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P—adic continuously differentiable functions of several variables
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ABSTRACT

Let K be a non—Archimedean field containing Q,, the field of the p—adic
numbers and let Z,, denote the ring of p—adic integers. In this paper, we construct
the Mahler and van der Put base for C"™ (Zp X Ly — K ), the space of n—
times continuously differentiable functions from Z, X Z, to K.

1. Introduction

Let K be a non-Archimedean field containing Q,,, the field of the p-adic numbers.
As usual, we denote the ring of p-adic integers by Z,. For the moment, we are well
acquainted with the following bases for C (Zp — K ) the Banach space of continuous
functions from Z,, to K. On one hand, we have the Mahler base (7) (n € N), consisting
of polynomials of degree n (see [5] p. 149 or [3]) and on the other hand we have the
van der Put base {e,|n € N} (see [5] p. 189 or [6] p. 61) consisting of locally constant
functions. e, is defined as follows : eg(z) = 1 and for n > 0, e, is the characteristic
function of the ball {& € Z,||a — n| < 1/n}. There also exists a generalization of
these bases to the space of C"—functions (i.e. the n—times continuously differentiable
functions). For details see [5] in case n = 1 and [2] for a more general treatment. We
will now construct the similar bases for C"”—functions of several variables. Since the
case n = 0 has already been treated before ([1], [5]), we can restrict our attention
to the case n # 0. For simplicity we reduce to two variables but everything that
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follows can be done for an arbitrary number of variables. Let’s start by defining the

C"—functions.

DEFINITION. For f :Z, x Z, — K, the first difference quotients ¢§1) f and ¢§2) f
are defined as
f(mvy)_f(l‘,ay) f(xay)_f(l‘ay,)

d ¢ ) = .
PR and ¢, f(z,y,4) "

W fz, ! y) =

If qbgl) f and ¢§2) f can be extended to continuous functions on Zg then f is called
a C''-function.
The space of all C'—functions, will be denoted by C* (Zp X Ly — K ) For the

difference quotients of second order, we get

W fla, 2’ y) — o fa, 2" y)

oMY fla, 2 2" y) =

2 —
1 1

¢(21) f(.%‘ z y y/) _ g )f<xax/7y) - ¢g )f(m,a:’,y’)
2 ) R y_y,

(2) / (2) / /

12 f($7yay)_ f(xayvy)
d)g )f(xax/ayay/): ! a?—.iEll

(2)f 2 N 4(2) "

Y,y flz,y.y
¢522) f(:L‘,y,y’,y”) _ % ( y)/ — y/l/ ( )

and f is a C?~function if those four functions can be extended to continuous func-
tions on Z.
Following the notations above, we denote C? (Zp X Ly — K ) for the space of

all C?—functions.

Remark: ¢°" f(w,a',y.y') = 65" f(z,2',y,9/).
Continuing in the same way, we define the difference quotients of n—th order
and the C"—functions. Using these definitions, we have the following proposition for

the difference quotient of a function f from Z, to K .

Proposition

Let f € C*(Zy, — K), then ¢ f € C*(Zp x Z, — K).



P—adic continuously differentiable functions of several variables 139

Proof. Recall that

_f@)-fly)
M(%,y){élf(x?y) T—vy if .’E?éy
f(z) if x=y.
Now,
O @)t y) = TENZOTED G (500 )
which is continuous for x # 2’ ([4], p. 84).
If z # y and 2’ # y then
O G 7) (@', y) = 2T y; - Z,l FE9) _ g, (oot y)
and this can be extended to a continuous function on Zg .
If z =y and 2’ # y then
. , / _ /’ AN _ ! _ f/
7)ot = LEL OIS ) S0 - (e

and this is continuously extendible, since f € C? implies that f(z') = f(z) +
(2 —2)f'(x) + (' — 2)*Ra(x, 2") with Ry continuous.

If x # y and 2’ = y then

D (61 F) (@, 2 y) = 1 f(x;cx_); &) flx) - f(ﬂigg:ijﬁ);x )f"(2)
and this is continuously extendible.
Analogous:
P @) = AL <G o)

is continuously extendible. Thus ¢, f is a C'function. [J
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2. Mahler’s base

Given a continuous function f : Z, x Z, — K, we have the following necessary and
sufficient condition for f to be C!. But first, let us recall that for n = ng + nip +
...+ ngp® € Ng = N\{0} with ng # 0, n_ is defined to be ng +n1p+...+ns_1p* !
and n —n_ is denoted by 7, . We further put 79 =1 = 6y and 6,, = p*.

