Collect. Math. 45, 1 (1994), 45-52

(c) 1994 Universitat de Barcelona

On the Ishikawa iteration process in Hilbert spaces

R.A. RASHWAN AND A.M. SADDEEK

Department of Mathematics, Faculty of Science, Assiut University, Assiut, Egypt

Received July 12, 1993. Revised October 11, 1993

Abstract

In this paper, we shall prove that a certain sequence of points which is iteratively defined converges always to a fixed point of some contractive mappings. The results generalize corresponding theorems of Singh and Qihou.

1. Introduction

Let C be a nonempty subset of a Hilbert space X and S, T self–maps on C. An Ishikawa scheme for S and T is defined by

$$x_{0} \in C,$$

$$y_{n} = (1 - \beta_{n})x_{n} + \beta_{n}Sx_{n}, \qquad n \geq 0,$$

$$x_{n+1} = (1 - \alpha_{n})x_{n} + \alpha_{n}Ty_{n}, \quad n \geq 0,$$

$$(1)$$

where the real sequence $\{\alpha_n\}$, $\{\beta_n\}$ satisfy

$$0 \le \alpha_n \le \beta_n \le 1$$
, $\lim_n \alpha_n > 0$, $\overline{\lim}_n \beta_n < 1$ and $\sum_{n=0}^{\infty} \alpha_n (1 - \alpha_n) = \infty$.

In [2], [4], the authors studied and proved the convergence of iterates of a single mapping S to a fixed point of S under some contractive definitions in a Hilbert space.

In this paper, it is proved that for the mapping S and for two mappings S, T which satisfy condition (I) or (II) below if the sequence of Ishikawa iterates converges, then it converges to a fixed point of S and to a common fixed of S and T. These results extend the corresponding results in [2] and [4].

The contractive conditions to be used are the following (see [4]):

- (I) $||Sx Sy|| < \max\{||x y||, k||x Sx||, ||y Sy||, ||x Sy||, ||y Sx||\}$ for all x, y in $C, x \neq y$ and 0 < k < 1.
- (II) $||Sx Ty|| \le k \max \{||x y||, ||x Sx||, ||y Ty||, ||x Ty||, ||y Sx||\}$, for all $x, y \in C$, $0 < k \le 1$.

In order to prove our results we need the following lemma:

Lemma 1.1 [2]:

Let a real sequence $\{x_n\}_{n=1}^{\infty}$ satisfy the following condition

$$x_{n+1} \le \alpha x_n + \beta_n \ , \tag{2}$$

where $x_n \ge 0$, $\beta_n \ge 0$ and $\lim_n \beta_n = 0$, $0 \le \alpha < 1$. Then, $\lim_n x_n = 0$.

2. Main results

Theorem 2.1

Let H be a Hilbert space and C be a closed convex subset of H. Let $S: C \longrightarrow C$ be a mapping satisfying the condition (I) with nonempty fixed points set, $\{x_n\}$ be a sequence where x_n is defined iteratively for each integer $n \ge 0$ by

$$x_0 \in C,$$

$$y_n = (1 - \beta_n)x_n + \beta_n S x_n, \ n \ge 0,$$

$$x_{n+1} = (1 - \alpha_n)x_n + \alpha_n S y_n, \ n \ge 0,$$

where $\{\alpha_n\}$, $\{\beta_n\}$ are sequences of positive numbers satisfying the following conditions:

(i)
$$0 \le \alpha_n \le \beta_n \le 1$$
, (ii) $\lim_{n \to \infty} \beta_n = 0$

and

(iii)
$$\lim_{n} \alpha_n < 1 - k^2.$$

If $\{x_n\}$ converges, then it converges to a fixed point of S.

Proof. Ishikawa [1] has shown that for any points x, y, z in a Hilbert space and any real number λ ,

$$\|\lambda x + (1 - \lambda)y - z\|^2 = \lambda \|x - z\|^2 + (1 - \lambda)\|y - z\|^2 - \lambda(1 - \lambda)\|x - y\|^2.$$

Let p be a fixed point of S, then we have

$$||x_{n+1} - p||^2 = ||(1 - \alpha_n)x_n - \alpha_n Sy_n - p||^2 = \alpha_n ||Sy_n - p||^2 + (1 - \alpha_n)||x_n - p||^2 - \alpha_n (1 - \alpha_n)||x_n - Sy_n||^2.$$
(3)

