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ABSTRACT

We prove that in the Musielak-Orlicz sequence spaces equipped with the
Luxemburg norm, P-convexity coincides with reflexivity.

In 1970, Kottman [1] introduced an important geometric property-P-convexity in

order to describe a reflexive Banach space. We say that a Banach space (X, || - ||) is

P-convex if X is P(ne)-convex for some positive integer n and a real number € > 0,

i.e. for any xy, 2, ..., I, in the unit spherc of X, r;;éix_x l|zi—=;|| < 2—¢ for some n and
i#j

g > 0. Moreover Kottman proved that any I’-convex Banach space is reflexive. After
P-convexity property was introduced, many pcople tried to give a distinct relation
between P-convexity and reflexivity. But there arc a lot of differences between them
in a Banach space.

In 1978 Sastry and Naidu [2] introduced a new geometric property, O-convexity
intermediate between I’-convexity and reflexivity, and proved that P-convexity im-
plies O-convexity and O-convexity implies reflexivity.

In 1984, D. Amir and C. Franhetti 3] gave two geometric properties, O-
convexity and H-convexity by the preceding results and proved O-convexity implies
Q-convexity, (Q-convexity implics reflexivity and H-convexity implies B-convexity
and these convexities do not coincide with each other.

In 1988, Yeyining, Hemiaohong and Ryszard Pluciennik [4] proved that in Orlicz
spaces P-convexity coincides with reflexivity, and reflexivity coincides with P(3,¢)-
convexity for some = > 0.

In this paper we prove that in Musiclak-Orlicz sequence spaces equipped with
the Luxemburg norm P-convexity coincides with reflexivity.
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0. Introduction

Let X be a Banach space equipped with the norm ||+ || and S(X) be the unit sphere of
the space X, i.e. S(X) = {z € X:||z|| = 1}. Denote by N the sct of positive integers
and by K the sct of real numbers. Let o = (9,,) be a sequence of Young functions,
i.e. forevery n € M, p,(+): R — [0, o¢] is a convex, ¢, (0) = 0, uli_r.r;o wn (1) = oc, on(-)
is continuous at 0 and not identically equal to the zero fun(.:‘ﬂibn, and there cxists a
real number ug, s.t. 2, (1) < 00. We define a modular on the family of all sequences
& = (&) of real numbers by the following formula

G

',c'(-'"') = Z on(Tn)-

n=|

1

The linear set

lo ={z=(z,):3a > 0,[,(az) < oc}

equipped with so - called Luxemburg norm
lzll = inf{k > 0: I,(k 'z) < 1}

is said to be a Musicelak-Orlicz sequence space.
We say that p = (p,) satisfies the do-condition if there arc constants a, k, and
a scquence (¢, ) of non-negative real numbers such that

00
Z cn <o and  p,(2u) < kp,(u) + ¢
n=1I

for all n € N and w € X with p,(u) <a.

The complementary function of Young function p = (i) is defined by

o, (v) = sup{ulv| — p,(u)}, forall neN.
u>0

A Musiclak-Orlicz sequence space I, is reflexive if and only if ¢ = (p,) and p* =
(127,) satisly the §z-condition. Let a, = sup{u > 0:¢,(u) < 1} for all n € N.



P-convexity property in Musielak-Orlicz sequence spaces 309

1. Auxiliary lemmas

Lemma 1

Let = (ipn) satisfy the 8;-condition, then
(i) if A =inf p,(ay,), then A >0,
n

(ii) for any Iy > 1,a1 > 0, there are k; > 1 and a sequence (csll)) of non-negative
real numbers such that

o0
ch) <oo and @n(lu) < kpn(u) + )
n=1
for alln € N and u € R with ¢, (l1u) < a,,
(iii) for any ki > 1,13 > 1,a2 > 0, there are o € (0,12 — 1) and a sequence (0512)) of
non-negative real nuinbers such that

o0
Z (:512) < oo and 99".((1 + 6)“) < kapn(u) + 0512)

n=1

for alln € N and u € R with ¢, (lyu) < as.