Theorem
fx,y) =32, anm (2)(¥) is a C'~function if and only if a;ﬂriﬁ““‘ — 0 and
%‘ — 0 as i + j + k approach infinity or equivalently ‘af;’ﬂ — 0 and

‘an,m

Ym

} — 0 as n + m approach infinity.

Proof. (f) (g) (z) is an orthonormal base for C’(Zg — K) and also (1;) (;’) (Q;;) with

u=z, v=y—xz—1and w==z.
Then, we can write g(x,y, z) = Zm’k Bijk (QZ‘) (;’) (Z) with

Bije = (—1)Hstktmmon @ (;) (S)g(l,l—l— m+1,n)

l,m,n
and |B;jx| — 0 as i + j + k approach infinity.
Take g(z,y,2) = 51) flz,y,2) = —f(m’zgig(y’z) for x # y then

g(Li+m+1,n) = LW flFmFLn

—(m+1)
=2 (@0)-(706)
- B%;l; ao’;ﬁ (a i v) (vnj 1) (Z)

So,

EEDSh 3 O A IR T [ )

v,8=1a=y l,m,n
[ee] oo a
B
=> > i; bi,a—y Ojy—1 Ok,p
’Y7ﬁ:1 o=
since for example >, (—1)""!(}) (al_w) = bi 0 -
So =k, y=j+1land a=i+j+1and finally §;;, = 5L

Doing the same calculations with v = z, v = y and w = z—x—1 for qﬁgz)f(a;, Y, 2)
gives us the second condition. [
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anm

As a corollary, we get that if — 0 as n + m approach infinity then

In¥Ym

f(@y) = >, 0 anm (®)(?) is a C'~function, but the converse is not necessarily
true.

On CY(Z, x Z, — K) we now put the following norm |||y = max {| f|s,
||¢§1) fllss ||¢§2) st} , where || ||s denotes the sup norm.

This is indeed a norm as can be easily verified and C*(Z, x Z, — K), || |1

x) (%) (n,m € N) as we will prove now.

is a Banach space with base (n

Theorem

The sequence max {’yn,’ym} . (fL) . (;jl)(n,m € N) forms an orthonormal base
for C*(Zy x Z, — K).

G EL-ICLIC-
GG~ 1o LI =
§ I CY G =)L (o)L= 5o

()( [, = m |wln|’|vin}:|max{wln,vm}r'

Let us now consider an arbitrary (finite) linear combination 377, 7" a;;(7) () -

Then,
22 (0)()] 2|z 2()0)|
2%} ()
but also

vV
o~

=
(7=
NgE
8

&,
Y
=, 8
N—
N
. <
N———
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and
$5.0)0) b5 00)
> 3250 (8) o (o) =151
Thus

550 ()0)] =tz ()

So, max {yn, ym} - (¥) - (?) (n,m € N) is orthonormal ([5], proposition 50.4). Let
feCY (ZyxZy— K) CC(Zyx Ly — K).

As continuous function, we can write f(z,y) =Y anm (2) (gl) .
The previous theorem tells us that }a,’;—m‘ — 0 and ‘

1

An,m

|—>Oasn+m
’Ym

An,m

approach infinity and thus also ‘W‘ — 0 as n + m approach infinity.

So f(z,y) = meax{%,fym} ) (Y)inCY(ZpyxZy — K), | |1

and | flly = max, m || O

3. The van der Put base

In the sequel, we will use the following notation.
For m,x € Qp, v = +oo a;p’ :m<zif m= Z

j:—oo _]7 [e’e}
We sometimes refer to the relation < between m and = as “m is an initial part

a;p’ for some ¢ € Z.
of 7 or “x starts with m”.

Lemma 1

Let f € C(Zy x Z, — K), B a ball in Z;, and S a ball in K .

Suppose d)&l)f(n n_,m) = M €S forn,n_ € B,n,m € Ny then
gi)gl)f(xzzr y) = MESICOFQZCC €EB,x#x,yel,.

Proof. Tt suffices to prove this for z,2’ € BNN, y € N since N is dense in Z,, f is
continuous and S is closed in K.

S is “convex” i.e. if x1,xo,...,x, € S and A1, Ag, ..., A, € K with [A;| <1 for
all i and Y A\; = 1 then > \jz; € S.
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Let t be the common initial part of z and 2’

t=to+tip+ ...+ tpp"
r=to+tip+...+t,p" + Tpi1p
o =to+tp+.. "l p" T+ with mgq £ 2l
(zo # 2y =t =0)
t—x

Ve y) = o it y) S+ ol (tal )

ntly

/

_;U/

and thus d)gl)f(a:,a:’,y) € S as soon as qﬁgl)f(a:,t,y) and d)gl)f(t,x’,y) €S.
So there remains to prove: gzﬁgl)f(a:,x’,y) €S for 2’ x.