From (I) we have

$$||Sy_n - p||^2 = ||Sy_n - Sp||^2 < \max \{||y_n - p||^2, k^2 ||y_n - Sy_n||^2, ||p - Sp||^2, ||p - Sy_n||^2, ||y_n - p||^2\} \le \max \{||y_n - p||^2, k^2 ||y_n - Sy_n||^2\},$$

since for real nonnegative numbers a, b we have

$$\max \{a, b\} \le a + b.$$

Hence, we get

$$||Sy_n - p||^2 \le ||y_n - p||^2 + h||y_n - Sy_n||^2$$
, where $h = k^2$. (4)

On the other hand

$$||y_n - p||^2 = ||(1 - \beta_n)x_n + \beta_n Sx_n - p||^2 = \beta_n ||Sx_n - p||^2 + (1 - \beta_n)||x_n - p||^2$$
$$- \beta_n (1 - \beta_n)||x_n - Sx_n||^2,$$
(5)

and

$$||y_n - Sy_n||^2 = \beta_n ||Sx_n - Sy_n||^2 + (1 - \beta_n) ||x_n - Sy_n||^2 - \beta_n (1 - \beta_n) ||x_n - Sx_n||^2.$$
(6)

However,

$$||Sx_n - p||^2 \le ||x_n - p||^2 + h||x_n - Sx_n||^2.$$
(7)

Introducing (7), (6) and (5) into (4), we obtain

$$||Sy_n - p||^2 \le \beta_n ||x_n - p||^2 + h\beta_n ||x_n - Sx_n||^2 + (1 - \beta_n) ||x_n - p||^2$$

$$- \beta_n (1 - \beta_n) ||x_n - Sx_n||^2$$

$$+ h\beta_n ||Sx_n - Sy_n||^2 + h(1 - \beta_n) ||x_n - Sy_n||^2$$

$$- h\beta_n (1 - \beta_n) ||x_n - Sx_n||^2.$$

Hence,

$$||Sy_n - p||^2 \le ||x_n - p||^2 - \beta_n (1 - \beta_n - h\beta_n) ||x_n - Sx_n||^2 + h\beta_n ||Sx_n - Sy_n||^2 + h(1 - \beta_n) ||x_n - Sy_n||^2.$$
(8)

Substituting (8) in (3), we obtain

$$||x_{n+1} - p||^{2} \le ||x_{n} - p||^{2} + h\alpha_{n}\beta_{n}||Sx_{n} - Sy_{n}||^{2}$$
$$-\alpha_{n}\beta_{n}(1 - \beta_{n} - h\beta_{n})||x_{n} - Sx_{n}||^{2}$$
$$-\alpha_{n}\beta_{n}(1 - \beta_{n} - h\beta_{n})||x_{n} - Sx_{n}||^{2}$$
$$-\alpha_{n}(1 - \alpha_{n} - h + h\beta_{n})||x_{n} - Sy_{n}||^{2}.$$

This shows that $\{||x_n-p||^2\}$ is decreasing for all sufficiently large n. Since conditions (ii) and (iii) are satisfied, there exists a subsequence $\{x_{n_k}\}$ of $\{x_n\}$ such that

$$\lim_{k} \|x_{n_k} - Sx_{n_k}\| = 0.$$

Now, we show that $\{Sx_{n_k}\}$ is a Cauchy sequence. Indeed,

$$\begin{split} & \|Sx_{n_k} - Sx_{n_\ell}\| < \max \left\{ \|x_{n_k} - x_{n_\ell}\|, \, k\|x_{n_k} - Sx_{n_k}\|, \\ & \|x_{n_\ell} - Sx_{n_\ell}\|, \, \|x_{n_\ell} - Sx_{n_k}\|, \, \|x_{n_k} - Sx_{n_\ell}\| \right\} \\ & \leq \max \left\{ \|x_{n_k} - Sx_{n_k}\| + \|Sx_{n_k} - Sx_{n_\ell}\| + \|Sx_{n_\ell} - x_{n_\ell}\| \right\}. \end{split}$$

Taking limit as $k, \ell \longrightarrow \infty$, we have

$$||Sx_{n_k} - Sx_{n_\ell}|| \longrightarrow 0$$
.

Thus $\{Sx_{n_k}\}$ is a Cauchy sequence, hence convergent. Call the limit q. Then $\lim_k Sx_{n_k} = x_{n_k} = q$.

