
Collect. Math.45, 2 (1994), 101–119

c© 1994 Universitat de Barcelona

Fiberwise shape theory

Zvonko Čerin
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Abstract

We shall describe a modification of fiberwise homotopy theory which we call
fiberwise shape theory. This is accomplished by constructing the fiberwise shape
category FsB . The category FsB is built using multi-valued functions. Its
objects are fiberwise topological spaces while its morphisms are fiberwise ho-
motopy classes of collections of multi-valued functions which we call fiberwise
multi-nets. When B is a single-element space, the fiberwise shape category
is isomorphic with the shape category. Various authors have previously given
other descriptions of fiberwise shape categories under additional assumptions.
Our description is intrinsic in the sense that we do not use any outside objects.
It is a fiberwise version of the author’s extension to arbitrary topological spaces
of Sanjurjo’s approach to shape theory via small multi-valued functions.

1. Introduction

The book “Fiberwise topology” by I. M. James [13] beautifully exposes the fiberwise
point of view in topology. It is the study of the category FB of fiberwise topolog-
ical spaces and fiberwise or fiber-preserving maps. Almost all invariants, notions,
and results in topology have their fiberwise analogues. In particular, we can de-
fine fiberwise homotopy theory which studies the fiberwise homotopy category FhB
whose objects are fiberwise topological spaces and whose morphisms are fiberwise
homotopy classes of fiber-preserving maps (see Chapter IV of [13]).

On the other hand, the classical homotopy theory has been modified by the
introduction of shape theory. The modification was invented by K. Borsuk [6] with
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the desire to handle more successfully spaces with bad local properties. The new
improved homotopy theory that he named shape theory agrees with the old on spaces
with nice local properties, for example on absolute neighborhood retracts. The key
idea in Borsuk’s approach was to replace homotopy classes of maps with homotopy
classes of sequences of maps that he calls fundamental sequences.

The aim of this paper is to define shape theory for fiberwise topological spaces.
In other words, we shall describe a fiberwise shape category FsB whose objects are
fiberwise topological spaces and whose morphisms will be fiberwise homotopy classes
of collections of multi-valued functions that we call fiberwise multi-nets. Therefore,
our approach can be regarded as a fiberwise version of the author’s description [7] of
the shape category Sh which is an extension of Sanjurjo’s method [17] from compact
metric spaces to arbitrary topological spaces.

When B is a single-element topological space, the fiberwise multi-net and fiber-
wise homotopy for fiberwise multi-nets agree with multi-net and homotopy for multi-
nets from [7]. Hence, the main result in [8] implies that in this case the category
FsB is isomorphic to the shape category Sh [15].

The following features of our description of fiberwise shape category deserve to
be emphasized. It is intrinsic in the sense that we do not use any outside objects
(like fiberwise ANR’s, fiberwise embeddings, fiberwise resolutions, and/or fiberwise
expansions). There are no restrictions on the topological space B. Finally, it is
extremely simple and the only tricky part is in defining the composition of fiberwise
homotopy classes of fiberwise multi-nets between fiberwise spaces.

There are several previous attempts to get fiberwise versions of shape theory
but they all make some assumptions on spaces under consideration. We note papers
by H. Kato [14], S. C. Metcalf [16], Y. Yagasaki [19], M. Clapp and L. Montejano [9],
and V. H. Baladze [2], [3], [4], [5]. In [5], which provides the most general setting,
Baladze exhibits fiberwise shape theory for maps of arbitrary topological spaces into
a metrizable space B. He follows the method of ANRB−resolutions, i.e., resolutions
of spaces over B consisting of fiberwise absolute neighborhood retracts ([11], [12],
[18], [19]) providing only an outline without any proofs.

The natural questions of relationship of our fiberwise shape category with those
mentioned above are deferred to another paper. We only discuss the problem of
identifying fiberwise topological spaces on which fiberwise shape theory and fiberwise
homotopy theory coincide.
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2. Basic notions of fiberwise homotopy theory

Throughout this paper B denotes a topological space which we keep fixed and call
a base space. We follow also the convention that a map is a short name for a
continuous single-valued function.

By a fiberwise topological space we mean a pair (X, f) consisting of a topological
space X and a map f : X → B. Of course, the map f is often dropped from the
notation so that we talk about a fiberwise topological space or a fiberwise space

X. We shall use letters X, Y , Z, and W to denote fiberwise spaces (X, f), (Y, g),
(Z, h), and (W, k), respectively.

Fiberwise topology is a part of topology which studies fiberwise spaces. In order
to do this more successfully we use fiberwise maps to compare them.

Let X and Y be fiberwise spaces. A map m : X → Y is fiberwise or fiber-

preserving provided f = g ◦m. Let FB denote the category whose objects are
fiberwise topological spaces and whose morphisms are fiberwise maps.

The definition of fiberwise homotopy involves the fiberwise cylinder

(X × I, f × I) of the fiberwise space (X, f), where I denotes the unit closed seg-
ment and the map f × I : X × I → B is defined by f × I(x, t) = f(x) for every
x ∈ X and every t ∈ I.

Let p and q be fiberwise maps between fiberwise spaces X and Y . We shall
say that p and q are fiberwise homotopic and write p	B q provided there is a fiber-
wise map m : X × I → Y called fiberwise homotopy such that m(x, 0) = p(x) and
m(x, 1) = q(x) for every x ∈ X. The relation of fiberwise homotopy is an equiva-
lence relation and we denote the fiberwise homotopy class of a fiberwise map p by
[ p ]B . Since the fiberwise homotopy relation 	B is also compatible with the composi-
tion, one can define the composition of fiberwise homotopy classes of fiberwise maps
by composing representatives, i.e., [ q ]B ◦ [ p ]B = [ q ◦ p ]B , where p : X → Y and
q : Y → Z. In this way one obtains the fiberwise homotopy category FhB , whose
objects are fiberwise topological spaces and whose morphisms are fiberwise homo-
topy classes of fiberwise maps. There is a homotopy functor HB from FB to FhB
which keeps the objects fixed and takes a fiberwise map p into its fiberwise homotopy
class [ p ]B .