Proof. (i) Obviously A > 0, so it is cnough to prove A # 0. Assume that A = 0.
Then for any a > 0 therc is ng € N, such that g, (an,) < a. It is casy to sce
that an, # 0 by the definition of ¢, (u). We may assume without loss of gencrality
that a < 1. Then @p,(an,) < 1 implies ¢n,(2a,,) = co because w,(u) is a convex
function and so it has the only discontinuous point up, such that v, (u — 0) < oo
and n, (up+0) = co. By the definition of an, and @, (an,) < 1 we may deduce that
@n, is the discontinuous point of g, (1), S0 ¥n,(2an,) = oo. But this contradicts
the d5-condition and so A > 0.

(ii) Let a positive integer o satisfy 2! < [; < 2%.

Since ¢ = (pn) satisfies the ds-condition, there are constants k£ > 0,a > 0 and a
sequence (c,) of non-negative real numbers such that

oo
Z cn <o and ©,(2u) < kpn(u) + ¢,

n=1

for all n € N and u € R with p,(u) < a. When p,(l1u) < @, pn (2% 1) < @n(liu) <
a, then

pn(liu) < on(2%u)
<kpn(2°u) +en <. < E%0n(u) + (KT 4 B+ 1)e.
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Let cn’ = (k*~ ! +--- + k + 1)c,. Obviously E ) < co. Then en(liu) <

n=1
K pn(u) + ¢ with pa(liu) < a.

If a; < a, it is cnough to put k; = k. Let a < p,(liju) < a; and p,(lju) = a.
Then ] < I. Hence

wn(ly,u) < a1 =a1e”la = ara tpn(liu)
= a0 on(lily ) < a107 k0 (71 u) + V]
< a1a” k%o, (u) + aja” c(l)

1

Replace a1a71k* by kj,a1a7'cy (1) by c(l), then E c(l) < oc. So pp(liu) <

n=1
k1on(u) + ¢ when pn(lu) < a;.
(iii) For lo > 1,a3 > 0, by (ii) there are k; > 1 and a sequence (cg)) of non-negative
real numbers such that

20
Z ) <oc and pn(lou) < kipa(u) + M
n=1
for all m € N and u € R with ¢,(lou) < az. Take o satisfying
o <min {ly — 1, (ks — 1)/(k1 — D](l2 — 1)} .

Because ypp, (1) is convex, when p,(lau) < ag it follows that

on((1+ o)) = o (22002 9))

-1
12 —1-0
= ¥n (12—112‘“’ =1 u)
a l2—1—0'
< — i (I -
<% —7#n(l2u) + =7 ¢a(u)
k‘la l2 —1—-0 (1)
l "( ) 1 (Pn(u)'l" lz—lcn
kl ~ 1o 7w
(kz 1)
(12—1)(’9 )"
-1
k2‘Pn(u)+ 1 ‘g'l:l)

Let ¢{2) = (k2 —1)/(ky — 1)]c,,, , which completes the proof of (iii). O
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Lemma 2

If o = (n) and p* = (py,) satisty the 6p-condition, then for any I3 > 1, b > 1
there are k3 > 1 and a sequence (c,,'" ) of non-negative real numbers such that

o
1
Z ¥ <0 and }(v) < 5k (lav) + ¢,
lsks

n=1

for alln € N and v € K with ¢}, (v) < b.

Proof. First we prove when ¢} (1) < b, there is a > 0 such that o, (u) < a for all
n € N where v = p,(u). .

Otherwisc, there is a sequence {ux}32, of rcal numbers such that o, (ug) —
as k — oo, while ], (v) <b.

Notice that for some I3 > 1, there is ¥ > 0, such that o} (l3v) < b for alln € N.
It is enough to put b’ = 2I3b. If o7 (Izv) > 2l3b, Lemma 2 obviously holds.

By Lemma 1, there is o € (0,13 — 1) such that »;, ((1+0)ve) < koo, (vk) + ck
for all n € N with

Pn, (I3v) V', where ky > 1, Z cp < 0.
n=1
Let by = kob + Iax Cy. Then 7, ((1+a)vg) < by for all £ € N.

