# P-convexity property in Musielak-Orlicz sequence spaces

### YE YINING AND HUANG YAFENG

P.O. Box 610, Math. Dept., Harbin Univ. Sci. Tech., Harbin, Heilongjiang, 150080, P.R. China

#### ABSTRACT

We prove that in the Musielak-Orlicz sequence spaces equipped with the Luxemburg norm, P-convexity coincides with reflexivity.

In 1970, Kottman [1] introduced an important geometric property-P-convexity in order to describe a reflexive Banach space. We say that a Banach space  $(X, \|\cdot\|)$  is P-convex if X is  $P(n\varepsilon)$ -convex for some positive integer n and a real number  $\varepsilon > 0$ , i.e. for any  $x_1, x_2, \ldots, x_n$  in the unit sphere of X,  $\min_{i \neq j} \|x_i - x_j\| < 2 - \varepsilon$  for some n and  $\varepsilon > 0$ . Moreover Kottman proved that any P-convex Banach space is reflexive. After P-convexity property was introduced, many people tried to give a distinct relation between P-convexity and reflexivity. But there are a lot of differences between them in a Banach space.

In 1978 Sastry and Naidu [2] introduced a new geometric property, O-convexity intermediate between P-convexity and reflexivity, and proved that P-convexity implies O-convexity and O-convexity implies reflexivity.

In 1984, D. Amir and C. Franhetti [3] gave two geometric properties, O-convexity and H-convexity by the preceding results and proved O-convexity implies Q-convexity, Q-convexity implies reflexivity and H-convexity implies B-convexity and these convexities do not coincide with each other.

In 1988, Yeyining, Hemiaohong and Ryszard Pluciennik [4] proved that in Orlicz spaces P-convexity coincides with reflexivity, and reflexivity coincides with  $P(3, \varepsilon)$ -convexity for some  $\varepsilon > 0$ .

In this paper we prove that in Musielak-Orlicz sequence spaces equipped with the Luxemburg norm P-convexity coincides with reflexivity.

## 0. Introduction

Let X be a Banach space equipped with the norm  $\|\cdot\|$  and S(X) be the unit sphere of the space X, i.e.  $S(X) = \{x \in X : \|x\| = 1\}$ . Denote by  $\mathbb N$  the set of positive integers and by  $\mathbb R$  the set of real numbers. Let  $\varphi = (\varphi_n)$  be a sequence of Young functions, i.e. for every  $n \in \mathbb N$ ,  $\varphi_n(\cdot) : \mathbb R \to [0, \infty]$  is a convex,  $\varphi_n(0) = 0$ ,  $\lim_{u \to \infty} \varphi_n(u) = \infty$ ,  $\varphi_n(\cdot)$  is continuous at 0 and not identically equal to the zero function, and there exists a real number  $u_0$ , s.t.  $\varphi_n(u_0) < \infty$ . We define a modular on the family of all sequences  $x = (x_n)$  of real numbers by the following formula

$$I_{\varphi}(x) = \sum_{n=1}^{\infty} \varphi_n(x_n).$$

The linear set

$$l_{\varphi} = \{x = (x_n): \exists a > 0, I_{\varphi}(ax) < \infty\}$$

equipped with so - called Luxemburg norm

$$||x|| = \inf\{k > 0: I_{-2}(k^{-1}x) < 1\}$$

is said to be a Musielak-Orlicz sequence space.

We say that  $\varphi = (\varphi_n)$  satisfies the  $\delta_2$ -condition if there are constants a, k, and a sequence  $(c_n)$  of non-negative real numbers such that

$$\sum_{n=1}^{\infty} c_n < \infty \quad \text{and} \quad \varphi_a(2u) \le k\varphi_n(u) + c_n$$

for all  $n \in \mathbb{N}$  and  $u \in \mathbb{R}$  with  $\varphi_a(u) \leq a$ .

The complementary function of Young function  $\varphi = (\varphi_n)$  is defined by

$$\varphi_n^*(v) = \sup_{u>0} \{u|v| - \varphi_n(u)\}, \text{ for all } n \in \mathbb{N}.$$

A Musiclak-Orlicz sequence space  $l_{\varphi}$  is reflexive if and only if  $\varphi = (\varphi_n)$  and  $\varphi^* = (\varphi_n^*)$  satisfy the  $\delta_2$ -condition. Let  $a_n = \sup\{u > 0 : \varphi_n(u) \le 1\}$  for all  $n \in \mathbb{N}$ .

## 1. Auxiliary lemmas

## Lemma 1

Let  $\varphi = (\varphi_n)$  satisfy the  $\delta_2$ -condition, then

- (i) if  $A = \inf_{n} \varphi_n(a_n)$ , then A > 0,
- (ii) for any  $l_1 > 1$ ,  $a_1 > 0$ , there are  $k_1 > 1$  and a sequence  $(c_n^{(1)})$  of non-negative real numbers such that

$$\sum_{n=1}^{\infty} c_n^{(1)} < \infty \quad \text{and} \quad \varphi_n(lu) \le k\varphi_n(u) + c_n^{(1)}$$

for all  $n \in \mathbb{N}$  and  $u \in \mathbb{R}$  with  $\varphi_n(l_1 u) \leq a_1$ ,

(iii) for any  $k_1 > 1, l_2 > 1, a_2 > 0$ , there are  $\sigma \in (0, l_2 - 1)$  and a sequence  $(c_n^{(2)})$  of non-negative real numbers such that

$$\sum_{n=1}^{\infty} c_n^{(2)} < \infty \quad \text{and} \quad \varphi_n \left( (1+\delta)u \right) \le k_2 \varphi_n(u) + c_n^{(2)}$$

for all  $n \in \mathbb{N}$  and  $u \in \mathbb{R}$  with  $\varphi_n(l_2u) \leq a_2$ .

Proof. (i) Obviously  $A \geq 0$ , so it is enough to prove  $A \neq 0$ . Assume that A = 0. Then for any a > 0 there is  $n_0 \in \mathbb{N}$ , such that  $\varphi_{n_0}(a_{n_0}) < a$ . It is easy to see that  $a_{n_0} \neq 0$  by the definition of  $\varphi_n(u)$ . We may assume without loss of generality that a < 1. Then  $\varphi_{n_0}(a_{n_0}) < 1$  implies  $\varphi_{n_0}(2a_{n_0}) = \infty$  because  $\varphi_n(u)$  is a convex function and so it has the only discontinuous point  $u_0$ , such that  $\varphi_{n_0}(u_0 - 0) < \infty$  and  $\varphi_{n_0}(u_0 + 0) = \infty$ . By the definition of  $a_{n_0}$  and  $\varphi_{n_0}(a_{n_0}) < 1$  we may deduce that  $a_{n_0}$  is the discontinuous point of  $\varphi_{n_0}(u)$ , so  $\varphi_{n_0}(2a_{n_0}) = \infty$ . But this contradicts the  $\delta_2$ -condition and so A > 0.

(ii) Let a positive integer  $\alpha$  satisfy  $2^{\alpha-1} < l_1 < 2^{\alpha}$ . Since  $\varphi = (\varphi_n)$  satisfies the  $\delta_2$ -condition, there are constants k

Since  $\varphi = (\varphi_n)$  satisfies the  $\delta_2$ -condition, there are constants k > 0, a > 0 and a sequence  $(c_n)$  of non-negative real numbers such that

$$\sum_{n=1}^{\infty} c_n < \infty \quad \text{and} \quad \varphi_n(2u) \le k\varphi_n(u) + c_n$$

for all  $n \in \mathbb{N}$  and  $u \in \mathbb{R}$  with  $\varphi_n(u) \leq a$ . When  $\varphi_n(l_1 u) \leq a$ ,  $\varphi_n(2^{\alpha-1}u) \leq \varphi_n(l_1 u) \leq a$ , then

$$\varphi_n(l_1 u) \le \varphi_n(2^{\alpha} u)$$
  
 
$$\le k \varphi_n(2^{\alpha - 1} u) + c_n \le \ldots \le k^{\alpha} \varphi_n(u) + (k^{\alpha - 1} + \ldots + k + 1) c_n.$$

Let  $c_n^{(1)} = (k^{\alpha-1} + \dots + k + 1)c_n$ . Obviously  $\sum_{n=1}^{\infty} c_n^{(1)} < \infty$ . Then  $\varphi_n(l_1 u) \le k^{\alpha} \varphi_n(u) + c_n^{(1)}$  with  $\varphi_n(l_1 u) \le a$ .