For further information concerning fiberwise topology and fiberwise homotopy
theory see excellent books [12] and [13].
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3. Normal covers and multi-valued functions

In this section we shall introduce notions and results on normal covers and multi-
valued functions that are required for our theory.

Let Ŷ denote the collection of all normal covers of a topological space Y [1].
With respect to the refinement relation > the set Ŷ is a directed set. Two normal
covers σ and τ of Y are equivalent provided σ > τ and τ > σ. In order to simplify
our notation we denote a normal cover and it’s equivalence class by the same symbol.
Consequently, Ŷ also stands for the associated quotient set.

If σ is a normal cover of a space Y , let σ+ be the collection of all normal covers
of Y which refine σ while σ∗ denotes the set of all normal covers τ of Y such that
the star st(τ) of τ refines σ. Similarly, for a natural number n, σ∗n denotes the set
of all normal covers τ of Y such that the n-th star stn(τ) of τ refines σ.

Let Ỹ denote the collection of all finite subsets c of Ŷ which have a unique (with
respect to the refinement relation) maximal element which we denote either by c̃ or
by [c]. We consider Ỹ ordered by the inclusion relation and regard Ŷ as a subset of
single-element subsets of Ŷ . Notice that Ỹ is a cofinite directed set.

We shall repeatedly use the following lemma (see [15, p. 9]). Let us agree that
an increasing function f : P → P of a partially ordered set (P, <) into itself is a
function which satisfies x < f(x) for every x ∈ P and x < y in P implies f(x) < f(y).
In the case when the domain and the codomain of a function f are different, the
first requirement is dropped.

Lemma 1

Let {f1, . . . , fn} be functions from a cofinite directed set (M, < ) into a di-

rected set (L, < ) . Then there is an increasing function g : M → L such that

g(x) > f1(x), . . . , fn(x) for every x ∈M .

Let X and Y be topological spaces. By a multi-valued function F : X → Y we
mean a rule which associates a non-empty subset F (x) of Y to every point x of X.

For our approach to shape theory the following notion of size for multi-valued
functions will play the most important role.

Let F : X → Y be a multi-valued function and let α ∈ X̂ and σ ∈ Ŷ . We shall
say that F is an (α, σ)-function provided for every A ∈ α there is an SA ∈ σ with
F (A) ⊂ SA. On the other hand, F is a σ-function provided there is an α ∈ X̂ such
that F is an (α, σ)-function.

Also important will be the following concept of closeness for two multi-valued
functions.
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Let F, G : X → Y be multi-valued functions, let σ ∈ Ŷ , and let α ∈ X̂. We

shall say that F and G are (α, σ)-close and we write F
(α,σ)
= G provided for every

A in α there is an SA ∈ σ with F (A) ∪ G(A) ⊂ SA.

4. Fiberwise normal covers and fiberwise multi-valued functions

In this section we shall define fiberwise versions of some notions from the previous
section.

By a fiberwise normal cover of a fiberwise space (X, f) we mean a pair (σ, σB)
where σ is a normal cover of the space X and σB is a normal cover of B such that
σ refines the cover f−1(σB). We shall again make a simplification of our notation
by dropping σB so that fiberwise normal covers are denoted by small Greek letters
which name a normal cover of the total space X while the part in the base space
has index B.

Let Ŷ denote the collection of all fiberwise normal covers of a fiberwise space Y .
We order Ŷ by the refinement relation > defined by σ > τ if and only if σ > τ and
σB > τB for fiberwise normal covers σ and τ of Y . With respect to the relation >
the set Ŷ is a directed set. Two fiberwise normal covers σ and τ of Y are equivalent
provided σ > τ and τ > σ. In order to simplify our notation we denote a fiberwise
normal cover and it’s equivalence class by the same symbol. Consequently, Ŷ also
stands for the associated quotient set.

If σ is a fiberwise normal cover of a fiberwise space Y , let σ+ be the collection
of all fiberwise normal covers of Y which refine σ while σ∗ denotes the set of all
fiberwise normal covers τ of Y such that the star st(τ) of τ refines σ. Here, we
define the star st(σ) of a fiberwise normal cover σ = (σ, σB) as a fiberwise normal
cover (st(σ), st(σB)). Similarly, for a natural number n, σ∗n denotes the set of all
fiberwise normal covers τ of Y such that the n-th star stn(τ) of τ refines σ.

Let Y be a fiberwise space. Let Ỹ denote the collection of all finite subsets c of
Ŷ which have a unique (with respect to the refinement relation) maximal element
which we denote either by c̃ or by [c]. We consider Ỹ ordered by the inclusion
relation and regard Ŷ as a subset of single-element subsets of Ŷ . Notice that Ỹ is a
cofinite directed set.

For our approach to fiberwise shape theory the following class of fiberwise multi-
valued functions will play the most important role.

Let F : X → Y be a multi-valued function between fiberwise spaces and let α
and σ be fiberwise normal covers of X and Y . We shall say that F is a fiberwise

(α, σ)-function provided F is an (α, σ)-function and the functions f and g ◦ F are
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(α, σB)-close. On the other hand, F is a fiberwise σ-function provided there is an
α ∈ X̂ such that F is a fiberwise (α, σ)-function.