On the other hand, when v = pa, (ux), o5, (V&) = |urvk| — on, (ux) > 0, and
on (uk) — 00 as k — o0, i.e. there is kg € N such that ¢, (ux) > bjo™! with
k > ko. So, when k > kj, we have

P (L +0)ue) = sup {(1+ ) lvk|u — o, () }
uz

> (14 o) |veuk| — pn, (uk)
>(1+ U)Lr’"‘nk(uk) — i (Uk) = n,, (uk) > by

This contradicts the incequality o}, ((1+ o)ug) < by.

Therefore, there is a > 0 such that p,(u) < a for all n € N with o7 (v) < b.
Hence by o} (Isv) < b’ there is ¢’ > 0 such that @, (lqu) < o for alln € N,

By Lemma 1 (iii) for ky = 3,12 = l3,a2 = a’, therc are £ € (0,l3 — 1) and a

2 .
sequence (oﬁ, )) of non-negative real numbers such that

Z c? <> and o ((1+ €)u) < lyon(u) + )
n=1
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for all n € N and u € X with ¢, (l3u) < a'. Then

o5 (v) = sup {ulv] — palu):u > 0,05 (lav) < v}
< sup {uv| — pn(u):on(lsu) < o'}

, ) — 2
Ssul){u|1;|—pn(u+ Ju) — cn }

u>0 l3

1 I3]v| 2

1 — on }
=L Ty r (@i} 3
(2)
1 l{?/ Cn
1*°n(1+ )+T
1 (‘(2)

* (L) 4+ S
< l:s(1+5)(rn(l'5b)+ I3

Let kg3 =1+4-¢, c(g) = ¢Cn (2) /13, which completes the proof of Lemma 2. O

Lemma 3
If ¢ = (pn) and p* = () satisfy the 62-condition, then there is a sequence
o0

(cn) of non-negative real numbers such that > pn(ca) < oc, and if
n=1

u

afu,n)

1
d, = sup {a(u.,n):cpn( ) 2'pn( ).en < luf < a,,,}, n=12,...

dy = lim sup d,,

m—oOn>m

then d; < 2.

Proof. Let I3 = 2,b =1 in Lemma 2. Then there are k3 > 1 and a sequence (c%"))
of non-negative real numbers such that

1
> <oo and Pn(u) < p=ipn(2u) + (1)

n=1

for all n and u with ¢, (u) < 1.
In Lemma 1 (iii) let kp = (k3 + 1)/2,l2 = 2,a2 = 1. There are € € (0,1) and a
[o o]
sequence (03,) of positive numbers such that > 8, < oo, and when ¢, (2u) < 1,

n=1

on((1+€)u) < 2 (ks + Dipn(u) + . @)
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Let
;o 2k3(ks + 1) 3 N 4k

‘T TR 1 ™ Tho1

Bn.-

Obviously Z C;, < 0.

n=1

Since A = inf p,(a,) > 0 is true by Lemma 1 (i), so there is ng € N such that
n
c), < A for n > ng. We define a sequence (c,,) by
0 when n < ng
Cn =

ot(ch) when n > ny.

Then Z onl(cn) < f:

n=1
We will show thc sequence (¢, ) satisfies Lemma 3.
Obviously d; < 2. If d; = 2, for n > nyp there are subsequence {un}n>n, and
{a(un,n)}n>n, (let the subsequence be {u,} and {a(u,,n)}) such that

Up 1 .
on(Gray) 2 gonlun) en < Junl <an 3)

and a(un,n) — 2 as n — oc.
So there is n; € N, such that 2/a(u,,n) <1+ = for n > n,.
Let oy, = a(un,n). By formula (2) it follows that

Uy, Un k:’i +1 Uy,
(%) <o) < Bt () g
w.(an)_wn((+)2 <= 99(2 + Bn
By (1), we get

Un k3+17 1 3) _k3+1 ks +1 )
pn((xn) < 2 [2]{: ‘19n(un) +en ] + 4ks (Pn(,u'") + _Z_—Cn + Bn.

