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Besov spaces and function series on Lie groups I
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ABSTRACT
In the paper we investigate the absolute convergence in the sup-norm of two-

sided Harish-Chandra’s Fourier series of functions belonging to Zygmund-
Holder spaces defined on non-compact connected Lie groups.

Let G be an n-dimensional connected unimodular Lie group countable at infinity
and let K be a k-dimensional connected compact subgroup of G. Let (K) denote
the set of all equivalence classes of finite-dimensional irreducible representation of
K. Yor any o € X(K) let x5 be a character of the class 6 and d(6) its degree.
We put
as = d(6)Xs- (1

Let L(xz) denote the left regular representation of G on C*(G) (or C§°(G))
i.e. (L(z)f)(y) = f(x~'y) and R(z) be the right regular representation of G on the
same spaces i.e. (R(z)f)(y) = f(yz). If f is a suitable function on G then

(a5 % f)(z) = /K () f(y~ z)dy, €G, @)

and

(f » as)() = /K sy ) fzy)dy, z€G, (3)

are called a §-Fourier component of the function f with respect to the representation
L(z) and R(z) respectively, dy being the normalized Haar measure on K. The group
G is countable at infinity therefore the space of smooth function C*(G) and the
space of smooth functions with compact support C§°(G) taken with their usual
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topologies arc locally convex complete and metrizable vector topological spaces. Let
D'(G) be the continuous dual of C§°(G). We call the elements of D’(G) distributions
on G. Identifying as with an element of the space of Radon measures with compact
support on G we can regard (2) and (3) as the convolutions on G. Due to this
identification, we can define the 6-Fourier component with respect to L(z) and R(x)
of every distribution T' € D'(G) by

as*T, Txas (convolutions of distributions).
Theorem 1 (cf. [2])
Let f € C=(G) (f € C5°(G)) then the Fourier series

Z as * f and Z f *as

s€X(K) s€X(K)
converge absolutely to f in C(G) (C§°(G)) .

Corollary 1 (cf. [14] §4.4.3)

The Fourier series of the distribution T converges to 1' in D'(G) equipped with
the topology of uniform convergence on bounded subsets.

Note that L(z) and R(y) (z,y € G) commute and hence
ax(f*B)=(axf)*x8 (o 8€C(K)).

We may therefore simply write o * f * 3. In the present paper we will regard also
the following series

Z as, * f * ag,. 4)

81,62€(K)

Generally the above series does not coincide with the scries defined in (2) and (3). If
the group G is abelian then the last series coincides with the previous oncs becausc
g * 05 = s and g, * as, = 0 if 6; # 62.

Proposition 1 (cf. [2])

Let E denote either one of the spaces C*°(G) or C§¢(G). Then for any f € E
the series (4) converges absolutely to f in E.

On the Lic group G we can define a left-invariant Riemannian metric tensor g
and a right-invariant Riemannian metric tensor g as well (cf. [3]). The Riemannian



Besov spaces and function series on Lie groups IT 271

manifolds (G, g) and (G, g) are both connected complete Riemannian manifolds with
a positive injectivity and bounded gecometry. Thereforc we can define the two scales
of Besov spaces on G Bj (G) and _E;’q(G), —0<§<00, 0<p<Loc, 0<qg<L oo
The first scale corresponds to the Riemannian manifold (G, g) the second one to
(G,9) in the sense of the Tricbel definition (c¢f. [10], [12]). Generally these two
scales of function spaces do not coincide.

Let R be the Lic algebra of K. Since K is compact we can choose a positive-
defined quadratic form @ on R invariant with respect of the adjoint representation
Adg. Let Xi,...,Xi be a basis of R orthonormal with respect to @, then the
differential operator

Q=T—(X?+---+ X} (5)

commutes with both left and right translation of K. It is well known that the
functions oy, 6§ € £(K), are eigenvectors of ) with eigenvalues ¢(6) > 1, and that

Z d(6)%c(6)™™ < o0

SeX(K)

for a sufficiently large positive number m (c¢f. [2]), d(6) being the degree of the class

6.