There exist t1 Q4 ta<... <9 t, with t; =2/, ¢, =z and (¢;)- =1t;_1.
1 = 1 , ti—ti g
j=2

Now |\ <1, 327, A =1 and (bgl)f(tj,tj_l,y) € S for all j by assumption.
So ¢V f(x,2',y) € S. O

Similarly, we can prove:

Lemma 2
Let f € C(Zy x Z, — K),B a ball in Z;, and S a ball K.
Suppose¢>(2)f(nmm ) = MESfm‘mm € B, m, n €N then

m—m_

g”f(%?Jﬂ)‘WeSfbryy € B, y;éy Z‘GZ

Theorem

Let f(z,y) = Y anm en(®)em(y) € C(ZyxZy, — K), then f € NY(ZyxZ, —
K) = {f € Cl(prZp —>K)‘af =0 and 8—f :O} if and on]yifnlllgo‘lé”—nm =0
for all m and lim %= =0 for all n.

Proof. Let f € C'(Z, x Z, — K), then f(z,y) = f(z0,y) + L (z0,y)(x — z0) +
(& = 20)? Ry (, 0,y) for all y and f(z,y) = f(z,90) + F-(x,90)(y — v0) + (v —
Y0)? Ra(z,y, yo) for all z where Ry and Ry are continuous functions.
of of
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So f(z.y) = f(z0,y) + (x — 0)?Ri(w,20,y) for all y and f(z,y) = f(z,y0) +
(y — yo)?Ra(x,y,y0) for all z.
Or equivalently,

f(xv ) — f(x07y)

= (z —mo)Ry(x,20,y) forall y

Tr — X
xT, — x,
I ;_ g(f W) _ (y — yo)Ro(x,y,y0) forall z.

In particular,

0m) =10et) _ o)
f(n,m-) ;nf("—vm—) — yuRi(n,n_,m_) forall m
(EUES (CUS EPTA
f(n_,m) %j‘("—am—) — ymRa(n_,m,m_) foral n.
And thus
f(n,m) = f(n_,m) = f(n,m_) + f(n_,m_)

Tn
= Yn(Ri(n,n_,m) — Ry(n,n_,m)) forall m

f(na m) — f(nam—) — f(n—7m) + f(n—am—)
Tm
= Ym (R2(n,m,m_) — Ry(n_,m,m_)) forall n.

So, lim “—n = 0 for all m and lim “m = 0 for all n since taking lim for a €
Zp(rzb ;OZ) coincides with taking 51215 in the classical case and nILH;O ’ynn: 06
Now suppose that nl1_>n§o “,7: =0 for all m € N holds.
Anm + Anm_ _ f(n7 m) — f(n,,m) — f(nam*) + f(n*ﬂn*)
Tn Tn Tn
L Sm) = fomo) = f(n ) ) + S (e (o))

Tn
flngm) = f(n_ym) = £ (n, (m)-) + f(n (m-)-)
Tn
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Repeating this, gives
Gnm  Onm_ . Gp(M_)_ Gn n,m)— f(n_,m
L) _ f(nm) = fnoym)
Tn Tn Tn Tn Tn
since
_ f(n,O) - f(n,,O)
ano = .
Tn

On the left side, there are only a finite number of terms, so

an0> =0 for all m

lim f(n,m) - f(n—vm) — lim <anm + Gnm._ +... .+ —
n—oo Tn nee Tn Tn Tn
and thus
fnm) —Jn-m) _ o (4 e z,(n#a), meN).

lim
n—a 'yn

So for all € > 0, there exists an 6; > 0 such that 0 < |n — a| < 6; implies

1
(67 f(n.n_m)| <ce.
Let a € Ny, then |a —a_| > 0 and thus |a — a_| > 2 for a certain 6, .

