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ABSTRACT

In this paper, we shall prove that a certain sequence of points which is iteratively
defined converges always to a fixed point of some contractive mappings. The
results generalize corresponding theorems of Singh and Qihou.

1. Introduction

Let C' be a nonempty subset of a Hilbert space X and S,T self-maps on C. An
Ishikawa scheme for S and T is defined by

xo € C,
Yn = (1_ﬂn)$n+ﬁnsxn ) n >0, (1)
Tptl = (1 — an)mn +a, Ty, , n=>0,

where the real sequence {a, }, {8,} satisfy

o0
0<a,<fB,<1,lima, >0, limfB, <1 and Zan(l—an):oo.
n n

n=0

In [2], [4], the authors studied and proved the convergence of iterates of a single
mapping S to a fixed point of S under some contractive definitions in a Hilbert
space.
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In this paper, it is proved that for the mapping S and for two mappings S, T
which satisfy condition (I) or (II) below if the sequence of Ishikawa iterates converges,
then it converges to a fixed point of S and to a common fixed of S and T'. These
results extend the corresponding results in [2] and [4].

The contractive conditions to be used are the following (see [4]):

M) Sz - Syl < max {llz — yll, klle — Sall,ly - Syl Iz — Syll Iy — Szll}
for all z,y in C,x#y and 0<k<l1.

(1) 1Sz — Tyl < k max {|z — |, |z — Szl lly — Tyl = — Tyl
ly—Sz|}, forall z,yeC,0<k<1.

In order to prove our results we need the following lemma:

Lemma 1.1 [2]:
Let a real sequence {x, }°° ; satisfy the following condition
Tpt1 < @y + By (2)

where x, >0, 8, >0 and limg3, =0, 0 <« < 1. Then, limz, =0.

2. Main results

Theorem 2.1

Let H be a Hilbert space and C' be a closed convex subset of H. Let S : C' — C
be a mapping satisfying the condition (I) with nonempty fixed points set, {x,} be
a sequence where x,, is defined iteratively for each integer n > 0 by

xg € C,
Yn = (1 - ﬁn)‘rn + BnSTn, n >0,
Tn1 = (1 - an)wn + ansyn7 n = O,
where {a,}, {B.} are sequences of positive numbers satisfying the following condi-

tions:
n

and
(iii) lima, < 1— k2.
n

If {x,} converges, then it converges to a fixed point of S.
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Proof. Ishikawa [1] has shown that for any points z,y, z in a Hilbert space and any
real number A,

Az + (1 =Ny — 2> = Az — 2] + (1 = Ny — 2[* = A1 = N)[l2 - y]|*.
Let p be a fixed point of S, then we have

1 Znt1 _pH2 = H(l - O‘n)xn — anSyn _pH2 = an||SYn _pHQ
+ (1 - an) 27 — p||2 - an(l - an) |27 — Syn”Q- (3)

From (I) we have

1Syn — plI> = |1Syn — Spl|* < max {|yn — plI*, k*|lyn — Syal®, |lp — Sp|I*,
1P = Synll?, lyn — plI*} < max {|lyn — pII%, k*|lyn — Synll®} .

since for real nonnegative numbers a, b we have
max {a,b} <a+b.
Hence, we get
1Sy = plI* < llyn = plI* + Rllyn — Syal?,  where h =k, (4)
On the other hand

Y _pH2 = H(l - ﬁn)mn + BnSzn, _pH2 = Bul|Szn _pH2 + (1 — Bn)llzn _pH2

_/Bn(l_ﬂn)nxn_sxnnza (5)
and
lyn — S?/nHz = BullSz0n — Syn”2 + (1 - ﬂn) |zn — SynH2
However,
182, = pll* < [lzn — plI? + hllzn — Sza|?. (7)

Introducing (7), (6) and (5) into (4), we obtain

15yn = plI* < Bullzn = plI* + hBullzn — Szal® + (1 = Ba) |20 — pl”
= B (1= Ba)llzn — Sza?
+ hBn || Sy — S?/nH2 + h(l - ﬁn) |zn — Syn||2
- hﬁn(l - ﬁn) |zn — Sznl?.
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Hence,

[1Syn —p||2 < [|lzs _pH2 - Bn(l — Bn — hﬁn)||$n - SmnH2
+ hBn[|Szy, _Syn”2+h(1_ﬁn)”xn _SynHz‘ (8)

Substituting (8) in (3), we obtain

2011 = plI* < |20 = plI” + han B, Szy — Syall®
— B (1 = B = BB |0 — Sz ®
— anfBn(1 = Bn — hBn) |20 — Sz |?
—an(1 = ap —h+hB) ||z, — Sya|*.

This shows that {||z, —p||?} is decreasing for all sufficiently large n. Since conditions
(i) and (iii) are satisfied, there exists a subsequence {x,, } of {z,} such that

lillgn |Xn, — Sz, | =0.

Now, we show that {Sz,, } is a Cauchy sequence.
Indeed,

stnk - SSCWH < max {Hxnk - 'CUWH7 kank - ank”?
Hxnz - S$nz||v me, - ank”? ||J;nk - anz”}
< maX{Hxnk - ank“ + ||S'Ink - anz” + stnz - l‘neH}'

Taking limit as k,¢ — oo, we have
|Szy, — Szp,|| — 0.

Thus {Sxz,,} is a Cauchy sequence, hence convergent. Call the limit ¢. Then
lilgn Sy, =xn, =4q.