Using (I) we have

$$||Sq - Sx_{n_k}|| \le \max \{||q - x_{n_k}|| + ||x_{n_k} - Sx_{n_k}|| + ||Sq - Sx_{n_k}||\}.$$

Taking limit as $k \longrightarrow \infty$ we have

$$\lim_{k} ||Sq - Sx_{n_k}|| = 0.$$

Hence, we have

$$||q - Sq|| \le ||q - x_{n_k}|| + ||x_{n_k} - Sx_{n_k}|| + ||Sx_{n_k} - Sq||.$$

Taking limit as $k \longrightarrow \infty\,,$ we have $\|q-Sq\|=0,$ i.e., q=Sq. \Box

Corollary 2.1 [4].

Let H be a Hilbert space and C be a closed convex subset of H. Let $S: C \longrightarrow C$ be a mapping (I) with nonempty fixed points set, $\{x_n\}$ be a sequence defined by:

$$x_{n+1} = (1 - d_n)x_n + d_n S x_n, \ n \ge 0,$$
 (*)

where $\{d_n\}$ satisfies the following conditions

$$d_0 = 1, \ 0 < d_n \le 1, \ \sum_{k=0}^{\infty} d_k = \infty \text{ and } \overline{\lim} \ d_n < 1 - k^2.$$

Then the iteration scheme (*) converges to a fixed point of S.

Theorem 2.2

Let S and T be self–mappings in a bounded closed convex subset C of a Hilbert space H such that (II) holds. Suppose $\{\alpha_n\}$, $\{\beta_n\}$ are sequences of positive numbers satisfying the following conditions

(a)
$$0 \le \beta_n \le 1$$
, (b) $\lim_n \beta_n = 0$

and

(c)
$$\frac{1-k^2}{2} \le \alpha_n \le 1-k^2$$
.

Then, for each $x_0 \in C$, the sequence of Ishikawa iterates (1) converges to a unique common fixed point of S and T.

Proof. It follows from Rashwan [3] that, S and T have a unique common fixed point $p \in C$. From a known equality (Ishikawa [1]), we have

$$||x_{n+1} - p||^2 = ||(1 - \alpha_n)x_n + \alpha_n Ty_n - p||^2 = \alpha_n ||Ty_n - p||^2 + (1 - \alpha_n)||x_n - p||^2 - \alpha_n (1 - \alpha_n)||Ty_n - p||^2.$$
(9)

From (II), we have

$$||Ty_n - p||^2 = ||Sp - Ty_n||^2 \le k^2 \max \{||Y_n - p||^2, ||Sp - p||^2, ||Y_n - Ty_n||^2, ||p - Ty_n||^2, ||y_n - Sp||^2\}$$

and

$$||Ty_n - p||^2 \le k^2 \max \{||y_n - p||^2, ||y_n - Ty_n||^2, ||Ty_n - p||^2\}.$$

It is easily seen that

$$||Ty_n - p||^2 \le k^2 ||y_n - p||^2 + k^2 ||y_n - Ty_n||^2$$
.

Suppose that $k^2 = h$, hence

$$||Ty_n - p||^2 \le h||y_n - p||^2 + h||y_n - Ty_n||^2.$$
(10)

On the other hand

$$||y_n - p||^2 = ||\beta_n S x_n + (1 - \beta_n) x_n - p||^2 = |\beta_n ||S x_n - p||^2 + (1 - \beta_n) ||x_n - p||^2$$
$$- |\beta_n (1 - \beta_n) ||S x_n - x_n||^2$$
(11)

and

$$||y_n - Ty_n||^2 = ||\beta_n Sx_n + (1 - \beta_n)x_n - Ty_n||^2 = |\beta_n ||Sx_n - Ty_n||^2 + (1 - \beta_n)||x_n - Ty_n||^2 - |\beta_n (1 - \beta_n)||Sx_n - x_n||^2.$$
(12)

Hence (10) can be written as follows

$$||Ty_n - p||^2 \le h\beta_n ||Sx_n - p||^2 + h(1 - \beta_n) ||x_n - p||^2 - h\beta_n (1 - \beta_n) ||Sx_n - x_n||^2 + h\beta_n ||Sx_n - Ty_n||^2 + h(1 - \beta_n) ||x_n - Ty_n||^2 - h\beta_n (1 - \beta_n) ||Sx_n - x_n||^2.$$
(13)

However,

$$||Sx_n - p||^2 \le h||x_n - p||^2 + h||x_n - Sx_n||^2.$$
(14)