Now take § = min {61,062}, we then have:
If 0 < |[n—al < 6 then ‘qbgl)f(n,n_, m)| < e but also [a—a_| > & . Lemma 1 with

By = {x € Zy||x—a| < §} and S = {x € Z,||x| < €} assures that ‘qbgl)f(x,x’,y)‘ <e

for all ,2’ € By and all y € Z,, .
In the same way, we can prove that }(ﬁgz)f(:c,y,y’)‘ < ¢ for all x € Z,, and all

Y,y € By :{xEZp}|y—b| < 6}
So fis C* in (a,b) with $L(a,b) =0 and §L(a,0) =0. O

Theorem
Let f(z,y) = famen(@)em(y) € C(ZyxZy, — K) , then f € CH(ZyxZ, —
K ) if and only if for all a € Z,, lim . exists for all m and lim 22 exists for all

n.
Proof. )
feCt— ¢§1)f(:c,x’,y) = f@, ;_i,(x :Y) and
¢(2)f(56 y y/) — f(x,y) — f(:r,y’)
Lo y—y

are extendible to continuous functions.
Thus lim gl)f(x, x',y) exists for all y.

(z,2')—(a,a)



146 DE SMEDT

In particular, li)m( )(bgl) f(n,n_,y) exists for all y or equivalently

(n,n-)—(a,a)

k

exists for all y.
So, lim Y kam fuk and m > .. Int exists for all m and thus
(n,n-)—(a,a) o (n,n-)—(a,a) -
lim {2 exists for all m .

n—a '"
frm

Similarly: lim o exists for all n .
m—a '™

Now assume this to be the case.

f(n,m) — f(n_,m) _ fom n Jnm_ n Jrm_)_ I @'
Tn Yn Yn Yn Tn
So
lim f(n,m) - f(n_,m) = lim fn—m + lim Jom- + ...+ lim @
(n,n_)—(a,a) Yn n—a Y n—a Yy n—a Yp

exists for all m € N, which implies that

flz,y) — f(@' —y)

(z,2")—(a,a) z—a

exists for all y € Z,, .
So gbgl)f(ac, x’,y) is extendible to a continuous function.

Analogous: ¢§2) f(z,y,y) is extendible to a continuous function. Thus f is a
C'function. O

With the theorems above, we can finally construct the van der Put base for

cY(Z, x Z, — K).

Theorem

The sequence e, (z)en(y), (x —n)en(z)em(y), (y — m)ey(x)en(y) (n,m € N)
forms an orthogonal base for C* (Z, x Z, — K) .
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Proof.

len(@)em (¥)]1
= max {|en (@)em@)s, 161 en(@)em®)lls 165 en(@)em@)ls}
= max {|en (@) lslem®)llss [dren(@)s lem®)llss llen(z )Hs p1em(y)lls

U e )
=max<1l, —, —
Vel " | yml

_ 1
[ max{yn, ym }|
(@ = n)en(@)em®)
= max {]|(z = n)en(@)em )]s, 165 (x = n)en(@)em )]s,
165 (z — n)en(@)em ()]s}
= max {||(z = n)en (@) s llem@)lls: 610 —n)en(@) s llem @)l
(@ = m)ea(@)lls lérem®)lls}

_ {mr Vel }
=max{q —, 1,
P P|Ym|

n 1
:max{l, |’7 ||} for n #£ 0. (Incasen—O we have ﬁ>
Tm Tm

Similarly: ||(y — m)en(z)em (y)|l1 = max {1 Ly } form #0. (In case m = 0, we

? plynl
have —— ).
[Vnl

Let us consider now a finite linear combination

Z Z awez )+ bw( )eZ(x)ej (y) + Cij (y — j)ei(x)ej (v)

i=k j=I

which we will denote f(z,y)

1 ()l = 1f (2, 9)lls = [f (R DI = law

but also o
17l 67, > 08106 80,0] = o

and
|k

£l 2 |68 £l 2 1617 £k, L= 8] = e
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Thus

g
= law| |lex(z)er(y)]]1 -

1/ (2, 9)ll = | max{ye, 1|

This can also be done for the other two kind of elements.

|bral |0k |

1 ()l = 1f (2, 9)lls = [f(k + pox, )] = »

but also
1 @)l = (|6 F @ )], = [ (k& + poi, )] = [brl
and
bkl Ok .

17l = 116 £, > (687 706 +pov 1= 0] = Pt

Thus [|f(z, y)llx = [brl. [(x = k)ex(z)er(y)]]1 -

Similarly || f(z, y)ll1 = [erl.[I(y — Dex(z)er(y) ]l -

So, the ey (z)em(y), (x — n)en(x)em(y), (y — m)ey(r)en(y) are orthogonal.
To prove that it is also a base, we first calculate the coefficients of an
feC (ZyxZy— K).