5. Fiberwise σ-homotopy

Now we a ready to introduce an important notion of fiberwise σ-homotopy for multi-
valued functions of fiberwise spaces. We shall also prove in Lemma 2 a useful
technical result.

Let F and G be multi-valued functions between fiberwise spaces X and Y and
let σ be a fiberwise normal cover of Y . We shall say that F and G are fiberwise

σ-homotopic and write F
σ	B G provided there is a fiberwise σ-function H from

the fiberwise cylinder X × I into Y such that F (x) = H(x, 0) and G(x) = H(x, 1)
for every x ∈ X. We shall say that H is a fiberwise σ-homotopy that joins F and G
or that it realizes the relation (or fiberwise σ-homotopy) F

σ	B G .
The following lemma is crucial because it provides an adequate substitute for

the transitivity of the relation of fiberwise σ-homotopy.

Lemma 2

Let F , G, and H be multi-valued functions between fiberwise spaces X and Y .

Let σ be a fiberwise normal cover of Y and let τ ∈ σ∗. If F
τ	B G and G

τ	B H,

then F
σ	B H .

Proof. By assumption there are fiberwise normal covers α and β ofX × I, a fiberwise
(α, τ)-function K : X × I → Y , and a fiberwise (β, τ)-function L : X × I → Y such
that F (x) = K(x, 0), G(x) = K(x, 1), G(x) = L(x, 0), and H(x) = L(x, 1) for
every x ∈ X. Let a fiberwise normal cover γ of X × I be a common refinement of
α and β. Observe first that K and L are both fiberwise (γ, τ)-functions. Define a
multi-valued function M : X × I → Y by the rule

M(x, t) =

{
K(x, 2t), x ∈ X, 0 ≤ t ≤ 1/2

L(x, 2t− 1), x ∈ X, 1/2 ≤ t ≤ 1 .

Since F (x) = M(x, 0) and H(x) = M(x, 1) for every x ∈ X, it remains to see
that M is a fiberwise σ-function.
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By [10, p. 358], there is a normal cover δ ofX and a function r : δ → {2, 3, 4, . . .}
such that the set D ×Di is contained in a member CD,i of γ for every D ∈ δ and
every i = 1, . . . , rD − 1, where Di =

[
i−1
rD ,

i+1
rD

]
(i = 1, . . . , rD − 1). Let

Ei =



[
0,

1
2rD

)
, i = 0,( i

4rD
,
i+ 2
4rD

)
, i = 1,. . . , 4rD-3,(

1 − 1
2rD

, 1
]
, i = 4rD-2 .

The collection ε =
{
D × Ei |D ∈ δ, i = 0, 1, . . . , 4rD − 2

}
is a normal cover

of X × I. Let 0 be a fiberwise normal cover of X × I such that 0 refines ε. In
order to prove that M is a fiberwise (0, σ)-function, we shall first show that it is an
(ε, σ)-function.

Let E = D × Ei be a member of ε. We must find an SE ∈ σ such that
M(E) ⊂ SE .

Case I (i = 2k for 0 ≤ k ≤ rD − 1). Then Ei = E2k is below 1/2 so that we
get M(E) = K(D × 2Ei) = K(Vk) ⊂ K(CD,k) ⊂ T ⊂ SE , where Vk = D ×Dk,
the open set T is a member of τ which we obtain with respect to CD,k from the fact
that K is a (γ, τ)-function, and SE is a member of σ which contains T .

Case II (i = 2k for rD ≤ k ≤ 2rD − 1). Then Ei = E2k is above 1/2 so that
we get M(E) = L(D × (2Ei − 1)) ⊂ L(Vk−rD) ⊂ L(CD,k−rD) ⊂ T ⊂ SE , where T
is a member of τ which we obtain with respect to CD,k−rD from the fact that L is
a (γ, τ)-function, and SE is a member of σ which contains T .

Case III (i = 2k + 1 for 0 ≤ k ≤ rD − 2). Then Ei = E2k+1 is below 1/2 so
that we get

M(E) = K(D×2Ei) ⊂ K(Vk)∪K(Vk+1) ⊂ K(CD,k)∪K(CD,k+1) ⊂ T1∪T2 ⊂ SE ,

where T1 and T2 are members of τ which we obtain with respect to CD,k and CD,k+1

from the fact that K is a (γ, τ)-function, and SE is a member of σ which contains
the union T1 ∪ T2. Such an SE exists because D × {(k + 1)/rD} ⊂ CD,k ∩ CD,k+1

so that ∅ �= K(D × {(k + 1)/rD}) ⊂ T1 ∩ T2.

Case IV (i = 2k + 1 for rD ≤ k ≤ 2rD − 1). This case is analogous to the
Case III. This time Ei is above 1/2 and we must use L instead of K.

Case V (i = 2k + 1 and k = rD − 1). Then Ei = E− ∪ E+, where E− =(
2rD−1
4rD , 1

2

]
and E+ =

[
1
2 ,

2rD+1
4rD

)
so that we get

M(E) = K(D × 2E−) ∪ L
(
D × (2E+ − 1)

)
⊂ K(CD,rD−1) ∪ L(CD,1) ⊂ T1 ∪ T2,
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where T1 and T2 are members of τ which we obtain with respect to CD,rD−1 and
CD,1 from the fact that K and L are (γ, τ)-functions.

Observe that K(D × {1}) = G(D) ⊂ T1 and L(D × {0}) = G(D) ⊂ T2. We
conclude that T1 ∩ T2 �= ∅ so that there is a member SE of σ which contains both
T1 and T2. It follows that M(E) ⊂ SE .