Thus for every r, 0 < r < 2, there is the smallest number m, such that

sup d(6)"c(6)™™ < o0, for every m > m, . (6)
5EX(K)

Let C(G) denotc the Banach space of bounded continuous functions on G with the
standard norm. In [7] we proved the following theorem

Theorem 2

Let1<p<oc,1<g<ocands> %+2m1 + max( ,% - %) Let f € E:EQ(G)
(f € B; ,(G)). Then the Fourier scries

Z s * f ( Z f*(l(é)

SET(K) s5ex(K)

converges absolutely in C(G) to the function f. Moreover, therc is a constant C
such that

> s floo S CIB, GO Y If *aslle < CIFIBEL(G)].

sEX(K) ‘ seX(K)



272 SKRZYPCZAK

2. The absolute convergence of the series Yas, * f * as,
The main result of the paper rcads as follows.

Theorem 3
Let s > 4m; + k. Then for every f € B3, .(G) r‘lﬁ;x(G) the series

Z a5, * f * g,

61 ,62€2(I()

converges absolutely to f in C(G) and

D s * £ *asllo < Cmax (| 1B o0 (G, 1 Booo(GN)
81,62€T(K)

Proof. We divide the proof into several steps.

Step 1. Let G=GxGandK =K x K, where x denotes the cartesian product
of groups and manifolds as well. The group G is a 2n-dimensional connected Lie
group, and K is its compact subgroup. The Lie algebra of G is isomorphic to the
direct sum G © G of the Lic algebra G of G. In this step we describe a Riemannian
structure on G needed later on.

Let m;, ¢ = 1,2, denote a projection of G onto the corresponding factor of the
product. We define the Riemannian metric g on G as a cartesian product g=gx g
of the Riemannian metric § and g i.e.

9(z) (X, Y) =G, (d(zyym X, d(zy)mY) + gy(d(z ) T2 X, d(z,y)T2Y ),

(z,y) € G, XY ¢ T(_,,_.?y)é. The manifold (é, g) is a connected homogeneous
Riemannian manifold. The mappings

D(apy: G > (x,y) = (za,b7'y) € G, a,beG
form a group of isometrics acting transitively on G. The transitivity of the action is

obvious. Since ®(55) = P(q,e) © P(e,p), it is sufficient to prove that ®(, .y and (. )
are isometries. To prove that @(, ) is an isometry we ought to show that

9z (XY ) = Tzay) Az ®a0) X d(2,4) Plae) V), (7)
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for every (z,y) € G, X,Y € T(m‘y)f}'. Using the product structure of G it is
not difficult to sce that die.y)m © diz4)®P(ae) = dyTa © d(z,yym1, and d(g, )72 ©
d(sy)P(ae) = do,y)T2, where 7,:G 3 ¢ — za € G. These identities and the
fact that r, is an isometry of (G,3) imply (7). The proof for @ ;) is the same.
Thus (G 9) is a Riemannian manifold with positive injectivity radius and bounded
geometry and the spaces B; , (G) are well defined on G.

"The following relation between the covariant differentiation 6 of (C:’ ,g), v of
(G,g) and v of (G,q) is well known:
Vix..x:)(Y1,Y2) = (VX,YHVXzYl) where X, X5,Y,,Y, are vector fields on G.
The last identity makes it obvious that

€XP(yy) X = (6XP,d(s, )M X, €xp, dzy)mX), XE€ T(z’_,,)(j’.