Let
Zzamez )+ bij(@ —d)ei(z)e;(y) + cii(y — jei(x)e;(y)
=0 7=0
then f(0,0) = agpo
0) == Z a;.0 + Z b@o(ﬂ — ’L)
<n <n
— 0) = Z a;.0 + Z bi’o(n_ —
1<In_ <IN _
So f(n,0) = f(n_,0) = ano+ »_ bio(n—n_)
i<In_
af Z bz 0
i<mn
and thus
of

f(n,O)—f(n_,O)—'y

n%(n—>o) = Qn,0 -
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Analogous : f(0,m) — f(0,m_) — fymg—ch(O, m-_) = aom

f(n,m) = Z Qj,j =+ Z b@j(ﬂ — ’L) + Z ci,j(m — j)

jam j<am jam
fiom )= " aij+ Y bijn—i)+ > cijimo —j)
idn idn idn
jm _ Jj<m _ Jjdm _
fio,m) = aij+ > bijne —i)+ Y cij(m—j)
o o o
f(no,m_) = Z a;; + Z b j(n_ —1)+ Z cijm- —j).
idn _ idn _ idn _
Jjam _ jam _ jam _

So
f(n - m) - f(n—7m) - f(nvm—) + f(n—am—)
= ap,m + Z bim(n—n_)+ Z Cnj(m—m_)
i<In_ Jj<m_

0

O (o) = 3 bisesa)es )

0

) = e @ ).
Thus 5

%(n_,m) = ; b;; and a—i(n_,m_) = ; b; ;

so that of of

8_:1?(”7’ ) - %(n*ﬂn*) = i%: bi,m
Similarly:

of of

8_y( ) —)_8_y(n—7m—):j§_cnj
So finally,
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We further also have:

bo,o = %(070)
b’fho = g_i(na 0) - %(H,O)
of of
bO,m = %(Oam) - %(0,7)1_)
b = o (n,m) = ()~ )+ )
CO,O = 2—5(0,0)
o= o (,0) = 2 (.0
of of
Co,m = _(O7m) - _(Ovm—)
’ dy dy
0 0 0 0
Cn,m = 8—5(7% m) — a—ch(n_,m) - a—i(n, m_)+ a—ch(n_,m_).

There now remains to prove that a series with these coefficients converges and
coincides with f.

Let
g(,y) =Y aijei@)e;(y) + bij(x — i)es(x)e; (y) + iy — fei(x)e; (y)
i=0 j=0

where the ap m, bp,m and ¢, ., are given by the formulas above.
fect (Zp X Ly — K) so f, % and g—i are continuous.

of

nlLH;o |an,0| = nlingo ‘f(nv 0) - f(n_,O) - Wn%(n—ao)‘
0
< nlln;omax <|f(n,0) — f(n_-,0)], |’Yn|.‘a—£(n—70)‘> =0

. . 0
Jin ool <t o (10.) = 70 m0)] . Pl |5 0000} =0

Jim Ja,] < lim max (|f<n,m> — fnesm)] [ me) = S ).

9 o m)— L nm)

[Vnl. o

=0 forall m
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and
Timagn] < limmax (1f(n,m) = f(mo ), [f(no,m) = f(n_,m_)],
0 0 0
il o) = S| b [y = G ]

=0 forall n.

The same can be done for the b, o, b0,m,bn.m,Cn,0,co,m and ¢, . Thus the series
g(z,y) converges uniformly.

Since e;(2)e;(y), (x—1i)ei(z)e;(y) and (y—j)e;(x)e;(y) belong to C(Zy x Z, —
K),g(z,y) is also an element of C(Z, x Z, — K). Further on, we have f(n,m) =
g(n,m) for all n,m € N. By continuity, f = g which proves the theorem. [J

Generalization

The sequence (z —i)*(y — j)le;(z)ej(y) with 0 < k+1<n, i€ Nand j € N
forms an orthogonal base for C™ (Zp X Ly — K ) whereby every C""—function f can
be written as

S x—i)k (y —j)
Py =Y 3 at TR I e

1,j=0 k+1=0
with
R A n—k—l grtitar o n—k—l rHHBE %@
@5 = axkayl(l’j)_ 2 m(l—d)g P W(Hﬁ)—!
n—k—I1 o B
oetlratBy Ay . ,
+ W(L"]Ja!ﬁ! for 140 and j#0
a+B=0
oFHL§ n—k-l ot o
kil . , o .
Ajo = Dk Dy (4,0) — 2 W(L’O)J for 1#0
GEHLf n—k—l GEHIO f ~?
k,l . . j .
ay’; = A %Al l(07])_ W( ,j_)—' for 7#0
0x*0y = 0xF oy g!
and y .
o0 = (0,0)
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