If  $a_1 \leq a$ , it is enough to put  $k_1 = k^{\alpha}$ . Let  $a < \varphi_n(l_1 u) \leq a_1$  and  $\varphi_n(l'_1 u) = a$ . Then  $l'_1 < l$ . Hence

$$\varphi_{n}(l_{1}, u) \leq a_{1} = a_{1}a^{-1}a = a_{1}a^{-1}\varphi_{n}(l'_{1}u) 
= a_{1}a^{-1}\varphi_{n}(l_{1}l_{2}^{-1}l'_{1}u) \leq a_{1}a^{-1}[k^{\alpha}\varphi_{n}(l_{1}^{-1}l'_{1}u) + c_{n}^{(1)}] 
\leq a_{1}a^{-1}k^{\alpha}\varphi_{n}(u) + a_{1}a^{-1}c_{n}^{(1)}.$$

Replace  $a_1 a^{-1} k^{\alpha}$  by  $k_1, a_1 a^{-1} c_n^{(1)}$  by  $c_n^{(1)}$ , then  $\sum_{n=1}^{\infty} c_n^{(1)} < \infty$ . So  $\varphi_n(l_1 u) \leq k_1 \varphi_n(u) + c_n^{(1)}$  when  $\varphi_n(l_1 u) \leq a_1$ .

(iii) For  $l_2 > 1$ ,  $a_2 > 0$ , by (ii) there are  $k_1 > 1$  and a sequence  $(c_n^{(1)})$  of non-negative real numbers such that

$$\sum_{n=1}^{\infty} c_n^{(1)} < \infty \quad \text{and} \quad \varphi_n(l_2 u) \le k_1 \varphi_n(u) + c_n^{(1)}$$

for all  $n \in \mathbb{N}$  and  $u \in \mathbb{R}$  with  $\varphi_n(l_2u) \leq a_2$ . Take  $\sigma$  satisfying

$$\sigma < \min \left\{ l_2 - 1, \left[ (k_2 - 1)/(k_1 - 1) \right] (l_2 - 1) \right\}.$$

Because  $\varphi_n(u)$  is convex, when  $\varphi_n(l_2u) \leq a_2$  it follows that

$$\varphi_{n}((1+\sigma)u) = \varphi_{n}\left(\frac{(l_{2}-1)(l+\sigma)}{l_{2}-1}u\right)$$

$$= \varphi_{n}\left(\frac{\sigma}{l_{2}-1}l_{2}u + \frac{l_{2}-1-\sigma}{l_{2}-1}u\right)$$

$$\leq \frac{\sigma}{l_{2}-1}\varphi_{n}(l_{2}u) + \frac{l_{2}-1-\sigma}{l_{2}-1}\varphi_{n}(u)$$

$$\leq \frac{k_{1}\sigma}{l_{2}-1}\varphi_{n}(u) + \frac{l_{2}-1-\sigma}{l_{2}-1}\varphi_{n}(u) + \frac{\sigma}{l_{2}-1}c_{n}^{(1)}$$

$$= \left[\frac{(k_{1}-1)\sigma}{l_{2}-1} + 1\right]\varphi_{n}(u) + \frac{\sigma}{l_{2}-1}c_{n}^{(1)}$$

$$\leq \left[\frac{(k_{1}-1)(k_{2}-1)}{(l_{2}-1)(k_{1}-1)}(l_{2}-1) + 1\right]\varphi_{n}(u)$$

$$+ \frac{c_{n}^{(1)}(k_{2}-1)}{(l_{2}-1)(k_{1}-1)}(l_{2}-1)$$

$$= k_{2}\varphi_{n}(u) + \frac{k_{2}-1}{k_{1}-1}c_{n}^{(1)}.$$

Let  $c_n^{(2)} = [(k_2 - 1)/(k_1 - 1)]c_n^{(1)}$ , which completes the proof of (iii).  $\square$ 

## Lemma 2

If  $\varphi = (\varphi_n)$  and  $\varphi^* = (\varphi_n^*)$  satisfy the  $\delta_2$ -condition, then for any  $l_3 > 1$ , b > 1 there are  $k_3 > 1$  and a sequence  $(c_n^{(3)})$  of non-negative real numbers such that

$$\sum_{n=1}^{\infty} c_n^{(3)} < \infty \quad \text{and} \quad \varphi_n^*(v) < \frac{1}{l_3 k_3} \varphi_n^*(l_3 v) + c_n^{(3)},$$

for all  $n \in \mathbb{N}$  and  $v \in \mathbb{R}$  with  $\varphi_n^*(v) \leq b$ .

*Proof.* First we prove when  $\varphi_n^*(v) \leq b$ , there is a > 0 such that  $\varphi_n(u) \leq a$  for all  $n \in \mathbb{N}$  where  $v = p_n(u)$ .

Otherwise, there is a sequence  $\{u_k\}_{k=1}^{\infty}$  of real numbers such that  $\varphi_{n_k}(u_k) \to \infty$  as  $k \to \infty$ , while  $\varphi_{n_k}^*(v) \leq b$ .

Notice that for some  $l_3 > 1$ , there is b' > 0, such that  $\varphi_n^*(l_3 v) \le b'$  for all  $n \in \mathbb{N}$ . It is enough to put  $b' = 2l_3 b$ . If  $\varphi_n^*(l_3 v) > 2l_3 b$ , Lemma 2 obviously holds.

By Lemma 1, there is  $\sigma \in (0, l_3 - 1)$  such that  $\varphi_{n_k}^*((1 + \sigma)v_k) \leq k_2 \varphi_{n_k}^*(v_k) + c_k$  for all  $n \in \mathbb{N}$  with

$$\varphi_{n_k}^*(l_3v) \le b'$$
, where  $k_2 > 1$ ,  $\sum_{n=1}^{\infty} c_k < \infty$ .

Let  $b_1 = k_2 b + \max_k c_k$ . Then  $\varphi_{n_k}^*((1+\sigma)v_k) \le b_1$  for all  $k \in \mathbb{N}$ .

On the other hand, when  $v_k = p_{n_k}(u_k)$ ,  $\varphi_{n_k}^*(v_k) = |u_k v_k| - \varphi_{n_k}(u_k) > 0$ , and  $\varphi_{n_k}(u_k) \to \infty$  as  $k \to \infty$ , i.e. there is  $k_0 \in \mathbb{N}$  such that  $\varphi_{n_k}(u_k) > b_1 \sigma^{-1}$  with  $k > k_0$ . So, when  $k > k_0$ , we have

$$\begin{split} \varphi_{n_k}^* \left( (1+\sigma) v_k \right) &= \sup_{u \geq 0} \left\{ (1+\sigma) |v_k| u - \varphi_{n_k}(u) \right\} \\ &\geq (1+\sigma) |v_k u_k| - \varphi_{n_k}(u_k) \\ &\geq (1+\sigma) \varphi_{n_k}(u_k) - \varphi_{n_k}(u_k) = \sigma \varphi_{n_k}(u_k) > b_{\mathsf{J}}. \end{split}$$

This contradicts the inequality  $\varphi_{n_k}^*((1+\sigma)v_k) \leq b_1$ .

Therefore, there is a > 0 such that  $\varphi_n(u) \leq a$  for all  $n \in \mathbb{N}$  with  $\varphi_n^*(v) \leq b$ . Hence by  $\varphi_n^*(l_3v) \leq b'$  there is a' > 0 such that  $\varphi_n(l_3u) \leq a'$  for all  $n \in \mathbb{N}$ .