Let i(G),i(G) and i(G) be the injectivity radius of (G, g),(G,g) and (G,3),

respectively. Let € < min ’(—G)l(sci)- Then there arc positive numbers a and

B3, 0 < a < 8 < ¢, and sequences of points {z;}, {y:} C G such that the family of
geodesic balls {B(z;,8)}, ({B(y:,3)}) forms a uniformly locally finite covering of
(G, g) (and (G,7), respectively), and the balls B(x;, ) (B(y;, @)) are pairwise dis-
joint. The sets B(y;, 8) x B(z;, ) are also pairwisc disjoint. The geodesic balls B;; =

B((y,,:z'J) V2B) form a covering of G. It is not _difficult to see that this covering
is uniformly locally finite. In fact, the manifold G has bounded geometry thercfore
there are constants Cy,C2 > 0 such that vol( B(z,3v28)) < C; and vol( B(z, @)) <
C, for every z € G. Let Jij = {(k. 1): B((yx, 21), V2B8) N B((ys, z;), V28) # #}. Then

Cy > vol(B(yi,:l:,-),3\/_ﬁ) > Z vol(B(yk, z1), &) > Ca|Jyj|
k€ Jij
(cf. [1] Lemma 2.25 and 2.26, [8]).
Step 2. Let f(y z) = f(yr), =,y € G. We prove that fe B (6’) if

fe B (G)N _EZO «(G). We will need the following lemma, Whl(‘h is a direct
(,onsequence of Theorem 2.5.13 in [13].

Lemma 1
Let 1 <p<ooands>0. Then

1£1Bg )] ~ | £ C y)IB".p(k" Lo (™)
+ || 1 B R IL, ™)

Lemma 2

Let —oo < 8 < 00, 0<p<oc,0<q<L oo Then L(x)(R(x)) is an isomorphism
of By ,(G) (B o, q(G)), and there is a constant C such that || L(z)|| < C, (|R(z)|| < C)
for every z € G.
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Proof of Lemma 2. Let k and kg be a rotation invariant C* functions in R™ such that
supp & C B(0, 1), and £(0) # 0, ko(&) # O for all £ € R", where” denotes the Fourier
transform. Let ko +(z) = ko(t~ ' exp. ' z), and kn ¢(z) =t "kn(t ! exp; ! z), where
n N
KN = ( > 3%;) k, N =1,2,... Then for sufficiently small £ > 0 and » > 0 and
j=1 %%
N > max(s, 5+ 22) + max(o,n(; — 1)) the expression

T

1/q
1£1B5.0(@)lla = I * ko.e| Lp(G)]| + ( / £~ + kN,ALp(G)n“gf)

0

is an equivalent norm in B} ,(G) (cf. [11]). But (L(z)f)*kn; = L(z)(f*kn,t). Thus
| f|Bj4(G)l1 = ||L(z) f|B; 4(G)ll1- For right translations the proof is similar. O

Let {p:} be the resolution of unity corresponding to the covering {B(z;,3)}
and {1;} the resolution of unity corresponding to the covering {B(y:, B)}. If these
resolutions of unity satisfy the assumptions needed to define the scale of Besov spaces
(cf. [10], [12]) then x;;(y,z) = ¥i(y)p;(z) is the resolution of unity corresponding
to the covering B;; and satisfying the same assumptions. We have

1 1B 00(G)l = sup [[xi5 f - €xD(y, ) | Bo 0 (B2l
1,7

< sup l[i(expy, )5 () F(8%B)y:€, expy, -)| Blo,coR™) | Loo (R™)

+SUP||<PJ expg, £)1v:i(-) F(e%Dy, -, €xPy, )| Bl o0 (R™)[| Loo(R™)|
<SUPSUP o () F(, €xPs, )| B0 (Rl

+sgpls’1€1p 143 (-) F (B, , ¥)| Bl 00 (BR™)I|

< sup || £(2-)| BSo,00 (G| + 5up || £ (-4)[ Boo,00 (G
Tz€G ‘ yeG
< 11£1BS,00 (G + 1 f1Boo,00 (G-
The last inequality follows from Lemma 2. Thus

1£1B2%,o0 (G| < € max (|| £1B%,00(G); I1f[Boo,00 (D)- (8)

Step 3. In the third step we deal with expansions of functions from the spaces
B3, oo (K ) needed later on. On the Lie algebra & of K we define a positive-defined

quadratic form Q by
Q(Xv Y) = Q(d(e,e)"rl—x? d(e,e)"rly) + Q(d(e,e)"r‘lxa d(e,c)7r2Y)a X, Y e gﬁ,
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where Q is the form on R described in §1. The form Q is invariant with respect to
Adg. Let X,,..., X\ be the base in R orthonormal with respect to Q. Then the
vectors