By (3), we have

1 ks+1

3+1 (3)

i.c.
2k3(ks +1) 3ks
on(un) < —k3TC$L3) + —k_s—_lﬁn- (4)
But when n > max(ng, n,), we have

2ks(ks + 1) . 4k.
on(un) = nlcn) =¢, = 3 (ks + )c,ff) + 3
k3 -1 k73 -1

This contradicts (4), so Lemma 3 is true. O

Bn.
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2. Resulit

Theorem

A Musielak-Orlicz sequence space l, is P-convex if and only if |, is reflexive.

Proof. We may obtain necessity according to paper [1], so it is enough to prove
sufficiency.

Assume sufficiency is false. Let [, be reflexive i.e. ¢ = (p,) and ¢* = (p};)
satisfy the é2-condition but /, is not P-convex. Then for any € > 0 and positive
integer Ni, there is a set X = {z'} having N, clements in S(l,) such that

et — 27| > 201 —€); i#34, i.5=1,2,...,Ny.

We will complete the proof of theorem in two steps.

Step 1. There is g9 > 0 such that ||z, || < (1 —€o)an for any = (z,) € X and
all n € N.

(1a) We definc some constants.
By Lemma 3, therc are a sequence (cp) of non-negative real numbers, N’ € N,d > 0

oC

such that ) ¢, < 00,d; < d < 2 and d, < d with n > N’. Let 8 = £¢/4, then
n=1

B <L

By Lemma 1 (ii), for [; = 1/8 and a; = 1, therc are k; > 1 and a sequence
(c,(,,z)) of non-negative real numbers such that

o9}
Z (:512) <oo and n(u/B) < kipn(u)+ cgz) (1)

n=1

for alln € N and u € R with ¢, (u/8) < 1. Let A} = (2—d)/(24k,), Ao = (2—d)/2d.
By Lemma, 1 (iii), for k3 = 1+ min(A1, A2),lz > 1 and a = 1, there are a € (0, —1)
, (3) negat . .
and a sequence (cp ') of non-negative real numbers such that

(o o]

Z ® < oo and Pn((1+6)u) < kapn(u) + &) (2)

n=1

for all n € N and u € R with ¢, (lbu) < 1.
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By Lemma, 1 (ii), for [ = 2, and a; = 1, there are £ > 1 and a sequence ((:%1))
of non-negative real numbers such that

o0
Z dD <oc and @, (2u) < kn(u) + V) (3)

n=I1

for all n € N and u € R with ,(2u) < 1. Let hy be, such that 0 < by < 1. Let

2—d 2-
hy = min{ Sk( , g—4—d}
, —min{ 1-h hg(l-—hl)}
1= A1 +k) 12k

o = ’12(1 - h]_)
2T 1233k +1)°

oC
By 3 vn(cn) < 00 and (1), (2), (3), there is Ng > N’, such that
n=1

o0 0

wn(cn) <11, Z cg) <r, i=1,2,3. (4)
1

n= n=~Np

(ib) Now we will prove that for any h;, 0 < hy < 1, there do not exist three
elements z!, 22 and z® in X, such that

o
> onlah) > L(a') b =1-hi, i=123. (5)
n=1
Assume (1b) is false:
(i) 0 < & < £0/4, then p,((z%,—x9)/2(1—¢)) < oo foralln € N,i # j, i,5 = 1,2,3.
Let u, = max{|z}|,|72|,|z2|}, w, = min{|zL], |2|, |z |}, v, be the arithmetic
mean of u, and w,. Since u,v, > 0, or uyw, > 0, or v,wy, > 0 is true, we first
consider v,, w, > 0.
Divide positive integers n > Nj into the following sets:

v

I = {n: = >p and |v,|> cn}
Up
v

I = {n: L= and |v,|< cn}
Un,
v,

Iy = {n: Zl<f and |up|> cn}
Un
v

Iy = {n: 21 < B and |u,|< cn,}.
u,
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When n € I, by formula (2) for I = (1 — &0/2)/[(1 — €0)(1 =€)}, if o =
1/(1 —€) — 1, then o < Iz — 1. Since

(5 ) (L 202.