Substituting (14) in (13), we get

$$||Ty_{n} - p||^{2} \leq h^{2}\beta_{n}||x_{n} - p||^{2} + h^{2}\beta_{n}||x_{n} - Sx_{n}||^{2} + h(1 - \beta_{n})||x_{n} - p||^{2}$$

$$- h\beta_{n}(1 - \beta_{n})||Sx_{n} - x_{n}||^{2} + h\beta_{n}||Sx_{n} - Ty_{n}||^{2}$$

$$+ h(1 - \beta_{n})||x_{n} - Ty_{n}||^{2} - h\beta_{n}(1 - \beta_{n})||Sx_{n} - x_{n}||^{2}$$

$$\leq h(1 - \beta_{n} + h\beta_{n})||x_{n} - p||^{2} - h\beta_{n}(2 - 2\beta_{n}h)||Sx_{n} - x_{n}||^{2}$$

$$+ h(1 - \beta_{n})||x_{n} - Ty_{n}||^{2} + h\beta_{n}||Sx_{n} - Ty_{n}||^{2}$$

$$\leq h||x_{n} - p||^{2} - h\beta_{n}(2 - h - 2\beta_{n})||Sx_{n} - x_{n}||^{2}$$

$$+ h(1 - \beta_{n})||x_{n} - Ty_{n}||^{2} + h\beta_{n}||Sx_{n} - Ty_{n}||^{2}.$$
(15)

Introducing (15) into (9), we have

$$||x_{n+1} - p||^{2} \leq \alpha_{n}h||x_{n} - p||^{2} - \alpha_{n}\beta_{n}h(2 - h - 2\beta_{n})||Sx_{n} - x_{n}||^{2} + \alpha_{n}(1 - \beta_{n})h||x_{n} - Ty_{n}||^{2} + \alpha_{n}\beta_{n}h||Sx_{n} - Ty_{n}||^{2} + (1 - \alpha_{n})||x_{n} - p||^{2} - \alpha_{n}(1 - \alpha_{n})||x_{n} - Ty_{n}||^{2} \leq [1 - \alpha_{n}(1 - h)]||x_{n} - p||^{2} - \alpha_{n}\beta_{n}h(2 - h - 2\beta_{n})||Sx_{n} - x_{n}||^{2} + \alpha_{n}\beta_{n}h||Sx_{n} - Ty_{n}||^{2} - \alpha_{n}(1 - \alpha_{n} - h + h\beta_{n})||x_{n} - Ty_{n}||^{2}.$$
 (16)

Since $\frac{1-h}{2} \le \alpha_n \le 1-h$, 0 < h < 1, $\beta_n \ge 0$ and $\lim_n \beta_n = 0$, there exists a natural number N, such that for n > N,

$$2-h-2\beta_n > 0$$
 and $1-\alpha_n - h + h\beta_n > 0$.

Then, for $n \geq N$, we have

$$||x_{n+1} - p||^2 \le \tilde{h}||x_n - p||^2 + \alpha_n \beta_n h ||Sx_n - Ty_n||^2$$

where $0 < \tilde{h} = 1 - \left(\frac{(1-h)^2}{2}\right)$.

It follows from the boundedness of C that $||Sx_n - Ty_n||^2$ is bounded. Thus

$$\lim_{n} \alpha_n \beta_n h \|Sx_n - Ty_n\|^2 = 0.$$

It follows from Lemma 1.1 that $\lim_n x_n = p$. This completes the proof of the theorem. \square

If we put S = T in Theorem 2.2, we get the following corollary.

Corollary 2.2 [2].

Let S be a self–mapping in a bounded closed convex subset C of a Hilbert space such that

$$||Sx - Sy|| \le k \max \{||x - y||, ||x - Sx||, ||y - Sy||, ||x - Sy||, ||y - Sx||\},$$

for all x, y in C, where $0 < k \le 1$ and $\{\alpha_n\}$, $\{\beta_n\}$ are sequences of positive numbers satisfying the conditions (a), (b), (c) from Theorem 2.2. Then for each $x_0 \in C$, the sequence of Ishikawa iterates converges to a unique point of S.

References

- 1. S. Ishikawa, Fixed points by a new iteration, Proc. Amer. Math. Soc. 44 (1974), 147–150.
- 2. Liu Qihou, A convergence theorem of the sequence of Ishikawa iterates for Quasi–Contractive mappings, *Journal of Mathematical Analysis and Applications* **146**, (1990), 301–305.
- 3. R.A. Rashwan, On the convergence of Mann iterates to a common fixed point for a pair of mappings, *Demonstratio Math.* **33** (1990), 709–712.
- 4. K.L. Singh, Fixed point iterations using infinite matrices, *Proc. of an International Conference on Applied Nonlinear Analysis, Academic Press* (1979), 689–703.
- 5. H.K. Xu, A note on the Ishikawa iteration scheme, *Journal of Mathematical Analysis and Applications*, **167** (1992), 582–587.