X; = (X1,0),..., X = (Xk,0), Xps1 = (0, X1),. .., Xox = (0, X)

form a basis of ® orthonormal with respect to 6, and therefore the differential
operator

2%
O=I1-) X}
i=1

commutes with both left and right translations of K. The operator Qisa positive-
defined sclf-adjoint operator in LQ(I? ) so we can define the abstract Besov spaces
B;;(ﬁ),s > 0,1 < g < oo, connected with this operator (cf. [6], §6.2). The ab-
stract Besov spacc Bj () coincides with the space B.'j"’q(l? ) defined on K by the
Riemannian approach (cf. [10], [12]).

The functions Bs, s, (z, y) = as, (z)as, (y) as well as the functions x4, s,(z,y) =
Xs, ()xs,(y) are the eigenfunctions of Q with eigenvalues ¢(6y, 6,) = ¢(6;) + c(b2) —
1, 61,62 € X(K). The operator Q has a pure point spectrum and the functions
X6,,5; form the orthonormal system of eigenvectors of € therefore for every r,w € R
such that w + k(1 — §) > 0, there is a positive constant C such that

> e(61,62)"| < Xs1.500 f > |7 < CII£I1BS (K"
61,62€(K)

holds for all f € Bgvr(k),s =22 + 2k(L — 1) (cf. Theorem 6.4.3 in [6]). Here

~

< +,+ > denotes the scalar product in Lo(K). Thus

Z C(61,62)w| < .’361,621]‘. > Ir

61-6262(1()
< C;sug) (c(61, 62)'md(51)rd(52)r)"fIBg,r(I?)“r
1,02

holds for s = 224™ 4 2k(1 — 1). But c(61,62) > max(c(61), ¢(62)) therefore the last
inequality and (6) imply

Z 0(61’62)w| < !651.62a f> Ir < C”leg,r(I?)”r’ (9)
61,62€E(K)

for s > 2(w + 2m,) + 2k(£ - ).
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The following embedding is a consequence of the compactness of the manifold

~

K:
Bgooo(}?) C B;:’T(I?), 1<r<o0, —oc<s<s<oc, cf [7].

Now if w = 0 and r = 1 then (9) implies that there is a positive constant ¢ > 0
such that

> 1< Bss > S ClfIBL oK)l (10)

61,62€X(K)

holds for every f € Bgoloc(ff), s> 4my + k.
Step 4. Let f be a suitable function on G. Then

(s, xa5)(e) = [ [ 2w ws ™)/ 2)dady
Jk JKk
~ [ [ awen i ea)dsdy = [ Boon ey
Jk JKk K
We put ﬁ(y, z) = f(yzz), z,y,z € G. Then f; = f. 0 B¢ 51y and
((151 * f* aﬁz)(:’:) = /:,fgél,éz(yfz)ﬁ(yaz)d?/dz =< }:.:h ﬁ&l,éz > (11)
JK

Let K, = {(y,2) € G: (y,z71z) € K} = @e‘z-l(f?),w € G. Then K, is
a compact submanifold of G. Let Ry: Bgc,,o(é) — B:om(I?,) be the restriction
operator (cf. [8]). We recall that it is a continuous surjective linear operator. It was
proved in Lemma 1 of [7] that the norms in the spaces B;,x(R z) can be defined in

such a way that

IR e(f2)| Bl oo (B = IR (fe)| B oo (Ka)ll and  [Roll<C,  (12)

where C is a constant independent of x. 5 N
If f € BS, oo(G)NBoy (G), s > 4m) + k, then f, € BY, ,(G) (cf. Step 2).
Now it follows from (8) and (10)-(12) that

Z ”(161 * f * (162”00 < Cmax (”le:o,oe(G)lla "flﬁicoo(G)”) .

51,62€S(K)

Thus the serics converges absolutely in C(G). But it converges to f in the sense
of the strong topology of D'(G) so it converges to f also in C(G). O
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