By Lemma 1 (iii) for  $k_2 = l_3, l_2 = l_3, a_2 = a'$ , there are  $\varepsilon \in (0, l_3 - 1)$  and a sequence  $(c_n^{(2)})$  of non-negative real numbers such that

$$\sum_{n=1}^{\infty} c_n^{(2)} < \infty \quad \text{and} \quad \varphi_n \left( (1+\varepsilon)u \right) \le l_3 \varphi_n(u) + c_n^{(2)}$$

for all  $n \in \mathbb{N}$  and  $u \in \mathbb{R}$  with  $\varphi_n(l_3 u) \leq a'$ . Then

$$\begin{split} \varphi_n^*(v) &= \sup \left\{ u|v| - \varphi_n(u) \colon u \geq 0, \varphi_n^*(l_3v) \leq b' \right\} \\ &\leq \sup \left\{ u|v| - \varphi_n(u) \colon \varphi_n(l_3u) \leq a' \right\} \\ &\leq \sup_{u \geq 0} \left\{ u|v| - \frac{\varphi_n(u+\varepsilon)u) - c_n^{(2)}}{l_3} \right\} \\ &= \frac{1}{l_3} \sup_{u \geq 0} \left\{ \frac{l_3|v|}{1+\varepsilon} (1+\varepsilon)u - \varphi_n \left( (1+\varepsilon)u \right) \right\} + \frac{c_n^{(2)}}{l_3} \\ &= \frac{1}{l_3} \varphi_n^* \left( \frac{l_3v}{1+\varepsilon} \right) + \frac{c_n^{(2)}}{l_3} \\ &< \frac{1}{l_3(1+\varepsilon)} \varphi_n^*(l_3v) + \frac{c_n^{(2)}}{l_3} \,. \end{split}$$

Let  $k_3 = 1 + \varepsilon$ ,  $c_n^{(3)} = c_n^{(2)}/l_3$ , which completes the proof of Lemma 2.  $\square$ 

## Lemma 3

If  $\varphi = (\varphi_n)$  and  $\varphi^* = (\varphi_n^*)$  satisfy the  $\delta_2$ -condition, then there is a sequence  $(c_n)$  of non-negative real numbers such that  $\sum_{n=1}^{\infty} \varphi_n(c_n) < \infty$ , and if

$$d_n = \sup \left\{ \alpha(u, n) : \varphi_n \left( \frac{u}{\alpha(u, n)} \right) \ge \frac{1}{2} \varphi_n(u), c_n \le |u| \le a_n \right\}, \ n = 1, 2, \dots$$

$$d_1 = \lim_{m \to \infty} \sup_{n > m} d_n,$$

then  $d_1 < 2$ .

Proof. Let  $l_3 = 2, b = 1$  in Lemma 2. Then there are  $k_3 > 1$  and a sequence  $(c_n^{(3)})$  of non-negative real numbers such that

$$\sum_{n=1}^{\infty} c_n^{(3)} < \infty \quad \text{and} \quad \varphi_n(u) \le \frac{1}{2k_3} \varphi_n(2u) + c_n^{(3)}$$
 (1)

for all n and u with  $\varphi_n(u) \leq 1$ .

In Lemma 1 (iii) let  $k_2=(k_3+1)/2, l_2=2, a_2=1$ . There are  $\varepsilon\in(0,1)$  and a sequence  $(\beta_n)$  of positive numbers such that  $\sum_{n=1}^{\infty}\beta_n<\infty$ , and when  $\varphi_n(2u)\leq 1$ ,

$$\varphi_n((1+\varepsilon)u) < \frac{1}{2}(k_3+1)\varphi_n(u) + \beta_n. \tag{2}$$

Let

$$c'_n = \frac{2k_3(k_3+1)}{k_3-1}c_n^{(3)} + \frac{4k_3}{k_3-1}\beta_n.$$

Obviously  $\sum_{n=1}^{\infty} c'_n < \infty$ .

Since  $A = \inf_{n} \varphi_n(a_n) > 0$  is true by Lemma 1 (i), so there is  $n_0 \in \mathbb{N}$  such that  $c'_n < A$  for  $n > n_0$ . We define a sequence  $(c_n)$  by

$$c_n = \begin{cases} 0 & \text{when } n \le n_0 \\ \varphi_n^{-1}(c_n') & \text{when } n > n_0. \end{cases}$$

Then  $\sum_{n=1}^{\infty} \varphi_n(c_n) \leq \sum_{n=1}^{\infty} c'_n < \infty$ .

We will show the sequence  $(c_n)$  satisfies Lemma 3.

Obviously  $d_1 \leq 2$ . If  $d_1 = 2$ , for  $n > n_0$  there are subsequence  $\{u_n\}_{n > n_0}$  and  $\{\alpha(u_n, n)\}_{n > n_0}$  (let the subsequence be  $\{u_n\}$  and  $\{\alpha(u_n, n)\}$ ) such that

$$\varphi_n\left(\frac{u_0}{\alpha(u_n, n)}\right) \ge \frac{1}{2}\varphi_n(u_n), \quad c_n \le |u_n| < a_n \tag{3}$$

and  $\alpha(u_n, n) \to 2$  as  $n \to \infty$ .

So there is  $n_1 \in \mathbb{N}$ , such that  $2/\alpha(u_n, n) < 1 + \varepsilon$  for  $n > n_1$ .

Let  $\alpha_n = \alpha(u_n, n)$ . By formula (2) it follows that

$$\varphi_n\left(\frac{u_n}{\alpha_n}\right) \le \varphi_n\left((1+\varepsilon)\frac{u_n}{2}\right) < \frac{k_3+1}{2}\varphi_n\left(\frac{u_n}{2}\right) + \beta_n.$$

By (1), we get

$$\varphi_n\left(\frac{u_n}{\alpha_n}\right) < \frac{k_3+1}{2} \left[ \frac{1}{2k_3} \varphi_n(u_n) + c_n^{(3)} \right] + \beta_n = \frac{k_3+1}{4k_3} \varphi_n(u_n) + \frac{k_3+1}{2} c_n^{(3)} + \beta_n.$$

By (3), we have

$$\frac{1}{2}\varphi_n(u_n) < \frac{k_3+1}{4k_3}\varphi_n(u_n) + \frac{k_3+1}{2}c_n^{(3)} + \beta_n,$$

i.e.

$$\varphi_n(u_n) < \frac{2k_3(k_3+1)}{k_3-1}c_n^{(3)} + \frac{3k_3}{k_3-1}\beta_n.$$
 (4)

But when  $n > \max(n_0, n_1)$ , we have

$$\varphi_n(u_n) \ge \varphi_n(c_n) = c'_n = \frac{2k_3(k_3+1)}{k_3-1}c_n^{(3)} + \frac{4k_3}{k_3-1}\beta_n.$$

This contradicts (4), so Lemma 3 is true.  $\square$ 

## 2. Result

#### Theorem

A Musielak-Orlicz sequence space  $l_{\varphi}$  is P-convex if and only if  $l_{\varphi}$  is reflexive.

*Proof.* We may obtain necessity according to paper [1], so it is enough to prove sufficiency.

Assume sufficiency is false. Let  $l_{\varphi}$  be reflexive i.e.  $\varphi = (\varphi_n)$  and  $\varphi^* = (\varphi_n^*)$  satisfy the  $\delta_2$ -condition but  $l_{\varphi}$  is not P-convex. Then for any  $\varepsilon > 0$  and positive integer  $N_1$ , there is a set  $X = \{x^i\}$  having  $N_1$  elements in  $S(l_{\varphi})$  such that

$$||x^i - x^j|| \ge 2(1 - \varepsilon); \quad i \ne j, \ i, j = 1, 2, \dots, N_1.$$

We will complete the proof of theorem in two steps.

