Besov spaces and function series on Lie groups II

LESZEK SKRZYPCZAK

Institute of Mathematics, A. Mickiewicz University, Poznań, Poland

ABSTRACT

In the paper we investigate the absolute convergence in the sup-norm of twosided Harish-Chandra's Fourier series of functions belonging to Zygmund-Hölder spaces defined on non-compact connected Lie groups.

Let G be an n-dimensional connected unimodular Lie group countable at infinity and let K be a k-dimensional connected compact subgroup of G. Let $\Sigma(K)$ denote the set of all equivalence classes of finite-dimensional irreducible representation of K. For any $\sigma \in \Sigma(K)$ let χ_{δ} be a character of the class δ and $d(\delta)$ its degree.

We put

$$\alpha_{\delta} = d(\delta)\bar{\chi}_{\delta}.\tag{1}$$

Let L(x) denote the left regular representation of G on $C^{\infty}(G)$ (or $C_0^{\infty}(G)$) i.e. $(L(x)f)(y) = f(x^{-1}y)$ and R(x) be the right regular representation of G on the same spaces i.e. (R(x)f)(y) = f(yx). If f is a suitable function on G then

$$(\alpha_{\delta} * f)(x) = \int_{K} \alpha_{\delta}(y) f(y^{-1}x) dy, \quad x \in G,$$
 (2)

and

$$(f * \alpha_{\delta})(x) = \int_{K} \alpha_{\delta}(y^{-1}) f(xy) dy, \quad x \in G,$$
 (3)

are called a δ -Fourier component of the function f with respect to the representation L(x) and R(x) respectively, dy being the normalized Haar measure on K. The group G is countable at infinity therefore the space of smooth function $C^{\infty}(G)$ and the space of smooth functions with compact support $C_0^{\infty}(G)$ taken with their usual

topologies are locally convex complete and metrizable vector topological spaces. Let D'(G) be the continuous dual of $C_0^{\infty}(G)$. We call the elements of D'(G) distributions on G. Identifying α_{δ} with an element of the space of Radon measures with compact support on G we can regard (2) and (3) as the convolutions on G. Due to this identification, we can define the δ -Fourier component with respect to L(x) and R(x) of every distribution $T \in D'(G)$ by

$$\alpha_{\delta} * T$$
, $T * \alpha_{\delta}$ (convolutions of distributions).

Theorem 1 (cf. [2])

Let $f \in C^{\infty}(G)$ $(f \in C_0^{\infty}(G))$ then the Fourier series

$$\sum_{\delta \in \Sigma(K)} \alpha_{\delta} * f \text{ and } \sum_{\delta \in \Sigma(K)} f * \alpha_{\delta}$$

converge absolutely to f in $C^{\infty}(G)$ $(C_0^{\infty}(G))$.

Corollary 1 (cf. [14] §4.4.3)

The Fourier series of the distribution T converges to T in D'(G) equipped with the topology of uniform convergence on bounded subsets.

Note that L(x) and R(y) $(x, y \in G)$ commute and hence

$$\alpha * (f * \beta) = (\alpha * f) * \beta \quad (\alpha, \beta \in C(K)).$$

We may therefore simply write $\alpha * f * \beta$. In the present paper we will regard also the following series

$$\sum_{\delta_1, \delta_2 \in \Sigma(K)} \alpha_{\delta_1} * f * \alpha_{\delta_2}. \tag{4}$$

Generally the above series does not coincide with the series defined in (2) and (3). If the group G is abelian then the last series coincides with the previous ones because $\alpha_{\delta} * \alpha_{\delta} = \alpha_{\delta}$ and $\alpha_{\delta_1} * \alpha_{\delta_2} = 0$ if $\delta_1 \neq \delta_2$.

Proposition 1 (cf. [2])

Let E denote either one of the spaces $C^{\infty}(G)$ or $C_0^{\infty}(G)$. Then for any $f \in E$ the series (4) converges absolutely to f in E.

On the Lie group G we can define a left-invariant Riemannian metric tensor g and a right-invariant Riemannian metric tensor \tilde{g} as well (cf. [3]). The Riemannian

manifolds (G,g) and (G,\widetilde{g}) are both connected complete Riemannian manifolds with a positive injectivity and bounded geometry. Therefore we can define the two scales of Besov spaces on G $B_{p,q}^s(G)$ and $\overline{B}_{p,q}^s(G)$, $-\infty < s < \infty$, $0 , <math>0 < q \le \infty$. The first scale corresponds to the Riemannian manifold (G,g) the second one to (G,\widetilde{g}) in the sense of the Tricbel definition (cf. [10], [12]). Generally these two scales of function spaces do not coincide.