Finally, it remains to check that functions f × I and g ◦M are (ε, σB)-close.
Let E = D × Ei be a member of ε. We must find a member SE of σB such that
both f × I(E) and g ◦M(E) are contained in SE .

Once again we shall distinguish five cases considered above.
Case I. Let A be a member of α which contains the set CD,k. Since f × I and

g ◦K are (α, τB)-close, there is a member T of τB which contains both f × I(A) and
g ◦K(A). Since τB is a star-refinement of σB , there is an SE ∈ σB with T ⊂ SE .
Our choices imply g ◦M(E) ⊂ g ◦M(CD,k ⊂ g ◦M(A) because CD,k ⊂ A and
D × 2Ei ⊂ Vk and f × I(E) ⊂ f × I(A) because E ⊂ A. It follows that f × I(E)
and g ◦M(E) are both subsets of SE .

Case II. This is similar to the previous case. We have to deal with L instead of
with K.

Case III. The set g ◦M(E) is now a subset of the union of sets g ◦K(CD,k) and
g ◦K(CD,k+1). Let A1 and A2 be members of α which contain CD,k and CD,k+1,
respectively. Since f × I and g ◦K are (α, τB)-close, there are members T1 and T2

of τB such that T1 contains f × I(A1) and g ◦K(A1) while T2 contains f × I(A2)
and g ◦K(A2). The sets T1 and T2 both contain the set f(D). It follows that some
member SE of σB contains their union. This is the required open set.

Case IV. This is similar to the previous case.
Case V. The set g ◦M(E) is now a subset of the union of sets g ◦K(CD,rD−1)

and g ◦ L(CD,1). Let A1 be a member of α and let B2 be a member of β such that
A1 contains CD,rD−1 and B2 contains CD,1. Since f × I is (α, τB)-close to g ◦K
and (β, τB)-close to g ◦ L, there are members T1 and T2 of τB such that T1 contains
f × I(A1) and g ◦K(A1) while T2 contains f × I(B2) and g ◦ L(B2). But, the sets
T1 and T2 both contain the set f(D) so that some member SE of σB contains their
union. It follows that f × I(E) and g ◦M(E) are both subsets of SE . �

Since we shall be using [10, p. 358] quite often, for a space Y and a normal
cover α of the product Y × I, we let D(Y, α) denote all normal covers β of Y such
that some stacked normal cover over β refines α.
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6. Fiberwise multi-nets

The following two definitions correspond to Borsuk’s definitions of fundamental se-
quence and homotopy for fundamental sequences.

Let X and Y be fiberwise spaces. By a fiberwise multi-net from X into Y we
shall mean a collection ϕ = {Fc | c ∈ Ỹ } of multi-valued functions Fc : X → Y such
that for every σ ∈ Ŷ there is a c ∈ Ỹ with Fd

σ	B Fc for every d > c. We use
functional notation ϕ : X → Y to indicate that ϕ is a fiberwise multi-net from X

into Y . Let FmB(X, Y ) denote all fiberwise multi-nets ϕ : X → Y from X into Y .
Two fiberwise multi-nets ϕ = {Fc} and ψ = {Gc} between fiberwise spaces X

and Y are said to be fiberwise homotopic and we write ϕ 	B ψ provided for every
σ ∈ Ŷ there is a c ∈ Ỹ such that Fd

σ	B Gd for every d > c.
It follows from Lemma 2 that the relation of fiberwise homotopy is an equiva-

lence relation on the set FmB(X, Y ). The fiberwise homotopy class of a fiberwise
multi-net ϕ is denoted by [ϕ]B and the set of all fiberwise homotopy classes by
FsB(X, Y ) .

7. Composition of fiberwise homotopy classes

Our first goal is to define a composition for fiberwise homotopy classes of fiberwise
multi-nets and to establish it’s associativity.

Let X and Y be fiberwise spaces. Let ϕ = {Fc} : X → Y be a fiberwise multi-
net. Let ϕ : Ỹ → Ỹ be an increasing function such that for every c ∈ Ỹ the relation

d, e > ϕ(c) implies the relation Fd
[c]	B Fe .

Let Cϕ = {(c, d, e)| c ∈ Ỹ , d, e > ϕ(c)}. Then Cϕ is a subset of Ỹ × Ỹ × Ỹ

that becomes a cofinite directed set when we define that (c, d, e) > (c′, d′, e′) iff
c > c′, d > d′, and e > e′.

We shall use the same notation ϕ for an increasing function ϕ : Cϕ → X̂ × I

such that Fd and Fe are joined by a fiberwise (ϕ(c, d, e), [c])-homotopy whenever
(c, d, e) ∈ Cϕ.

Let ϕ̄ : Cϕ → X̃ be an increasing function such that the fiberwise normal cover
[ϕ̄(c, d, e)] belongs to the set D(X, ϕ(c, d, e)) for every (c, d, e) ∈ Cϕ.

Claim 1. There is an increasing function ϕ∗ : Ỹ → X̃ such that

(1) ϕ∗(c) > ϕ̄(c, ϕ(c), ϕ(c)) for every c ∈ Ỹ , and

(2) ϕ∗ is cofinal in ϕ̄, i.e., for every (c, d, e) ∈ Cϕ there is an m ∈ Ỹ with

ϕ∗(m) > ϕ̄(c, d, e).
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Proof. Let D = {ϕ̄(c, d, e) | (c, d, e) ∈ Cϕ}.
If Ỹ is a finite set, then D is a finite collection of elements of X̃. Let a ∈ X̃ be

greater than all members of D. Let ϕ∗ : Ỹ → X̃ be a constant function into a.
If Ỹ is an infinite set, then the cardinality of D does not exceed the cardinality

of Ỹ . Hence, there is a surjection g : Ỹ → D. Let ϕ∗ : Ỹ → X̃ be an increasing
function such that ϕ∗(c) > g(c), ϕ̄(c, ϕ(c), ϕ(c)) for every c ∈ Ỹ . �

The above discussion shows that every fiberwise multi-net ϕ : X → Y deter-
mines four functions denoted by ϕ, ϕ̄, and ϕ∗. In notation there are only three but ϕ
has two meanings. With the help of these functions we shall define the composition
of fiberwise homotopy classes of fiberwise multi-nets as follows.