Step 1. There is  $\varepsilon_0 > 0$  such that  $||x_n|| < (1 - \varepsilon_0)a_n$  for any  $x = (x_n) \in X$  and all  $n \in \mathbb{N}$ .

(1a) We define some constants.

By Lemma 3, there are a sequence  $(c_n)$  of non-negative real numbers,  $N' \in N, d > 0$  such that  $\sum_{n=1}^{\infty} c_n < \infty, d_1 < d < 2$  and  $d_n < d$  with n > N'. Let  $\beta = \varepsilon_0/4$ , then  $\beta < 1$ .

By Lemma 1 (ii), for  $l_1 = 1/\beta$  and  $a_1 = 1$ , there are  $k_1 > 1$  and a sequence  $(c_n^{(2)})$  of non-negative real numbers such that

$$\sum_{n=1}^{\infty} c_n^{(2)} < \infty \quad \text{and} \quad \varphi_n(u/\beta) \le k_1 \varphi_n(u) + c_n^{(2)}$$
 (1)

for all  $n \in \mathbb{N}$  and  $u \in \mathbb{R}$  with  $\varphi_n(u/\beta) \leq 1$ . Let  $\lambda_1 = (2-d)/(24k_1)$ ,  $\lambda_2 = (2-d)/2d$ . By Lemma 1 (iii), for  $k_2 = 1 + \min(\lambda_1, \lambda_2)$ ,  $l_2 > 1$  and a = 1, there are  $a \in (0, l-1)$  and a sequence  $(c_n^{(3)})$  of non-negative real numbers such that

$$\sum_{n=1}^{\infty} c_n^{(3)} < \infty \quad \text{and} \quad \varphi_n \left( (1+\delta)u \right) \le k_2 \varphi_n(u) + c_n^{(3)} \tag{2}$$

for all  $n \in \mathbb{N}$  and  $u \in \mathbb{R}$  with  $\varphi_n(l_2 u) \leq 1$ .

By Lemma 1 (ii), for  $l_1 = 2$ , and  $a_1 = 1$ , there are k > 1 and a sequence  $(c_n^{(1)})$  of non-negative real numbers such that

$$\sum_{n=1}^{\infty} c_n^{(1)} < \infty \quad \text{and} \quad \varphi_n(2u) \le k\varphi_n(u) + c_n^{(1)}$$
(3)

for all  $n \in \mathbb{N}$  and  $u \in \mathbb{R}$  with  $\varphi_n(2u) \leq 1$ . Let  $h_1$  be, such that  $0 < h_1 < 1$ . Let

$$\begin{split} h_2 &= \min \left\{ \frac{2-d}{8k}, \frac{2-d}{4} \right\} \\ r_1 &= \min \left\{ \frac{1-h_1}{4(1+k_1)}, \frac{h_2(1-h_1)}{12kk_1} \right\} \\ r_2 &= \frac{h_2(1-h_1)}{12(3k+1)}. \end{split}$$

By  $\sum_{n=1}^{\infty} \varphi_n(c_n) < \infty$  and (1), (2), (3), there is  $N_0 > N'$ , such that

$$\sum_{n=1}^{\infty} \varphi_n(c_n) < r_1, \quad \sum_{n=N_0}^{\infty} c_n^{(i)} < r, \quad i = 1, 2, 3.$$
 (4)

(1b) Now we will prove that for any  $h_1$ ,  $0 < h_1 < 1$ , there do not exist three elements  $x^1, x^2$  and  $x^3$  in X, such that

$$\sum_{n=1}^{\infty} \varphi_n(x_n^i) \ge I_{\varphi}(x^i) - h_1 = 1 - h_1, \quad i = 1, 2, 3.$$
 (5)

Assume (1b) is false:

(i) If  $0 < \varepsilon < \varepsilon_0/4$ , then  $\varphi_n((x_n^i - x_n^j)/2(1 - \varepsilon)) < \infty$  for all  $n \in \mathbb{N}, i \neq j, i, j = 1, 2, 3$ .

Let  $u_n = \max\{|x_n^1|, |x_n^2|, |x_n^3|\}, w_n = \min\{|x_n^1|, |x_n^2|, |x_n^3|\}, v_n$  be the arithmetic mean of  $u_n$  and  $w_n$ . Since  $u_n v_n \geq 0$ , or  $u_n w_n \geq 0$ , or  $v_n w_n \geq 0$  is true, we first consider  $v_n, w_n \geq 0$ .

Divide positive integers  $n \geq N_0$  into the following sets:

$$I_1 = \left\{ n: \left| \frac{v_n}{u_n} \right| \ge \beta \quad \text{and} \quad |v_n| \ge c_n \right\}$$

$$I_2 = \left\{ n: \left| \frac{v_n}{u_n} \right| \ge \beta \quad \text{and} \quad |v_n| < c_n \right\}$$

$$I_3 = \left\{ n: \left| \frac{v_n}{u_n} \right| < \beta \quad \text{and} \quad |u_n| \ge c_n \right\}$$

$$I_4 = \left\{ n: \left| \frac{v_n}{u_n} \right| < \beta \quad \text{and} \quad |u_n| < c_n \right\}.$$

When  $n \in I_1$ , by formula (2) for  $l_2 = (1 - \varepsilon_0/2)/[(1 - \varepsilon_0)(1 - \varepsilon)]$ , if  $\sigma = 1/(1 - \varepsilon) - 1$ , then  $\sigma < l_2 - 1$ . Since

$$\varphi_n\left(l_2\frac{u_n-v_n}{2}\right) = \varphi_n\left(\frac{1-\varepsilon_0/2}{1-\varepsilon_0} \cdot \frac{u_n-v_n}{2(1-\varepsilon)}\right)$$

$$\leq \varphi_n\left(\frac{1-\varepsilon_0/2}{1-\varepsilon_0/4} \cdot \frac{2u_n}{2(1-\varepsilon_0)}\right) \leq \varphi_n(a_n) \leq 1$$

by (2) and  $k_2 = 1 + \min(\lambda_1, \lambda_2)$ , it follows that

$$\varphi_{n}\left(\frac{u_{n}-v_{n}}{2(1-\varepsilon)}\right) = \varphi_{n}\left((1+\sigma)\frac{u_{n}-v_{n}}{2}\right) \leq k_{2}\varphi_{n}\left(\frac{u_{n}-v_{n}}{2}\right) + c_{n}^{(3)}$$

$$\leq (1+\lambda_{1})\varphi_{n}\left(\frac{u_{n}-v_{n}}{2}\right) + c_{n}^{(3)}$$

$$\leq (1+\lambda_{1})\frac{\varphi_{n}(u_{n}) + \varphi_{n}(v_{n})}{2} + c_{n}^{(3)}$$

$$\leq (1+\lambda_{1})\frac{\varphi_{n}(u_{n}) + \varphi_{n}(v_{n})}{2} + c_{n}^{(3)}$$

$$\leq \frac{1}{2}\varphi_{n}(u_{n}) + \frac{1}{2}\varphi_{n}(v_{n}) + \lambda_{1}\varphi_{n}(u_{n}) + c_{n}^{(3)}.$$
(6)

By the same argumentation, we get

$$\varphi_n\left(\frac{u_n - w_n}{2(1 - \varepsilon)}\right) \le \frac{1}{2}\varphi_n(u_n) + \frac{1}{2}\varphi_n(w_n) + \lambda_1\varphi_n(u_n) + c_n^{(3)}. \tag{7}$$

By  $v_n, w_n \ge 0$  and  $|v_n| \ge |w_n|$ , it follows that

$$\varphi\Big(\frac{v_n-w_n}{2(1-\varepsilon)}\Big) \leq \varphi_n\Big(\frac{v_n}{2(1-\varepsilon)}\Big) \leq (1+\lambda_1)\varphi_n\Big(\frac{v_n}{2}\Big) + c_n^{(3)}.$$