(1—60/2. 2uy,
=rn 1-—e0/4 2(1-¢g)

) < enlan) <1
by (2) and k; = 1 + min(A;, A2), it follows that

son(;‘g‘l‘_”;;) = n (14 02228 < b (2 02) 4 o

Uy — U
§(1+)\1)<pn( "2 ")+c§?>

(6)
<(1+ )\1)%(“") ; #n(Vn) +c®
1 1
< E‘Pn(un) + 59%(”11) + Arn(ua) + Cgs) .
By the same argumentation, we get
Up — Wnp 1 1 (3)
on (5 =g)) S 50n(n) + gon(awn) + Aripn(un) + . ™)
By vy, wn 2> 0 and |v,| > |wy|, it follows that
Un — Wy v v
'*’(2?1 - =5) = "’"(2(1 ia)) < (W A)ga(5) +.
By |vn| > ¢, and the definition of d, we get
Un, d v, d Un, d
ol =) =p, (= )< Zp () < Zp,(v
*Pn( 2) Pn(z d) = 2~Pn( d) = 4504(1’71),
50 P
Un — Wn 1 ) (3)
A < = .
on(5imey) S F0+ Mdpnlon) + (8)
Let

f(n) = on (;‘(”1;_”;)) + %(H) + ”(321(1—_—1057)1)

~ Pnu(un) — ©n(va) — on(wn).
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By (1) we get vn(un) < ki1on(Bun) + P B By (6), (7) and (8) it follows

> fn) EZPMWAMY+(thwA%%+k@——wd%ﬂ

nEIl

< Z [3)\1\Pn(un) Td-\pn(vn)] +3 Z (.(5)

nely
< Z [3>\1‘~Pn 'U.n) - Td‘P(Bun)] +3 Z (3)
d 2 d ©)
Z [3)\11011 Un) = 4;1 Pn (un)] + 4_kl— Z cgs)
neh nel;
+3 Z @
nel
2 d n)+—Zc(3)+3Z (3)
nel nel, nel,

When n € I, “ﬁl > f3,|vn| < ¢pn. Since

’*’“(z(fu_"e)) son( €0 ) Senlen <L

by (3) we get

2un Un (1) (0
. < k < u: (1)
’”"(2(1+e)) —kp"(z(l )) ten’ < kpnlun) + o7,

S0

\pn(;l(nl:l:;) < ('9"(2(]?11’_”5)) < kon(un) + CSz])

< kky on(Bun) + k(:glz) + (:511) < kkipn(cn) + kcg) + (:511).

We have also S
\Pn("___) kkion(cn) + C(l) + kc(2)

2(1-¢)
@n (;—'(’i_ic';) < kkipn(cn) + ciP) + k@,
S0 we get
{Up—y) (U —w [ Un—wn
EZD f(n) < ; [’*’"( 2?1 —%) ) + V"(z(ll = :;) + '*’"(21('1 = 5; )]

<3kklz¢n +3Zc(1)+3ch(q)

nely nel, nels
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When n € I, | 2| < B, |un| 2 cn, by

denoting (1 +£9/4)/(1—¢)=1/(1-¢'),0' =1/(1 —€') — 1, we get as in (6),

*”"(5?1—_1:3) S ¥n ((1+”) 2 ) (1+’\2)*’”( 2 ) +e

tPIQ.

(1 + A2)pn(un) + C£z3)

and

o (Un = Wn) d 3)
‘Pn(z(l —E)) 4(1+)\2)‘pn(“n)+c

BY pn(%528) < n(g2sy) < @n(va) we get

Y i< Y [eontun) + dxz,on(un) + 269 — ()]

nel nely
< _2-d 9 (3)
< B n(un) + 4 ‘Pn(un) + Z Cn (11)
'n.EIz n€I3
2—-d
= __4_ (pn un +2 Z c(.i)
nels nely

When n € Iy, |u,| < ¢n, as in the case of n € I, we get
Un —Un\ k M <k (1)
ml\ai=g)/ = on(un) + ¢ < kpnlea) + ¢

Up —
n U . (1)
‘P‘n(2(1 _ E)) —_ k(tgn(('n) + Cﬂ.