LetX, Y , and Z be fiberwise spaces and let ϕ = {Fc} : X → Y and ψ = {Gs} :
Y → Z be fiberwise multi-nets. Let χ = {Hs}, where Hs = Gψ(s) ◦ Fϕ(ψ∗(s))

for every s ∈ Z̃. Observe that each Hs is a multi-valued function because the
composition of two multi-valued functions is a multi-valued function.

Claim 2. The collection χ is a fiberwise multi-net from X into Z.

Proof. Let σ ∈ Ẑ. We must find a u ∈ Z̃ such that

(3) Hv
σ	B Hu for every v > u.

Let τ ∈ σ∗2 and ξ ∈ τ∗. Let u = {ξ} ∈ Z̃.
Consider an index v > u. We shall find an index e ∈ Ỹ so that

(4) Hv
τ	B Gy ◦ Fe,

(5) Gy ◦ Fe
τ	B Gx ◦ Fe,

and

(6) Gx ◦ Fe
τ	B Hu,

where x = ψ(u), y = ψ(v), a = ψ∗(u), b = ψ∗(v), c = ϕ(a), and d = ϕ(b). Repeated
use of Lemma 2 will give (3) from the relations (4) – (6).

Add (4). Since (v, y, y) ∈ Cψ, we see that there is a fiberwise (α, ξ)-homotopy
K : Y × I → Z such that α = ψ(v, y, y),K0 = Gy, andK1 = Gy. Let s = ψ̄(v, y, y)
and π = [s]. Observe that π ∈ D(Y, α). We claim that Gy is a fiberwise (π, ξ)-
function from Y into Z.
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Indeed, let P be a member of π. Then there is a t > 0 such that the product
P × [0, t) lies in a member A of α. Since K is an (α, ξ)-function, there is a T ∈ ξ

such that K(A) ⊂ T . It follows that Gy(P ) = K0(P ) = K(P × {0}) ⊂ K(A) ⊂ T

which proves that Gy is a (π, ξ)-function. Finally, it remains to check that functions
g and h ◦Gy are (π, ξB)-close. But, functions g × I and h ◦K are (α, ξB)-close so
that the restrictions g = g × I|Y×{0} and h ◦Gy = h ◦K|Y×{0} are (π, ξB)-close.

Once we know that Gy is a fiberwise (π, ξ)-function, we see that it suffices
to take e > d because then Fd and Fe are joined by a fiberwise (ε, [b])-homotopy
L : X × I → Y , for some fiberwise normal cover ε of X × I, so that Gy ◦ L is a
fiberwise (ε, τ)-homotopy which realizes the relation (4).

Indeed, by construction, the normal cover [b] refines π so that the composition
Gy ◦ L is a multi-valued (ε, ξ)-homotopy joining Hv and Gy ◦ Fe. On the other
hand, since the functions f × I and g ◦ L are (ε, [b]B)-close, the functions g and
h ◦Gy are (π, ξB)-close, the normal cover [b]B refines πB , and st(ξB) refines τB , it
follows that the functions f × I and h ◦Gy ◦ L are (ε, τB)-close.

Add (5). Since (u, x, y) ∈ Cψ, it follows that Gx and Gy are joined by a
fiberwise (α, ξ)-homotopy K : Y × I → Z, where α denotes the fiberwise normal
cover ψ(u, x, y) of Y × I. Choose a normal cover β of Y and a function r : β →
{4, 5, 6, . . .} such that every set V ×

[
i−1
rV ,

i+1
rV

]
, where V ∈ β and i = 1, . . . , rV − 1,

is contained in a member AV,i of α. Pick a fiberwise normal cover κ of Y such that
κ refines β and κB refines ξB . Let k = {κ} and e = ϕ(k). Since (k, e, e) ∈ Cϕ, the
function Fe is a fiberwise (π, κ)-function from X into Y for some fiberwise normal
cover π of X. It follows that for every P ∈ π there is a VP ∈ β and an LP ∈ κB
such that Fe(P ) ⊂ VP and LP contains both f(P ) and g ◦ Fe(P ).

For every P ∈ π, let

νP =

{[
0,

2
rVP

)
,
(rVP − 2

rVP
, 1

]}⋃ {( i

rVP
,
i+ 2
rVP

) ∣∣ i = 1, . . . , rVP − 3

}
.

Put 0 = {P ×N |P ∈ π, N ∈ νP }. Observe that 0 is a normal cover of X × I. Let
ω be a fiberwise normal cover of X × I such that the normal cover ω refines 0. We
claim that the composition H = K ◦ (Fe × idI) is a fiberwise (ω, τ)-homotopy which
joins Gx ◦ Fe and Gy ◦ Fe.

Indeed, let S be a member of ω. Pick a member R = P ×N of 0 which contains
S, where P ∈ π and N ∈ νP . Then

H(S) ⊂ H(R) = K(Fe(P ) ×N) ⊂ K(VP ×N) ⊂ K(AVP ,j),
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where j is such that N is an interior of the segment
[

j
rVP

, j+2
rVP

]
. Since K is a

fiberwise (α, ξ)-homotopy, we obtain that the last set in the chain of inclusions
above is a subset of a member of ξ. Hence, H is an (ω, τ)-function.