By  $|v_n| \ge c_n$  and the definition of d, we get

$$\varphi_n\left(\frac{v_n}{2}\right) = \varphi_n\left(\frac{d}{2} \cdot \frac{v_n}{d}\right) \le \frac{d}{2}\varphi_n\left(\frac{v_n}{d}\right) \le \frac{d}{4}\varphi_4(v_n),$$

 $\mathbf{so}$ 

$$\varphi_n\left(\frac{v_n - w_n}{2(1 - \varepsilon)}\right) \le \frac{d}{4}(1 + \lambda_1)\varphi_n(v_n) + c_n^{(3)}. \tag{8}$$

Let

$$f(n) = \varphi_n \left( \frac{u_n - v_n}{2(1 - \varepsilon)} \right) + \varphi_n \left( \frac{v_n - w_n}{2(1 - \varepsilon)} \right) + \varphi \left( \frac{u_n - w_n}{2(1 - \varepsilon)} \right) - \varphi_n(u_n) - \varphi_n(v_n) - \varphi_n(w_n).$$

By (1) we get  $\varphi_n(u_n) \le k_1 \varphi_n(\beta u_n) + c_n^{(2)}$ . By (6), (7) and (8) it follows

$$\sum_{n \in I_{1}} f(n) \leq \sum_{n \in I_{1}} \left[ 2\lambda_{1} \varphi_{n}(u_{n}) + \frac{d}{4} (1 + \lambda_{1}) \varphi_{n}(v_{n}) + 3c_{n}^{(3)} - \frac{1}{2} \varphi_{n}(v_{n}) \right] 
\leq \sum_{n \in I_{1}} \left[ 3\lambda_{1} \varphi_{n}(u_{n}) - \frac{2 - d}{4} \varphi_{n}(v_{n}) \right] + 3 \sum_{n \in I_{1}} c_{n}^{(3)} 
\leq \sum_{n \in I_{1}} \left[ 3\lambda_{1} \varphi_{n}(u_{n}) - \frac{2 - d}{4} \varphi(\beta u_{n}) \right] + 3 \sum_{n \in I_{1}} c_{n}^{(3)} 
\leq \sum_{n \in I_{1}} \left[ 3\lambda_{1} \varphi_{n}(u_{n}) - \frac{2 - d}{4k_{1}} \varphi_{n}(u_{n}) \right] + \frac{2 - d}{4k_{1}} \sum_{n \in I_{1}} c_{n}^{(3)} 
+ 3 \sum_{n \in I_{1}} c_{n}^{(3)} 
= \frac{2 - d}{8k_{1}} \sum_{n \in I_{1}} \varphi_{n}(u_{n}) + \frac{2 - d}{4k_{1}} \sum_{n \in I_{1}} c_{n}^{(3)} + 3 \sum_{n \in I_{1}} c_{n}^{(3)}.$$
(9)

When  $n \in I_2$ ,  $\left| \frac{v_n}{u_n} \right| \ge \beta$ ,  $\left| v_n \right| < c_n$ . Since

$$\varphi_n\left(\frac{2u_n}{2(1-\varepsilon)}\right) \le \varphi_n\left(\frac{u_n}{1-\varepsilon_0}\right) \le \varphi_n(a_n) \le 1,$$

by (3) we get

$$\varphi_n\left(\frac{2u_n}{2(1+\varepsilon)}\right) \le k\varphi_n\left(\frac{u_n}{2(1-\varepsilon)}\right) + c_n^{(1)} \le k\varphi_n(u_n) + c_n^{(1)},$$

SO

$$\varphi_n\left(\frac{u_n - v_n}{2(1 - \varepsilon)}\right) \le \varphi_n\left(\frac{2u_n}{2(1 - \varepsilon)}\right) \le k\varphi_n(u_n) + c_n^{(1)} \\
\le kk_1 \,\varphi_n(\beta u_n) + kc_n^{(2)} + c_n^{(1)} \le kk_1\varphi_n(c_n) + kc_n^{(2)} + c_n^{(1)}.$$

We have also

$$\varphi_n \left( \frac{u_n - w_n}{2(1 - \varepsilon)} \right) \le k k_1 \varphi_n(c_n) + c_n^{(1)} + k c_n^{(2)}$$

$$\varphi_n \left( \frac{v_n - w_n}{2(1 - \varepsilon)} \right) \le k k_1 \varphi_n(c_n) + c_n^{(1)} + k c_n^{(2)},$$

so we get

$$\sum_{n \in I_2} f(n) \leq \sum_{n \in I_2} \left[ \varphi_n \left( \frac{u_n - v_n}{2(1 - \varepsilon)} \right) + \varphi_n \left( \frac{v_n - w_n}{2(1 - \varepsilon)} \right) + \varphi_n \left( \frac{u_n - w_n}{2(1 - \varepsilon)} \right) \right] 
\leq 3kk_1 \sum_{n \in I_2} \varphi_n(c_n) + 3 \sum_{n \in I_2} c_n^{(1)} + 3k \sum_{n \in I_3} c_n^{(3)}.$$
(10)

When  $n \in I_3$ ,  $\left|\frac{v_n}{u_n}\right| < \beta$ ,  $\left|u_n\right| \ge c_n$ , by

$$\varphi_n\left(\frac{u_n-v_n}{2(1-\varepsilon)}\right) \le \varphi_n\left(\frac{(1+\varepsilon_0/4)u_0}{2(1-\varepsilon)}\right),$$

denoting  $(1 + \varepsilon_0/4)/(1 - \varepsilon) = 1/(1 - \varepsilon')$ ,  $\sigma' = 1/(1 - \varepsilon') - 1$ , we get as in (6),

$$\varphi_n\left(\frac{u_n - v_n}{2(1 - \varepsilon)}\right) \le \varphi_n\left((1 + \sigma')\frac{u_n}{2}\right) \le (1 + \lambda_2)\varphi_n\left(\frac{u_n}{2}\right) + c_n^{(3)}$$

$$\le \frac{d}{4}(1 + \lambda_2)\varphi_n(u_n) + c_n^{(3)}$$

and

$$\varphi_n\left(\frac{u_n-w_n}{2(1-\varepsilon)}\right) \le \frac{d}{4}(1+\lambda_2)\varphi_n(u_n) + c_n^{(3)}.$$

By  $\varphi_n(\frac{u_n-w_n}{2(1-\varepsilon)}) \le \varphi_n(\frac{v_n}{2(1-\varepsilon)}) \le \varphi_n(v_n)$  we get

$$\sum_{n \in I_{1}} f(n) \leq \sum_{n \in I_{3}} \left[ \frac{d}{2} \varphi_{n}(u_{n}) + \frac{d}{2} \lambda_{2} \varphi_{n}(u_{n}) + 2c_{n}^{(3)} - \varphi_{n}(u_{4}) \right] 
\leq \sum_{n \in I_{2}} \left[ -\frac{2-d}{2} \varphi_{n}(u_{n}) + \frac{2-d}{4} \varphi_{n}(u_{n}) \right] + 2 \sum_{n \in I_{3}} c_{n}^{(3)} 
= -\frac{2-d}{4} \sum_{n \in I_{3}} \varphi_{n}(u_{n}) + 2 \sum_{n \in I_{3}} c_{n}^{(3)}.$$
(11)

When  $n \in I_4$ ,  $|u_n| < c_n$ , as in the case of  $n \in I_2$ , we get

$$\varphi_n\left(\frac{u_n - v_n}{2(1 - \varepsilon)}\right) \le k\varphi_n(u_n) + c_n^{(1)} \le k\varphi_n(c_n) + c_n^{(1)}$$

$$\varphi_n\left(\frac{u_n - v_n}{2(1 - \varepsilon)}\right) \le k\varphi_n(c_n) + c_n^{(1)}$$

$$\varphi_n\left(\frac{u_n - w_n}{2(1 - \varepsilon)}\right) \le k\varphi_n(c_n) + c_m^{(1)}.$$