Uy — Wp (1
14 —_— < ‘ n .
‘pn.(z(l — 8)) = k,Dn(('n) + Cm

Then
D f(m) <3k Y pnlen) +3 ) k). (12)

nely nely nely
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By (9), (10), (11) and (12), we get

Z f('ﬂ) < —hy Z (r’n(un) + ho Z "Pn(un)

n=Ng n=Ny nelaUly
o
+3 Z (cf) + ) (13)
n=Nn
—d

s (¢ 2 - (2)

+3kk1 Y enlcn) + (3k+ . ) Z (2)

n==~Npg n=Ny

When n € I, since (1) implies o, (un) < kyon(cn) + cﬁf’, then

z cpn(un) = hy Z {P‘n(un) + ho Z L,-Dn(’un,)

nel,Ul, nely nel,
< hy Z [k1ion(cn) + (.:,Sf)] + hy Z on(cn)
. (14)
nels nEly
< hz(k]_ + 1 Z ‘}011. Cn + hz Z C(z) .
n=Ng ncly
It we put (14) into (13), by (4) and (5), we get
Z f(n) < —hy Z Pn(un) +halks +1) Y wnlca)
n=Ny n=Np n=Ng
oc
+3kk1 Z Q‘on(cn)
n=Ng
o (15)
+3 Z (D + D)+ (3k+1) D P
n=~Njg n=Ny
-—hg(]. - hl) + ]l2(k1 + 1)7‘1 + 3kkyry + 3(3k‘ + 1)7‘2
h2(1 - hl)

<1

(ii) Formula (5) implies Z wn(zh) < b, i =1,2,3. Wededuce that |27 | < a,,
foralln <N, and i =1,2,3. Let

(1, = min ( h2 )
n<Nyp Pn 48Ny )

r / —
Then k' = max max n(u)/pn(3) < co.
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So when [2uy,| € [@, an], Pn(2un) < K pn(un); when |2un| < o, pn(2un) < on(d).
Hence

No—1 ! Uy — U, Up — Wy Uy, — Wh
Z fn) < ; ["”"(2(1—5))+9’"(2(1—e))+‘°n(2(1—e))]
No-1 No-1 No—1
<3 Z on(2uy,) < 3k Z Onun)+3 Z on(a’

n=1 n=1 n=1

and when h; < i; . ’1—% -h) < %, then

No—1
h2 h,2 h2 _ h2 hz(]. - h1)
nz_:l f(n) <.3kh1+3N048,\_ <EtE=% < yamt (16)

By (15) and (16), we get Y f(n) <0, ie.
n=1

I¢(2x(11;_:1;2)_) + [99(21'(21;_'::)-) + I¢(2z(11:-1,e';)) — I-,;(:L'l) - I:p(:l:z) - Lp(:l‘s) <0.

Since I,(z*) = 1,i=1,2,3, so I, ('2’(1"1_)) <1, o0r L,,(;(]";)) <1l,or I (;(l_”; ) <1,
and this implies ||z! —z2|| < 2(1—¢) or ||22 —z3|| < 2(1—2), or ||lz! — 2| < 2(1 —¥¢).
This contradicts the assumption in the theorem, so result (1b) is true.

Repeating the same argumentation, we may prove result (1b) in case of uw > 0
and uv > 0.

(1c) Let Ny = 2Ny + 1, Nj is the number of elements of X. Result (1b) implies
that there are at least 2Ny — 1 elements in X such that

No—1

> al@a) > ha. (17)
n=1
Let
[ hl u min l 1(L)
1= N -1 T3 1" \azv, -1/

The fact that a continuous function is uniformly continuous in a closed interval
implies that there is 6], > 0 such that