On the other hand, in order to check that h ◦H and f × I are (ω, τB)-close,
let S be a member of ω. Choose sets N , P , and R as above. Observe that the sets
g ◦ Fe(P ) and f(P ) both lie in a member LP of κB . But, (g × I) ◦ (Fe × idI)(R) =
g ◦ Fe(P ) and f × I(R) = f(P ). Also, (Fe × idI)(R) ⊂ VP ×N so that

(g × I) ◦ (Fe × idI)(R) ⊂ (g × I)(VP ×N).

Since VP ×N lies in a member AVP ,j of α and K is a fiberwise (α, ξ)-homotopy,
some member V of the cover ξB contains sets (g × I)(VP ×N) and h ◦K(VP ×N).
Hence, V contains g ◦ Fe(P ) and h ◦H(R). Since ξB is a star-refinement of τB it
follows that f × I(S) and h ◦H(S) lie in some member of τB .

Add (6). This is analogous to the proof of (4). �

We now define the composition of fiberwise homotopy classes of fiberwise multi-
nets by the rule [{Gs}]B ◦ [{Fc}]B = [{Gψ(s) ◦ Fϕ(ψ∗(s))}]B .

Claim 3. The composition of fiberwise homotopy classes of fiberwise multi-nets is

well-defined.

Proof. Let κ = {Kc} and λ = {Ls} be fiberwise multi-nets fiberwise homotopic to
ϕ and ψ, respectively, and let µ = {Ms}, where Ms = Lλ(s) ◦Kκ(λ∗(s)) for every
s ∈ Z̃. We must show that fiberwise multi-nets χ and µ are fiberwise homotopic. In
other words, that for every σ ∈ Ẑ there is an s ∈ Z̃ such that

(7) Ht
σ	B Mt for every t > s.

Let σ ∈ Ẑ. Let τ ∈ σ∗4 and ξ ∈ τ∗. Let s = {ξ} ∈ Z̃. In order to prove (7), we shall
argue that for every t > s we can find indices e ∈ Ỹ and u ∈ Z̃ such that

(8) Ht
τ	B Gx ◦ Fe,

(9) Gx ◦ Fe
τ	B Gu ◦ Fe,

(10) Gu ◦ Fe
τ	B Lu ◦ Fe,

(11) Lu ◦ Fe
τ	B Lu ◦Ke,
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(12) Lu ◦Ke
τ	B Ly ◦Ke,

(13) Ly ◦Ke
τ	B Mt,

where we put x = ψ(t), a = ψ∗(t), b = ϕ(a), y = λ(t), c = λ∗(t), and d = κ(c).
From the relations (8) – (13) with the help of Lemma 2 we shall get (7).

We shall now describe how big e and u must be chosen for relations (8), (9),
(10), and (11) to hold separately. The relations (12) and (13) are analogous to
relations (9) and (8), respectively. We leave to the reader the task of making a
cumulative choice for e and u which accomplishes our goal. It is important to notice
that u is selected first while e is selected only once u is already known.

Add (8). We know from the proof of Claim 2 that Gx is a fiberwise (π, ξ)-
function, where π = [s] and s = ψ̄(t, x, x). Since a > s by the property (1) of Claim
1, it suffices to take e > b.

Add (9). If u > x, then Gx and Gu are joined by a fiberwise (α, ξ)-homotopy
K : Y × I → Z, where α = ψ̄(u, m, m) and m = ψ(u). Choose a normal cover β
of Y and a function r : β → {4, 5, 6, . . .} such that every set V × [ i−1

rV ,
i+1
rV ], where

V ∈ β and i = 1, . . . , rV − 1, is contained in a member of α. Pick a fiberwise normal
cover η of Y such that η refines β and ηB refines ξB . Let k = {η} and e > ϕ(k).
Just as in the proof of (5) we can see that K ◦ Fe × idI is a fiberwise τ -homotopy
joining the left and the right side of the relation (9).

Add (10). Since fiberwise multi-nets ψ and λ are fiberwise homotopic, there
is a u ∈ Z̃, a fiberwise normal cover α of Y × I, and a fiberwise (α, ξ)-homotopy
S : Y × I → Z joining Gu and Lu. Choose a β, an r, and an e as above. Then
S ◦ (Fe × idI) is a fiberwise τ -homotopy joining compositions which appear in (10).

Add (11). Let u > y. Then Lu is a fiberwise (α, ξ)-function from Y into Z,
where α = [s] and s = λ̄(t, y, y). Pick a fiberwise normal cover η of Y such that
η refines α and ηB refines ξB . Since fiberwise multi-nets ϕ and κ are fiberwise
homotopic, there is an index e ∈ Ỹ so that Fe and Ke are joined by a fiberwise
η-homotopy T : X × I → Y . The composition Lu ◦ T realizes the relation (11). �

Theorem 1

The composition of fiberwise homotopy classes of fiberwise multi-nets is asso-

ciative.
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Proof. Let ϕ = {Fc}, ψ = {Gs}, and χ = {Hp} be fiberwise multi-nets from X

into Y , from Y into Z, and from Z into W , respectively. Let µ = {Ms}, ν = {Np},
κ = {Kp}, and λ = {Lp}, where Ms = Gψ(s) ◦ Fϕ(ψ∗(s)) for every s ∈ Z̃ and Np =
Hχ(p) ◦Gψ(χ∗(p)), Kp = Hχ(p) ◦Mµ(χ∗(p)), and Lp = Nν(p) ◦ Fϕ(ν∗(p)), for every
p ∈ W̃ . We must show that fiberwise multi-nets κ and λ are fiberwise homotopic, i.
e., that for every fiberwise normal cover π ∈ Ŵ there is an index p ∈ W̃ such that

(14) Kq
π	B Lq for every q < p .