Then

$$\sum_{n \in I_4} f(n) \le 3k \sum_{n \in I_4} \varphi_n(c_n) + 3 \sum_{n \in I_4} c_n^{(1)}.$$
 (12)

By (9), (10), (11) and (12), we get

$$\sum_{n=N_0}^{\infty} f(n) \le -h_2 \sum_{n=N_0}^{\infty} \varphi_n(u_n) + h_2 \sum_{n\in I_2 \cup I_4} \varphi_n(u_n)$$

$$+ 3 \sum_{n=N_0}^{\infty} (c_n^{(1)} + c_n^{(3)})$$

$$+ 3kk_1 \sum_{n=N_0} \varphi_n(c_n) + \left(3k + \frac{2-d}{4k_1}\right) \sum_{n=N_0}^{\infty} c_n^{(2)}.$$

$$(13)$$

When  $n \in I_2$ , since (1) implies  $\varphi_n(u_n) \leq k_1 \varphi_n(c_n) + c_n^{(2)}$ , then

$$h_{2} \sum_{n \in I_{2} \cup I_{4}} \varphi_{n}(u_{n}) = h_{2} \sum_{n \in I_{2}} \varphi_{n}(u_{n}) + h_{2} \sum_{n \in I_{4}} \varphi_{n}(u_{n})$$

$$\leq h_{2} \sum_{n \in I_{2}} [k_{1} \varphi_{n}(c_{n}) + c_{n}^{(2)}] + h_{2} \sum_{n \in I_{4}} \varphi_{n}(c_{n})$$

$$\leq h_{2}(k_{1} + 1) \sum_{n = N_{0}}^{\infty} \varphi_{n}(c_{n}) + h_{2} \sum_{n \in I_{2}} c_{n}^{(2)}.$$

$$(14)$$

It we put (14) into (13), by (4) and (5), we get

$$\sum_{n=N_0}^{\infty} f(n) \le -h_2 \sum_{n=N_0}^{\infty} \varphi_n(u_n) + h_2(k_1+1) \sum_{n=N_0}^{\infty} \varphi_n(c_n)$$

$$+ 3kk_1 \sum_{n=N_0}^{\infty} \varphi_n(c_n)$$

$$+ 3 \sum_{n=N_0}^{\infty} (c_n^{(1)} + c_n^{(2)}) + (3k+1) \sum_{n=N_0}^{\infty} c_n^{(2)}$$

$$< -h_2(1-h_1) + h_2(k_1+1)r_1 + 3kk_1r_1 + 3(3k+1)r_2$$

$$< -\frac{h_2(1-h_1)}{4}.$$

$$(15)$$

(ii) Formula (5) implies  $\sum\limits_{n=1}^{N_0-1} \varphi_n(x_n^i) < h, \ i=1,2,3.$  We deduce that  $|2x_n^i| < a_n$  for all  $n<\mathbb{N},$  and i=1,2,3. Let

$$\alpha' = \min_{n < N_0} \varphi_n^{-1} \left( \frac{h_2}{48N_0} \right).$$

Then  $k' = \max_{n < N_0} \max_{\alpha' < u < a_n} \varphi_n(u)/\varphi_n(\frac{u}{2}) < \infty$ .

So when  $|2u_n| \in [\alpha', a_n], \varphi_n(2u_n) \le k'\varphi_n(u_n)$ ; when  $|2u_n| < \alpha', \varphi_n(2u_n) \le \varphi_n(\alpha')$ . Hence

$$\sum_{n=1}^{N_{0}-1} f(n) < \sum_{n=1}^{N_{0}-1} \left[ \varphi_{n} \left( \frac{u_{n} - v_{n}}{2(1 - \varepsilon)} \right) + \varphi_{n} \left( \frac{v_{n} - w_{n}}{2(1 - \varepsilon)} \right) + \varphi_{n} \left( \frac{u_{n} - w_{n}}{2(1 - \varepsilon)} \right) \right]$$

$$\leq 3 \sum_{n=1}^{N_{0}-1} \varphi_{n}(2u_{n}) \leq 3k \sum_{n=1}^{N_{0}-1} \varphi_{n}(u_{n}) + 3 \sum_{n=1}^{N_{0}-1} \varphi_{n}(\alpha')$$

and when  $h_1 < \frac{1}{3k_1} \cdot \frac{h_2}{16} \cdot h_1 < \frac{1}{2}$ , then

$$\sum_{n=1}^{N_0-1} f(n) < 3k'h_1 + 3N_0 \frac{h_2}{48N_0} \le \frac{h_2}{16} + \frac{h_2}{16} = \frac{h_2}{8} < \frac{h_2(1-h_1)}{4}. \tag{16}$$

By (15) and (16), we get  $\sum_{n=1}^{\infty} f(n) < 0$ , i.e.

$$I_{\varphi}\left(\frac{x^{1}-x^{2}}{2(1-\varepsilon)}\right)+I_{\varphi}\left(\frac{x^{2}-x^{3}}{2(1-\varphi)}\right)+I_{\varphi}\left(\frac{x^{1}-x^{3}}{2(1-\varepsilon)}\right)-I_{\varphi}(x^{1})-I_{\varphi}(x^{2})-I_{\varphi}(x^{3})<0.$$

Since  $I_{\varphi}(x^i)=1, i=1,2,3$ , so  $I_{\varphi}(\frac{x^1-x^2}{2(1-\varepsilon)})<1$ , or  $I_{\varphi}(\frac{x^2-x^3}{2(1-\varepsilon)})<1$ , or  $I_{\varphi}(\frac{x^1-x^3}{2(1-\varepsilon)})<1$ , and this implies  $||x^1-x^2||<2(1-\varepsilon)$  or  $||x^2-x^3||<2(1-\varepsilon)$ , or  $||x^1-x^3||<2(1-\varepsilon)$ . This contradicts the assumption in the theorem, so result (1b) is true.

Repeating the same argumentation, we may prove result (1b) in case of uw > 0 and uv > 0.

(1c) Let  $N_1 = 2N_0 + 1$ ,  $N_1$  is the number of elements of X. Result (1b) implies that there are at least  $2N_0 - 1$  elements in X such that

$$\sum_{n=1}^{N_0-1} \varphi_n(x_n) > h_1. \tag{17}$$

Let

$$\alpha_1 = \frac{h_1}{N_0 - 1}, \quad u_0 = \min_{n < N_0} \frac{1}{4} \varphi_n^{-1} \left( \frac{\alpha_1}{4(N_0 - 1)} \right).$$

The fact that a continuous function is uniformly continuous in a closed interval implies that there is  $\delta'_n > 0$  such that

$$\varphi\left(\frac{u}{1-\delta}\right) \le \varphi_n(u) + \frac{\alpha_1}{4(N_0-1)}, \quad n = 1, 2, \dots, N_0 - 1$$
 (18)

for all  $\delta < \delta'_n$  and  $u \in [u_0, a_n]$ .

Let  $\delta' = \min_{n < N_0} \delta'_n$ . Take  $\varepsilon < \varepsilon_0/4$  and  $0 < \varepsilon < \delta'$ . Among the elements satisfying (17), there are three ones  $x^1, x^2, x^3$  and  $n_0 < N_0$  such that

$$\varphi_{n_0}(x_{n_0}^i) > \frac{h_1}{N_0 - 1}, \quad i = 1, 2, 3$$

this is because  $2N_0 - 1$  elements satisfy (17) in the former  $N_0 - 1$  components, then there are three elements satisfying the above formula in the same component.

Since there are at least two elements having same sign among  $x_{n_0}^1, x_{n_0}^2, x_{n_0}^3$  and without loss of generality we have

$$x_{n_0}^1 x_{n_0}^2 \ge 0$$
 and  $|x_{n_0}^1| \ge |x_{n_0}^2|$ .

