

where q2 is the characteristic function of the set of positive square-free integers.
Equation (3.4) is due to Eckford Cohen [6].

The following theorem gives inequalities connected with Jk and εk.

Theorem 6

There exists a positive constant C such that, for k ≥ 2,

(3.5)
1
ζ(k)

rk < Jk(r) < rk (r > 1),

(3.6)
1
ζ(k)

rk−1 < εk(r) < C−1rk−1 log log r (r > 3),

where ζ is the Riemann ζ-function.



On certain trigonometric sums in several variables 255

Proof. Jordan’s totient Jk has the arithmetical representation [1]

Jk(r) = rk
∏
p | r

(1 − p−k) > rk
∏
p

(1 − p−k) =
1
ζ(k)

rk,

as ζ(k) =
∏

p(1 − p−k)−1. This proves (3.5). It is known [10, Chapter 6] that there
exists a positive constant C such that

Cr

log log r
< φ(r) < r (r > 3).

As εk = Jk/φ, (3.6) follows from (3.5). This completes the proof of Theorem 6. �

Corollary

The series

∞∑
r=1

1
εk(r) diverges for k ≤ 2, and converges for k ≥ 3.

We now come to the expression for ζ(k) in terms of εk. In [6], Eckford Cohen
has shown that

(3.7)
∞∑
r=1
r∈L2

1
ψ(r)

= ζ(2),

where the summation on the left is over the positive integers r whose prime factors
occur to a power ≥ 2, that is, r is square-full. We give a generalization of (3.7) in

Theorem 7

For k ≥ 2,

(3.8)
∞∑
r=1

r∈Lk

rk−2

εk(r)
= ζ(k),

where r runs through k-full positive integers.
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Proof. If ak denotes the characteristic function of Lk, we have

∞∑
r=1

r∈Lk

rk−2

εk(r)
=

∞∑
r=1

ak(r) rk−2

εk(r)
.

By (3.6) we note that for r > 3, k ≥ 2

ak(r) rk−2

εk(r)
≤ ak(r) ζ(k)

r
.

As ak(r) = 0 for r �∈ Lk,

∞∑
r=1

ak(r)
r is comparable with

∞∑
m=1

1
mk , which is convergent

for k ≥ 2. Thus the series on the left side of (3.8) converges for k ≥ 2. We shall
denote its sum by Sk. As εk is multiplicative, we have

Sk =
∏
p

∞∑
m=0

ak(pm) pm(k−2)

εk(pm)

=
∏
p

{
1 +

∞∑
m=k

pm(k−2)φ(pm)
Jk(pm)

}

=
∏
p

{
1 +

∞∑
m=k

p− 1
pm−k+1(pk − 1)

}

=
∏
p

{
1 +

p− 1
p(pk − 1)

∞∑
m=0

p−m

}

=
∏
p

{
1 +

1 − p−1

pk − 1
(1 − p−1)−1

}

=
∏
p

(1 − p−k)−1,

which is the Euler product form for ζ(k). This proves Theorem 7. �

Definition. Liouville’s function λ is defined by λ(r) = (−1)Ω(r), where Ω(r) de-
notes the total number of prime factors of r, each being counted according to its
multiplicity. Further, Ω(1) = 0.
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Theorem 8

For k ≥ 2,

(3.9)
∞∑
r=1

λ(r)
εk+1(r)

=
ζ(k + 1)ζ(2k)
ζ(2k + 1)ζ(k)

.

Proof. As λ and εk+1 are multiplicative and as
∞∑
r=1

1
εk+1(r)

converges for k ≥ 2, we

obtain the Euler product form of the left side of (3.9) as

∞∑
r=1

λ(r)
εk+1(r)

=
∏
p

{
1 +

∞∑
m=1

(−1)m p−mk 1 − p−1

1 − p−(k+1)

}

=
∏
p

{
1 − 1 − p−1

1 − p−(k+1)
p−k

∞∑
m=0

(−1)mp−mk

}

=
∏
p

{
1 − (1 − p−1) p−k

(1 − p−(k+1))(1 + p−k)

}

=
∏
p

1 − p−(2k+1)

(1 − p−(k+1))(1 + p−k)

or ∞∑
r=1

λ(r)
εk+1(r)

=
∏
p

(1 − p−(2k+1))(1 − p−k)
(1 − p−(k+1))(1 − p−2k)

.

The right side simplifies into the right side of (3.9), by virtue of the Euler product
form of the ζ-function. This proves Theorem 8. �

More identities of the type (3.9) could be derived. We mention without proof
the following identities valid for k ≥ 2.

∞∑
r=1

1
εk+1(r)

= ζ(k)ζ(k + 1)
∏
p

(1 − 2p−(k+1) + p−(2k+1)),(3.10)

∞∑
r=1

µ(r)
εk+1(r)

=
ζ(k + 1)
ζ(k)

,(3.11)

∞∑
r=1

1
φ(r)εk(r)

=
∞∑
r=1

1
Jk(r)

=
ζ(k)ζ(2k)ζ(3k)

ζ(6k)
,(3.12)

∞∑
r=1

µ2(r)
φ(r)εk(r)

=
∞∑
r=1

µ2(r)
Jk(r)

= ζ(k).(3.13)
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4. An identity involving εk

In (1.11), (a−1, r) for (a, r) = 1 occurs as the number of solutions of the congruence

(a− 1)x ≡ 0 (mod r)

as pointed out in [9]. To seek a generalization in terms of k-vectors, we look at the
number of solutions of the congruence

(4.1) a1x1 + a2x2 + · · · + akxk ≡ b (mod r).