Let π ∈ Ŵ . Let 0 ∈ π∗4, ξ ∈ 0∗, and η ∈ ξ∗. Let p = {η} ∈ W̃ . In order to
prove (14), we shall show that for every q > p we can find indices e ∈ Ỹ and s ∈ Z̃
such that

(15) Kq
%	B Hx ◦Gy ◦ Fe ,

(16) Hx ◦Gy ◦ Fe
%	B Hx ◦Gs ◦ Fe ,

(17) Hx ◦Gs ◦ Fe
%	B Hz ◦Gs ◦ Fe ,

(18) Hz ◦Gs ◦ Fe
%	B Nw ◦ Fe ,

and

(19) Nw ◦ Fe
%	B Lq ,

where x = χ(q), y = ψ(µ(χ∗(q))), z = χ(ν(q)), and w = ν(q). Repeated use of
Lemma 2 will give (14) from the relations (15) – (19).

The method of proof is similar to the proof of Claim 3. We shall only describe
for each of the relations (15) – (19) how large the indices u and e must be in order
that this fiberwise 0-homotopy holds. An easy exercise of putting together all these
selections is once again left to the reader. Since relations (18) and (19) are analogous
with relations (16) and (15), respectively, it suffices to consider only relations (15) –
(17).

Add (15). Observe that Hx is a fiberwise (θ, η)-function, where θ = [a], a =
χ̄(q, x, x). Let m = χ∗(q), n = µ(m), k = ψ(n), d = ψ̄(n, y, y), c = ψ∗(n), and
ω = [d]. Then Gy is a fiberwise (ω, [n])-function from Y into Z. Since n > m and
by the property (1) from Claim 1, m > a we obtain that [n] refines θ. Let b = ϕ(c).
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If e > b, then Fe and Fb are joined by a fiberwise [c]-homotopy P . But, c > d so
that [c] refines ω. Hence, Hx ◦Gy ◦ P is a fiberwise 0-homotopy between Kq and
Hx ◦Gy ◦ Fe.

Add (16). As above, Hx is a fiberwise (θ, η)-function from Z into W . If we
take s > y, then (n, y, s) ∈ Cψ so that Gy and Gs are joined by a fiberwise (ε, [n])-
homotopy Q : Y × I → Z, where ε = ψ(n, y, s). But, since m > a, we see that [n]
refines θ. Choose a normal cover β of Y and a function r : β → {4, 5, 6, . . .} such
that every set V × [ i−1

rV ,
i+1
rV ], where V ∈ β and i = 1, . . . , rV − 1, is contained in

a member of ε. Pick a fiberwise normal cover γ of Y such that γ refines β and γB
refines ηB . Let t = {γ} and e > ϕ(t). Then Hx ◦Q ◦ (Fe × idI) realizes the relation
(16).

Add (17). Since ν(r) > r for every r ∈ W̃ , we get z > x so that (q, x, z) ∈ Cχ
and Hx and Hz are joined by a fiberwise (β, η)-homotopy T : Z × I → W , where
β = χ(q, x, z). Let v = χ∗(z) and let s > ψ(v). Then Gs is a fiberwise ([t], [v])-
function from Y into Z, where t = ψ̄(s, ψ(s), ψ(s)). Let u = ψ∗(t) and take
e > ϕ(u). The composition T ◦ ((Gs ◦ Fe) × idI) realizes the relation (17). �

8. The fiberwise shape category FsB

For a fiberwise topological space X, let ιX = {Ia} : X → X be the identity fiberwise
multi-net defined by Ia = idX for every a ∈ X̃. It is easy to show that for every
fiberwise multi-net ϕ : X → Y , the following relations hold:

[ϕ]B ◦ [ιX ]B = [ϕ]B = [ιY ]B ◦ [ϕ]B .

We can summarize the above with the following theorem which is the main
result of this paper.

Theorem 2

The fiberwise topological spaces as objects together with the fiberwise homo-

topy classes of fiberwise multi-nets as morphisms and the composition of fiberwise

homotopy classes form the category FsB . When B is a single-element space, the

category FsB is isomorphic to the shape category Sh.
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9. Special fiberwise multi-nets

In this section we shall be looking for conditions under which a given fiberwise
homotopy class of fiberwise multi-nets has a representative of a special kind. As a
corollary of these results we identify a class of fiberwise spaces on which fiberwise
shape theory and fiberwise homotopy theory coincide.

A fiberwise space X is fiberwise internally movable provided for every σ ∈ X̂

there is a τ ∈ X̂ such that every fiberwise τ -function into X is fiberwise σ-homotopic
to a fiberwise map.

A fiberwise space X is fiberwise internally calm provided there is a σ ∈ X̂ such
that fiberwise maps intoX which are fiberwise σ-homotopic are fiberwise homotopic.

A fiberwise space X is fiberwise calm provided there is a σ ∈ X̂ such that for
every τ ∈ X̂ there is a 0 ∈ X̂ with the property that fiberwise 0-functions into X
which are fiberwise σ-homotopic are also fiberwise τ -homotopic.

A fiberwise multi-net ϕ = {Fc}c∈Ỹ from a fiberwise space X into a fiberwise
space Y is regular provided each function Fc is a fiberwise map. It is called simple

when there is a fiberwise map f such that f = Fc for every c ∈ Ỹ .