By analogy of the former proof we get

$$\sum_{n=N_0}^{\infty} \varphi_n \left( \frac{x_n^1 - x_n^2}{2(1 - \varepsilon)} \right) < \frac{1}{2} \sum_{n=N_0}^{\infty} \varphi_n(x_n^1) + \frac{1}{2} \sum_{n=N_0}^{\infty} \varphi_n(x_n^2) + \frac{\alpha_1}{4}.$$
 (19)

Divide the positive integers of  $n < N_0 (n \neq n_0)$  into three sets:

$$I_5 = \left\{ n: \max(|x_n^1|, |x_n^2|) \ge 2u_0 \quad \text{and} \quad x_n^1 x_n^2 < 0 \right\}$$

$$I_6 = \left\{ n: \max(x_n^1|, |x_n^2|) \ge 2u_0 \quad \text{and} \quad x_n^1 x_n^2 \ge 0 \right\}$$

$$I_7 = \left\{ n: \max(|x_n^1|, |x_n^2|) < 2u_0 \right\}.$$

When  $n \in I_5$ ,  $|\frac{x_n^1 - x_n^2}{2}| \ge \frac{1}{2} \max(|x_n^1|, |x_n^2|) \ge u_0$ , we get by  $\varepsilon \le \delta_n$  and (18)

$$\varphi_{n}\left(\frac{x_{n}^{1}-x_{n}^{2}}{2(1-\varepsilon)}\right) \leq \varphi_{n}\left(\frac{x_{n}^{1}-x_{n}^{2}}{2}\right) + \frac{\alpha_{1}}{4(N_{0}-1)} \\
\leq \frac{1}{2}\varphi_{n}(x_{n}^{1}) + \frac{1}{2}\varphi_{n}(x_{n}^{2}) + \frac{\alpha_{1}}{4(N_{0}-1)}.$$
(20)

When  $n \in I_6$ ,

$$\varphi_{n}\left(\frac{x_{n}^{1}-x_{n}^{2}}{2(1-\varepsilon)}\right) \leq \max\left\{\left(\frac{x_{n}^{1}}{2(1-\varepsilon)}\right), \varphi_{n}\left(\frac{x_{n}^{2}}{2(1-\varepsilon)}\right)\right\} \\
\leq \frac{1}{2}\varphi_{n}(x_{n}^{1}) + \frac{1}{2}\varphi_{n}(x_{n}^{2}) + \frac{\alpha_{1}}{4(N_{0}-1)}.$$
(21)

When  $n \in I_7$ ,

$$\varphi_n\left(\frac{x_n^1 - x_n^2}{2(1 - \varepsilon)}\right) \le \varphi_n\left(\frac{4u_0}{2(1 - \varepsilon)}\right) \le \varphi_n(4u_0) \le \frac{\alpha_1}{4(N_0 - 1)} \tag{22}$$

since

$$\varphi_{n_0}\left(\frac{x_n^1 - x_n^2}{2(1 - \varepsilon)}\right) < \varphi_{n_0}\left(\frac{x_{n_0}^1}{2(1 - \varepsilon)}\right) \le \varphi_{n_0}\left(\frac{x_{n_0}^1}{2}\right) + \frac{\alpha_1}{4(N_0 - 1)} 
\le \frac{1}{2}\varphi_{n_0}(x_{n_0}^1) + \frac{\alpha_1}{4(N_0 - 1)}$$
(23)

notice  $\varphi_{n_0}(x_{n_0}^2) > \frac{h_1}{N_0 - 1} = \alpha_1$ , by (19) and (23)

$$\begin{split} I_{\varphi}\Big(\frac{x_{n}^{1}-x_{n}^{2}}{2(1-\varepsilon)}\Big) &= \varphi_{n_{0}}\Big(\frac{x_{n_{0}}^{1}-x_{n_{0}}^{2}}{2(1-\varepsilon)}\Big) + \sum_{\substack{n=1\\n\neq n_{0}}}^{N_{0}-1} \varphi_{n}\Big(\frac{x_{n}^{1}-x_{n}^{2}}{2(1-\varepsilon)}\Big) \\ &+ \sum_{n=N_{0}}^{\infty} \varphi_{n}\Big(\frac{x_{n}^{1}-x_{n}^{2}}{2(1-\varepsilon)}\Big) \\ &< \frac{1}{2}\varphi_{n_{0}}(x_{n_{0}}^{1}) + \frac{\alpha_{1}}{4(N_{0}-1)} \\ &+ \sum_{\substack{n< N_{0}\\n\neq n_{0}}} \Big[\frac{1}{2}\varphi_{n}(x_{n}^{1}) + \frac{1}{2}\varphi_{n}(x_{n}^{2}) + \frac{\alpha_{1}}{4(N_{0}-1)}\Big] \\ &+ \sum_{n=N_{0}}^{\infty} \Big[\frac{1}{2}\varphi_{n}(x_{n}^{1}) + \frac{1}{2}\varphi_{n}(x_{n}^{2})\Big] + \frac{\alpha_{1}}{4} \\ &= \frac{1}{2}I_{\varphi}(x^{1}) + \frac{1}{2}I_{\varphi}(x^{2}) - \frac{1}{2}\varphi_{n_{0}}(x_{n_{0}}^{2}) + \frac{\alpha_{1}}{4} + \frac{\alpha_{1}}{4} \\ &< \frac{1}{2}I_{\varphi}(x^{1}) + \frac{1}{2}I_{\varphi}(x^{2}) = 1 \end{split}$$

so  $||x^1 - x^2|| < 2(1 - \varepsilon)$ , and we get a contradiction again.

Steps (1b) and (1c) complete the proof of theorem.

Step 2. We discuss the general case without the restriction of step 1. For any  $\varepsilon \leq 1/4$ , let  $A = \inf_n \varphi_n((1-\varepsilon)a_n)$ . By the proof of Lemma 1 (i) we get A > 0. Let  $N_2 = [1/A]$ , i.e.  $N_2$  be the integer part of 1/A. If  $l_{\varphi}$  is reflexive but not P-convex, then for any  $\varepsilon' : 0 < \varepsilon' < \varepsilon/4$ , there is a set X consisted of any finite elements in  $S(I_{\varphi})$  such that

$$||x^i - x^j|| \ge 2(1 - \varepsilon'), \quad i \ne j.$$

Let the number of X be  $(2N_0 + 1)2^{(N_2+1)N_2/2}$  where  $N_0$  is the positive integer satisfying (4).

Take any element  $x^0$  in X. The definition of A implies that  $x^0$  has at most  $N_2$  numbers of components, such that  $|x_n^0| \ge (1 - \varepsilon)a_n$ ; hence

$$I_{arphi}(x^0) = \sum_{n=1}^{\infty} arphi_n(x^0_n) \geq (N_2+1)A > rac{1}{A} \cdot A = 1,$$

this leads to contradiction. Without loss of generality we have  $|x_n^0| \geq (1-\varepsilon)a_n$  for  $n \leq N_2$ . For any  $x \in X$ , we define a map:  $x \to (r_1^x, r_2^x, \dots, r_{N_2}^x)$ , i.e. for  $n = 1, 2, \dots, N_2$ 

$$r_n^x = \begin{cases} 1, & \text{when } x_n^0 x_n < 0 \text{ and } |x_n| \ge (1 - \varepsilon) a_n \\ 0, & \text{otherwise.} \end{cases}$$

This makes us classify the elements of X into  $2^{N_1}$  categories, we say that the category mapping the vector  $(0,0,\ldots,0)$  is 0-category.

First we assume: apart from 0-category, the number of elements in other category is less than  $(2N_0+1)2^{(N+1+1)N_1/2}/2^{N_2}=(2N_0+1)2^{N_2(N_2-1)/2}$ . Take another element from 0-category and let it be  $x^0$ , then classify X again by the former program.