U (841
ol —= Y < w. (4 —_— n=,12... -
,9(1_5)_¢,l(u)+4(No_1), n=1,2...,No—1 (18)

for all 6§ < 6], and u € [ug, an].
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Let 6’ = min §},. Take £ < £9/4 and 0 < € < §'. Among the elements satisfying

n<Np

(17), there are three ones z!,z2, % and ng < Ny such that
; hy , .
itl’)no("z":zo) > m, i=12,3

this is because 2Np — 1 elements satisfy (17) in the former Ny — 1 components, then

therc are three elements satisfying the above formula in the same component.
Since there are at lcast two elements having same sign among =} _,z2_,z3 and

without loss of generality we have

x}mmfw >0 and |z, |>|z2 |

By analogy of the former proof we get

> zl — 2 1 & al
Z ‘Pn(zz"l —ETS) < 2 Z ‘P'n.(- Tn,) Z onla . (19)

n=Ng n=Np n=Np

Divide the positive integers of n < No(n # ng) into three sets:

Iy = {n:max(|z}|, |z5|) > 2uo and ziz2 <0}
= {n:max(zy,|,|22]) > 2up and zLz? >0}
I7 = {n:max(|z} |, |22]) < 2uo} -

When n € I, |J a=2h | > & max(|zl], |z2]) > uo, we get by € < 6, and (18)

L 2 1_ .2
Ty, — 5 Ty — 25 o
. d < .
’°”(2(1—s)) —’9"( 2 )+4(N0—1) (20)
1 : 1 «
< Zop (2} : 2 1
When n € I,
1 2 1 2
Tn — Ty \ n L
w2 ") < m: __n ), ]
y’”(2(1—:;-))—m‘“‘{(z(1—s)) Y”‘(2(1—5))} 1)
1 1 . a
< 2o (] 2 2 1
— 2‘1971(‘1’ )+ 2 (mn) 4(]\’1'0 )
When n € I,
o (_—x:"””%) <o (—4"‘0 ) < pnldug) < Tt 22
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since
1 _ .2 1 1

‘pno(;?l___‘?;) < ¥no (%) ‘Pno(mno) Z(%)
a1

. (23)
—_— ] —————————
S 2‘10710(1’.71.0) + 4(N0 _ 1)

notice pn,(z3,) > 7t1 = @y, by (19) and (23)

1 _ 2 1 _ .2 No—1 1 _ .2
<ﬁ><(—)> > n(B5)

n;éno
—  (Tn—Tp
p> ‘”"(2(1—5))
n=~Np
a
4(Np — 1)

1 1 . a
+ ) [5%(1‘#) + §¢n($ﬁ)+ 4(_NI——T)]
n< Ny 0

1
< E'Pno (zho) +

n#no
£ 3 [+ gonted] + %
n=Ng
1 1 1
= §I¢($ )+ §I¥J(-7" ) - 2~Pno(-"3n,,) +2 + T
1 1 o
< EI‘p(:IJl) + EIw(:L‘ ) =1

so ||z — x2|| < 2(1 — ), and we get a contradiction again.

Steps (1b) and (1c) complete the proof of theorem.

Step 2. We discuss the gencral case without the restriction of step 1. For any
e<1/4,let A= mf on({1 — €)a,). By the proof of Lemma 1 (i) we get A > 0. Let

Ny = [1/4], i.e. Nz be the integer part of 1/A. If [, is reflexive but not P-convex,

then for any €:0 < €’ < ¢/4, there is a set X consisted of any finite elements in
S(I,) such that

la* -2l 2 2(1~¢"), i#3].

Let the number of X be (2Np + 1)2(N2+1)N2/2 where Ny is the positive integer
satisfying (4).
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Take any clement z° in X. The definition of A implies that z° has at most N,
numbers of components, such that [£8| > (1 — £)a,,; hence

oG
1
I(a°) =) pn(zl) 2 (N + 1)A> 2 - A=1,
n=1 A
this leads to contradiction. Without loss of generality we have [z9| > (1 — £)ay,
for n < Na. For any z € X, we define a map: z — (r{,7§,...,r%,), ie. for
n=12...,N

. { 1, when 28z, <0 and |z,| > (1 —¢)a,
T =

0. otherwise.

This makes us classify the elements of X into 2™ categories, we say that the
category mapping the vector (0,0, ...,0) is 0-category.