Theorem 3

If a fiberwise space Y is fiberwise internally movable, then every fiberwise multi-

net ϕ from a fiberwise space X into Y is fiberwise homotopic to a regular fiberwise

multi-net.

Proof. Since Y is fiberwise internally movable, for every c ∈ Ỹ there is a χ(c) ∈ c̃+
such that every fiberwise χ(c)-function into Y is fiberwise [c]-homotopic to a fiberwise
map. Let λ : Ỹ → Ỹ be an increasing function such that λ(c) > ϕ(χ(c)) for every
c ∈ Ỹ . Then Fλ(c) is a fiberwise χ(c)-function so that we can select a fiberwise map

gc : X → Y with gc
[c]	B Fλ(c), for every c ∈ Ỹ .

In order to verify that ψ = {gc}c∈Ỹ is a fiberwise multi-net from X into Y ,
let a σ ∈ Ŷ be given. Let µ ∈ σ∗ and put c = {µ}. For every d > c we have

gd
µ	B Fλ(d)

χ(c)	 B Fλ(c)

µ	B gc. Hence, gd
σ	B gc for every d > c.

It remains to check that fiberwise multi-nets ϕ and ψ are fiberwise homotopic.
Let a fiberwise normal cover σ ∈ Ŷ be given. Let µ ∈ σ∗. Choose an index c0 ∈ Ỹ
such that Fd

µ	B Fe for all d, c > c0. Let c > c0, {µ}. For every d > c, we get
gd

µ	B Fλ(d) by construction, while Fλ(d)

µ	B Fd because λ(d) > d > c0. Hence,
gd

σ	B Fd for every d > c. �
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Theorem 4
If a fiberwise space Y is both fiberwise internally movable and fiberwise calm,

then every fiberwise multi-net ϕ into Y is fiberwise homotopic to a simple fiberwise
multi-net.

Proof. Since Y is fiberwise calm, there is a fiberwise normal cover γ ∈ Ŷ such that
for every σ ∈ Ŷ there is a τ ∈ Ŷ with the property that fiberwise γ-homotopic
fiberwise τ -functions into Y are in fact fiberwise σ-homotopic.

Let δ ∈ γ∗. Since Y is also fiberwise internally movable, there is an η ∈ δ+ such
that fiberwise η-functions into Y are fiberwise δ-homotopic to fiberwise maps. Let
c = ϕ({η}). Then Fc is a fiberwise η-function so that it is fiberwise δ-homotopic to
a fiberwise map g. Let ψ denote the simple fiberwise multi-net determined by the
fiberwise map g.

In order to check that ϕ and ψ are fiberwise homotopic, let a fiberwise normal
cover σ ∈ Ŷ be given. Choose a τ ∈ Ŷ as above. Since ϕ is a fiberwise multi-net,
there is an index d > c such that Fe is a fiberwise τ -function for every e > d. Thus,

for every e > d we get Fe
η	B Fc

δ	B g . Hence, Fe
γ	B g so that Fe

σ	B g. �

Theorem 5
Let Y be a fiberwise internally calm fiberwise space and let ϕ = {f} and ψ = {g}

be simple fiberwise multi-nets into Y . If ϕ and ψ are fiberwise homotopic, then the
fiberwise maps f and g are fiberwise homotopic.

Proof. Since Y is fiberwise internally calm, there is a σ ∈ Ŷ such that fiberwise
σ-homotopic fiberwise maps into Y are in fact fiberwise homotopic. But, the as-
sumption that ϕ and ψ are fiberwise homotopic gives f

σ	B g. Hence, f and g are
fiberwise homotopic. �

There is an obvious functor JB from the category FhB of fiberwise spaces and
fiberwise homotopy classes of fiberwise maps into the category FsB . On objects the
functor JB is the identity while on morphisms it associates to a fiberwise homotopy
class [ f ]B of a fiberwise map f : X → Y the fiberwise homotopy class [ f ]B of a
fiberwise multi-net f = {Fc} : X → Y , where Fc = f for every c ∈ Ỹ .

The last three theorems imply that the functor JB is an isomorphism of cate-
gories when we restrict to spaces that have the above properties.

Let A denote the collection of all fiberwise spaces that are at the same time
fiberwise internally movable, fiberwise internally calm, and fiberwise calm. One can
show that every ANRB is in the class A.

Let FhAB be the full subcategory of FhB with objects precisely the members of
the collection A. The category FsAB is defined similarly. Let JA

B : FhAB → FsAB be
the restriction of the functor JB to the category FhAB .
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Theorem 6

The functor JA
B is an isomorphism of categories.

Proof. We shall construct a functor KA
B : FsAB → FhAB which satisfies the relations

JA
B ◦KA

B = Id and KA
B ◦ JA

B = Id. The functor KA
B leaves the objects unchanged

and on morphisms it is defined as follows. Let C be a fiberwise homotopy class of
fiberwise multi-nets between two members X and Y of A. Let ϕ be a representative
of C and let g : X → Y be a fiberwise map such that the simple fiberwise multi-net
ψ determined by g is fiberwise homotopic to ϕ. The functor KA

B associates to C the
fiberwise homotopy class of the fiberwise map g. It follows from the above results
that this definition is correct and that KA

B has the required properties. �

Corollary 1

On fiberwise spaces which are at the same time fiberwise internally movable,

fiberwise internally calm, and fiberwise calm the fiberwise homotopy theory and the

fiberwise shape theory coincide.

Corollary 2

On ANRB spaces the fiberwise homotopy theory and the fiberwise shape theory

coincide.
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