A necessary and sufficient condition for (4.1) to have a solution {x1, x2, . . . , xk} is
that (a1, a2, . . . , ak, r) | b. If this condition is satisfied, the number of incongru-
ent (mod r) solutions is rk−1(a1, a2, . . . , ak, r), see P.J. McCarthy [11, Chapter 3].
Therefore the number of solutions of

(a1 − 1)x1 + (a2 − 1)x2 + · · · + (ak − 1)xk ≡ 0 (mod r)

is rk−1(a1 − 1, a2 − 1, . . . , ak − 1, r). This motivates the generalization of (1.11)
we are attempting. Our aim is to evaluate

∑
(a1 − 1, a2 − 1, . . . , ak − 1, r), where

the summation is over {ai} (mod r) with ((ai), r) = 1. The method is to make use
of totally even functions (mod r). We need two particular totally even functions
(mod r) (see (2.7)). They are

(4.2) η(n1, . . . , nk; r) = ((n1, . . . , nk), r)

and

(4.3) ρ(n1, . . . , nk; r) =

{
1 if ((n1, . . . , nk), r) = 1,

0 otherwise.

The lemmas given below furnish the representation of η and ρ in terms of
C(n1, . . . , nk; r) on the basis of (2.10).

Lemma 1

η given by (4.2) has the representation

(4.4) η(n1, . . . , nk; r) =
∑
d | r
α(d, r)C(n1, . . . , nk; d),

where

α(d, r) = r−k
∑
δ | r/d

φ(r/δ)δk.
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Proof. Using (2.10), (2.11) and (1.7), we note that the Fourier coefficients of η are
given by

α(d, r) = r−k
∑
δ | r

(r/δ)C(k)(r/d, δ)

= r−k
∑
δ | r

(r/δ)
∑
t | r/d
t | δ

tkµ(δ/t)

= r−k
∑
δ | r
δ

∑
t | r/d
t | r/δ

tkµ(r/(δt))

= r−k
∑
t | r/d

tk
∑
δ | r/t

δµ(r/(δt))

= r−k
∑
t | r/d

tkφ(r/t).

This proves Lemma 1. �

Lemma 2

ρ given by (4.3) has the representation

(4.5) ρ(n1, . . . , nk; r) = r−k
∑
δ | r
C(k)(r/d, r)C(n1, . . . , nk; d).

Proof. Using (2.10) and (2.11), we obtain the Fourier coefficients β(d, r) of ρ as

β(d, r) = r−k
∑
δ | r
ρ(r/δ; r)C(k)(r/d, δ),

where ρ(r/δ; r) = 0 for δ �= r, and = 1 for δ = r. Therefore

β(d, r) = r−kC(k)(r/d, r)

and this gives (4.5), proving Lemma 2. �

Theorem 9

If Jk is Jordan’s totient and εk as defined in (1.10), then

(4.6)
∑

{ai} (mod r)
((ai),r)=1

(a1 − 1, a2 − 1, . . . , ak − 1, r) = Jk(r)
∑
d | r

1
εk(d)

.
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Proof. Let {si} be a k-vector with ((si), r) = 1. In the notation of (2.9), taking
f = η and g = ρ, one obtains

(4.7)
∑

{ai} (mod r)
((ai),r)=1

(s1 − a1, s2 − a2, . . . , sk − ak, r) = (η ◦ ρ)(s1, . . . , sk; r).

Denoting the left side of (4.7) by S, we have using (2.13) and Lemmas 1 and 2,

S = r−k
∑
d | r

{ ∑
δ | r/d

φ(r/δ)δk
}
C(k)(r/d, r)C(s1, . . . , sk; d).

By virtue of the equations (1.4) and (1.6), since ((si), r) = 1, C(s1, . . . , sk; r) = µ(r).
Therefore, from (1.4) again, we get

S = r−k
∑
d | r

{ ∑
δ | r/d

φ(r/δ)δk
}
Jk(r)µ2(d)/Jk(d)

= r−kJk(r)
∑
δ | r
φ(r/δ)δk

∑
d | r/δ

µ2(d)/Jk(d).

But ∑
d | r
µ2(d)/Jk(d) = rk/Jk(r),

(see [13, Lemma 2]). Therefore

S = r−kJk(r)
∑
δ | r
φ(r/δ)δk(r/δ)k/Jk(r/δ)

= Jk(r)
∑
δ | r

1
εk(r/δ)

as εk = Jk/φ.

Thus, when {si} = {1, 1, . . . , 1}, we arrive at (4.6). This completes the proof of
Theorem 9. �

Remarks. (i) When k = 1, εk(r) = 1 for all r, and so (1.11) is a special case of (4.6).
(ii) In [7], Haukkanen and McCarthy have studied (1.11) in greater detail.
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