First we assume: apart from O-category, the number of clements in other cate-
gory is less than (2Ng + 1)20V+1+1N/2 19Ny — (9N 4 1)2N2(N2=1)/2 Take another
element from O-category and let it be 2°, then classify X again by the former pro-
gram.

After we classify cach time, if the number of the clements in category, except
0-category, is less than (2Np + 1)2V1(N1=1)/2 when we classify (2Np + 1)—times we
get a sct Xp having (2Np + 1) elements such that

izl >0 or |zi|>(1—¢)a, and |&Z|> (1 —€)ay (24)
for any ',z € Xo(i # j) and n € N, then

Tp — Ty
2(1-¢)

an+(1—€la,| _ 2-¢ o <a
20l—¢g/4) |~ 2—¢g/2 ™™

ie. |zi| < (1 —¢€')ay, for all n < N, and this is the case of section 1. But in section
1, we proved that there is no set X having (2Np + 1) elements such that

lz* — 27|l 2 2(1 —¢), i#3, ¢',27 € X,
so we deduce that apart from 0-category there is a category X; such that the number

of elements in X is (2No + 1)2V1(N2-1)/2 and the element z of z; satisfies rZ =1
for some n; < N,.
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Apart from n;-th component, any z = (z,,) in X; has at most (N2 —1) numbers
of components such that |z,| > (1 —¢€)a,. Let |z,| 2> (1 —€)a, for n = Na+1, Na +
2,...,2Ny — 1.

For any z € X, define amap: z — (r{,75,...,7%, _;), i.e. forn = Np+1, N+
2,...,2N, — 1

. { 1, when 28z, <0 and |z,| > (1 — ¢)an
r.o =

0, otherwise

then we may classify X; into 2¥2~! categorics.

If the number of elements in category except O-category is less than (2Ng +
12V 1=1)(N2=2)/2 e take one element from those mapping 0-category and let it
be z°, and then classify X; by the former program. When we classify (2Np + 1)
times, the number of elements in the category except O-category is less than (2Np +
1)2(N2—-1}(N2-2)/2 then we get a set having (2N + 1) elements such that (24), which
leads a contradiction again.

We assume there a category X, having (2Ny+1)2(N1—1)(N2=2)/2 elements except
O-category. Repeating the same discussion, when we classify Na-times we get a
category Xn, having (2N + 1) elements such that

izl >0 and |z%| > (1—¢)an, |22 > (1-¢)an
for any z*,27 € Xn,,i # j.n =n1,ny,...,nN,. Then for any z € Xy,

I= Lp(-’ﬂ) = Z "'foﬂ,j(a;nj) + Z ilg‘n('?"l’l)

J<N2 n#n;
> Z on, (1 —€)an,) + Z wn(zn) > NoA + Z on(xn)
i<No n#En;j n#n;
ie.
Y enlea) 1-Mid= 4 - [H]4<a=inf (1 - 2)an)

n;énj

80 |zn| < (1—€)an with n # n;, but when n = n; iz} > 0(i # j). This shows that
(24) is true for any x € Xy, and all n € N, which leads to a contradiction again.
Section 1 and section 2 complete the proof of theorem. O
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Now we give an example of a Musielak-Orlicz sequence space which is P-convex
but not P(3,£)-convex.

Let a Young function ¢ = (y,) and ¢* = (p},) satisfy the ;-condition, and
such that there are two positive integers n; and ng (n1 < ng)

Sonl(am) + ‘Pnz(a'nz) <1 and n,(an)>0, ¥n2(an,) > 0.

By Theorem we know that the I, generated by ¢ is P-convex but not P(3,¢)-
convex. Let
zy =(0,...,0,a,,,0,...,0,a,,,0,...)
z2=(0,...,0,an,,0,...,0,—an,,0,...)

z3=(0,...,0,—ay,,0,...,0,an,,0,...).
Then z1, %9, z3 € S(I,). But for any £ > 0

L(5=2) = om(za) > 1
L(3=5) = om(52g) > 1

50 ||zy — zo|| > 2(1 — €), [|z2 — zal| > 2(1 —€), [lz1 — z4]| > 2(1 — €), hence I, is not
P(3,¢e)-convex.
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