After we classify each time, if the number of the elements in category, except 0-category, is less than  $(2N_0+1)2^{N_1(N_1-1)/2}$ , when we classify  $(2N_0+1)$ -times we get a set  $X_0$  having  $(2N_0+1)$  elements such that

$$x_n^i x_n^j > 0$$
 or  $|x_n^i| \ge (1 - \varepsilon)a_n$  and  $|x_n^j| \ge (1 - \varepsilon)a_n$  (24)

for any  $x^i, x^j \in X_0 (i \neq j)$  and  $n \in \mathbb{N}$ , then

$$\left|\frac{x_n^1-x_n^2}{2(1-\varepsilon)}\right| < \left|\frac{a_n+(1-\varepsilon)a_n}{2(1-\varepsilon/4)}\right| = \frac{2-\varepsilon}{2-\varepsilon/2}a_n < a_n,$$

i.e.  $|x_n^i| < (1 - \varepsilon')a_n$  for all  $n \le N_2$ , and this is the case of section 1. But in section 1, we proved that there is no set X having  $(2N_0 + 1)$  elements such that

$$||x^i-x^j|| \geq 2(1-\varepsilon), \quad i \neq j, \ x^i, x^j \in X,$$

so we deduce that apart from 0-category there is a category  $X_1$  such that the number of elements in X is  $(2N_0 + 1)2^{N_1(N_2-1)/2}$  and the element x of  $x_1$  satisfies  $r_{n_1}^x = 1$  for some  $n_1 \leq N_2$ .

Apart from  $n_1$ -th component, any  $x = (x_n)$  in  $X_1$  has at most  $(N_2 - 1)$  numbers of components such that  $|x_n| \ge (1 - \varepsilon)a_n$ . Let  $|x_n| \ge (1 - \varepsilon)a_n$  for  $n = N_2 + 1$ ,  $N_2 + 2$ , ...,  $2N_2 - 1$ .

For any  $x \in X_1$ , define a map:  $x \to (r_1^x, r_2^x, \dots, r_{N_1-1}^x)$ , i.e. for  $n = N_2 + 1, N_2 + 2, \dots, 2N_2 - 1$ 

$$r_n^x = \begin{cases} 1, & \text{when } x_n^0 x_n < 0 \text{ and } |x_n| \ge (1 - \varepsilon) a_n \\ 0, & \text{otherwise} \end{cases}$$

then we may classify  $X_1$  into  $2^{N_2-1}$  categories.

If the number of elements in category except 0-category is less than  $(2N_0 + 1)2^{(N_1-1)(N_2-2)/2}$ , we take one element from those mapping 0-category and let it be  $x^0$ , and then classify  $X_1$  by the former program. When we classify  $(2N_0 + 1)$  times, the number of elements in the category except 0-category is less than  $(2N_0 + 1)2^{(N_2-1)(N_2-2)/2}$ , then we get a set having  $(2N_0+1)$  elements such that (24), which leads a contradiction again.

We assume there a category  $X_2$  having  $(2N_0+1)2^{(N_1-1)(N_2-2)/2}$  elements except 0-category. Repeating the same discussion, when we classify  $N_2$ -times we get a category  $X_{N_2}$  having  $(2N_0+1)$  elements such that

$$x_n^i x_n^j > 0$$
 and  $|x_n^i| \ge (1 - \varepsilon)a_n$ ,  $|x_n^j| \ge (1 - \varepsilon)a_n$ 

for any  $x^i, x^j \in X_{N_2}, i \neq j.n = n_1, n_2, \ldots, n_{N_2}$ . Then for any  $x \in X_{N_2}$ 

$$\begin{split} I &= I_{\varphi}(x) = \sum_{j \leq N_2} \varphi_{n_j}(x_{n_j}) + \sum_{n \neq n_j} \varphi_n(x_n) \\ &\geq \sum_{j \leq N_0} \varphi_{n_j} \left( (1 - \varepsilon) a_{n_j} \right) + \sum_{n \neq n_j} \varphi_n(x_n) \geq N_2 A + \sum_{n \neq n_j} \varphi_n(x_n) \end{split}$$

i.e.

$$\sum_{n \neq n_j} \varphi_n(x_n) \le 1 - N_1 A = \frac{A}{A} - \left[\frac{I}{A}\right] A < A = \inf_n \varphi_n\left((1 - \varepsilon)a_n\right)$$

so  $|x_n| < (1-\varepsilon)a_n$  with  $n \neq n_j$ , but when  $n = n_j \ x_n^i x_n^j > 0 (i \neq j)$ . This shows that (24) is true for any  $x \in X_{N_2}$  and all  $n \in \mathbb{N}$ , which leads to a contradiction again.

Section 1 and section 2 complete the proof of theorem.  $\square$ 

Now we give an example of a Musielak-Orlicz sequence space which is P-convex but not  $P(3,\varepsilon)$ -convex.

Let a Young function  $\varphi = (\varphi_n)$  and  $\varphi^* = (\varphi_n^*)$  satisfy the  $\delta_2$ -condition, and such that there are two positive integers  $n_1$  and  $n_2$   $(n_1 < n_2)$ 

$$\varphi_{n_1}(a_{n_1}) + \varphi_{n_2}(a_{n_2}) \le 1$$
 and  $\varphi_{n_1}(a_{n_1}) > 0$ ,  $\varphi_{n_2}(a_{n_2}) > 0$ .

By Theorem we know that the  $I_{\varphi}$  generated by  $\varphi$  is P-convex but not  $P(3, \varepsilon)$ -convex. Let

$$x_1 = (0, \dots, 0, a_{n_1}, 0, \dots, 0, a_{n_2}, 0, \dots)$$
  

$$x_2 = (0, \dots, 0, a_{n_1}, 0, \dots, 0, -a_{n_2}, 0, \dots)$$
  

$$x_3 = (0, \dots, 0, -a_{n_1}, 0, \dots, 0, a_{n_1}, 0, \dots).$$

Then  $x_1, x_2, x_3 \in S(I_{\omega})$ . But for any  $\varepsilon > 0$ 

$$\begin{split} I_{\varphi}\left(\frac{x_{1}-x_{2}}{2(1-\varepsilon)}\right) &= \varphi_{n_{2}}\left(\frac{2a_{n_{2}}}{2(1-\varepsilon)}\right) > 1\\ I_{\varphi}\left(\frac{x_{1}-x_{i}}{2(l-\varepsilon)}\right) &= \varphi_{n_{1}}\left(\frac{2a_{n_{1}}}{2(1-\varepsilon)}\right) > 1\\ I_{\varphi}\left(\frac{x_{2}ix_{j}}{2(1-\varepsilon)}\right) &= \varphi_{n_{1}}\left(\frac{2a_{n_{1}}}{2(1-\varepsilon)}\right) + \varphi_{n_{2}}\left(\frac{2a_{n_{1}}}{2(1-\varepsilon)}\right) > 1 \end{split}$$

so  $||x_1 - x_2|| \ge 2(1 - \varepsilon), ||x_2 - x_3|| \ge 2(1 - \varepsilon), ||x_1 - x_4|| \ge 2(1 - \varepsilon),$  hence  $l_{\varphi}$  is not  $P(3, \varepsilon)$ -convex.

#### References

- 1. C.A. Kottman, Packing and reflexivity in Banach spaces, *Trans. Amer. Math. Soc.* 150 (1970), 565-576.
- K.P.R. Sastry and S.V. R. Naidu, Convexity conditions in normed linear spaces, J. Reine Ange Math. 297 (1978), 35-53.
- 3. D. Amir and C. Franchetti, The radius ratio and convexity properties in normed linear spaces, *Trans. Amer. Math. Soc.* **282** (1984), 275–291.
- 4. Ye Yining, He Miaohong and R. Pluciennik, P-convexity and reflexivity of Orlicz spaces, Comm. Math. XXX 1 (1991), 203-216.
- 5. H. Hudzik and A. Kaminska, On uniformly convexifiable and B-convex Musielak-Orlicz spaces, Comment. Math. (Prace Mat.) 24 (1985), 59-75.