Using (I) we have
1Sq — Sz, || < max {{lg = @, | + |lzn, — Szn, [l +[1Sq — Sz, |}
Taking limit as k — oo we have
hl?l ISq — Sz, || =0.
Hence, we have
lg = Sqll < llg = @, || + [J2n, = S, || + (| Sz, — Sql -

Taking limit as & — oo, we have ||¢ — Sq|| =0, i.e., ¢ = Sq. O



On the Ishikawa iteration process in Hilbert spaces 49

Corollary 2.1 [4].

Let H be a Hilbert space and C' be a closed convex subset of H. Let S : C' — C
be a mapping (I) with nonempty fixed points set, {x,} be a sequence defined by:

Tpt1 = (1 — dn)xn +dp,St,, n>0, ()

where {d,,} satisfies the following conditions

dy=1,0<d, <1, > dy=00 and limd, <1-k.
k=0

Then the iteration scheme (*) converges to a fixed point of S.

Theorem 2.2

Let S and T be self-mappings in a bounded closed convex subset C' of a Hilbert
space H such that (II) holds. Suppose {ay,},{8,} are sequences of positive numbers
satisfying the following conditions

(@) 0<Bu <1, (b) limB, =0

and )
il <a,<1-k.

()

Then, for each xy € C, the sequence of Ishikawa iterates (1) converges to a unique
common fixed point of S and T.

Proof. It follows from Rashwan [3] that, S and T" have a unique common fixed point
p € C. From a known equality (Ishikawa [1]), we have

[Znt1 = plI* = (1 = on)@n + aTyn — plI* = || Ty — pl?
+ (1 - an) [ _pH2 - an(l - O‘n) 1Ty — ]OH2 . 9)

From (II), we have

1Ty — p|* = |Sp — Tyn > < k* max {||Y,, — plI*, IS0 —pl*, Ve — Tyal?,
1P = Tynll®, llyn — Sp|*}

and
[ Tyn — plI* < k* max {|lyn — |I*, lyn — Tyull®, | Tyn — plI*}-
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It is easily seen that
1Tyn = plI* < K2y — plI* + £y — Tynll*.
Suppose that k? = h, hence
1 Tyn = plI* < Bllyn = pl1* + Pllyn — Tyal*. (10)
On the other hand

lyn = plI* = 18uSzn + (1 = Ba)zn — plI* = Bl Szn — plI* + (1 = Bu)l2n — p]”
_/Bn(l_ﬂn)”sxn_xn||2 (11)

and

lyn — TynH2 = ||BnSzn + (1 - Bn)xn - Tyn||2 = BnllSTyn — Tyn||2
+ (1 - /871) |zn — Tyn||2 - ﬁn(l - Bn)stn - xn”Q . (12)

Hence (10) can be written as follows

HTyn _pH2 S h/Banxn _p”2 + h(l - ﬁn)Hxn _pH2 - hﬁn(l - ﬁn)”sxn - xn”2
+ hBn||Szy — Tynuz + h(l - 5n)”xn - TynH2
— 1B (1= By)|| Sz — x| (13)

However,
1Sz = pl* < hllzn = plI* + hl|zn — Sz |?. (14)

Substituting (14) in (13), we get

ITyn = plI* < h?Ballzn — plI* + h?Ballzn — Szall? + (1 = Ba)llzn — pII?
- hﬂn(l - ﬁn)stn - anz + hBn|| STy — TynH2
+ h(l - @l) |zn — Tyn”2 - hﬁn(l - 5n) 1Sz, — xn”2
< A(1 = Bo + hBn) lon = pI* = b (2 = 2621) | S2n — 2|
+ h(l - 5n) |20 — TynH2 + hBn || Sz — TynHQ
< hllzn = plI* = hn (2 — h = 26,) [1Szn — 2
+ (L= Ba)llzn — Tynll* + hBul Sty — Tynll*. (15)
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Introducing (15) into (9), we have

|Zn+1 — pH2 < anhl|z, — pH2 - anﬁnh@ —h— 2ﬂn) Sy — xn||2
+an (1= Bn)hllzn — Tynl® + anfuhl|Szn — Tyn|?
+ (1= an)n = pl* = an (1 = an)llen = Tyal?
< [1 —an(l - h)] [ _pH2 - anﬂnh@ —h- 25n) 1Sz, — xn”2
+ anfBnh||Szn — Tyn||* — an(l —op —h+ hﬁn)Hxn — Ty,||?. (16)

Since% <ap,<1—-h,0<h<1, B,>0 and lim 3, =0, there exists a natural
n

number N, such that for n > N,
2—h—-28,>0 and 1—a,—h+hG,>0.
Then, for n > N, we have
|nr1 = pl* < hllzn = plI* + anBuhl|Szn — Tynl?

where 0 < h=1— <%>
It follows from the boundedness of C' that ||Sx,, — Ty,||* is bounded. Thus

lim o, Bph|| Sy — Tynl|* = 0.

It follows from Lemma 1.1 that limx,, = p. This completes the proof of the

theorem. [J

If we put S =T in Theorem 2.2, we get the following corollary.

Corollary 2.2 [2].

Let S be a self-mapping in a bounded closed convex subset C' of a Hilbert space
such that

ISz — Syl| < k max {|lz =yl [lo — Szl lly = Syll. Iz —Syll.lly — S=[},

for all z,y in C, where 0 < k <1 and {«,}, {8,} are sequences of positive numbers
satisfying the conditions (a), (b), (¢) from Theorem 2.2. Then for each xo € C, the
sequence of Ishikawa iterates converges to a unique point of S.
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