Let \mathcal{R} be the Lie algebra of K. Since K is compact we can choose a positive-defined quadratic form Q on \mathcal{R} invariant with respect of the adjoint representation Ad_k . Let X_1, \ldots, X_k be a basis of \mathcal{R} orthonormal with respect to Q, then the differential operator

$$\Omega = I - (X_1^2 + \dots + X_k^2) \tag{5}$$

commutes with both left and right translation of K. It is well known that the functions α_{δ} , $\delta \in \Sigma(K)$, are eigenvectors of Ω with eigenvalues $c(\delta) \geq 1$, and that

$$\sum_{\delta \in \Sigma(K)} d(\delta)^2 c(\delta)^{-m} < \infty$$

for a sufficiently large positive number m (cf. [2]), $d(\delta)$ being the degree of the class δ .

Thus for every r, $0 < r \le 2$, there is the smallest number m_r such that

$$\sup_{\delta \in \Sigma(K)} d(\delta)^r c(\delta)^{-m} < \infty, \quad \text{for every } m > m_r \ . \tag{6}$$

Let C(G) denote the Banach space of bounded continuous functions on G with the standard norm. In [7] we proved the following theorem

Theorem 2

Let $1 \le p \le \infty$, $1 \le q \le \infty$ and $s > \frac{n}{p} + 2m_1 + \max(0, \frac{k}{2} - \frac{k}{p})$. Let $f \in \overline{B}^s_{p,q}(G)$ $(f \in B^s_{p,q}(G))$. Then the Fourier series

$$\sum_{\delta \in \Sigma(K)} \alpha_{\delta} * f \quad \left(\sum_{\delta \in \Sigma(K)} f * \alpha_{\delta}\right)$$

converges absolutely in C(G) to the function f. Moreover, there is a constant C such that

$$\sum_{\delta \in \Sigma(K)} \|\alpha_{\delta} * f\|_{\infty} \leq C \|f|\overline{B}_{p,q}^{s}(G)\|, \quad \sum_{\delta \in \Sigma(K)} \|f * \alpha_{\delta}\|_{\infty} \leq C \|f|B_{p,q}^{s}(G)\|.$$

2. The absolute convergence of the series $\sum \alpha_{\delta_1} * f * \alpha_{\delta_2}$

The main result of the paper reads as follows.

Theorem 3

Let $s > 4m_1 + k$. Then for every $f \in B^s_{\infty,\infty}(G) \cap \overline{B}^s_{\infty,\infty}(G)$ the series

$$\sum_{\delta_1,\delta_2\in\Sigma(K)}\alpha_{\delta_1}*f*\alpha_{\delta_2}$$

converges absolutely to f in C(G) and

$$\sum_{\delta_1,\delta_2\in\Sigma(K)}\|\alpha_{\delta_1}*f*\alpha_{\delta_2}\|_{\infty}\leq C\max\big(\|f|B^s_{\infty,\infty}(G)\|,\ \|f|\overline{B}^s_{\infty,\infty}(G)\|\big).$$

Proof. We divide the proof into several steps.

Step 1. Let $\widetilde{G} = G \times G$ and $\widetilde{K} = K \times K$, where \times denotes the cartesian product of groups and manifolds as well. The group \widetilde{G} is a 2n-dimensional connected Lie group, and \widetilde{K} is its compact subgroup. The Lie algebra of \widetilde{G} is isomorphic to the direct sum $\mathcal{G} \odot \mathcal{G}$ of the Lie algebra \mathcal{G} of G. In this step we describe a Riemannian structure on \widetilde{G} needed later on.

Let π_i , i=1,2, denote a projection of \widetilde{G} onto the corresponding factor of the product. We define the Riemannian metric \widetilde{g} on \widetilde{G} as a cartesian product $\widetilde{g} = \overline{g} \times g$ of the Riemannian metric \overline{g} and g i.e.

$$\widetilde{g}_{(x,y)}(X,Y) = \overline{g}_x(d_{(x,y)}\pi_1X, d_{(x,y)}\pi_1Y) + g_y(d_{(x,y)}\pi_2X, d_{(x,y)}\pi_2Y),$$

 $(x,y)\in\widetilde{G},~~X,Y\in T_{(x,y)}\widetilde{G}.$ The manifold $(\widetilde{G},\widetilde{g})$ is a connected homogeneous Riemannian manifold. The mappings

$$\Phi_{(a,b)}: \widetilde{G} \ni (x,y) \to (xa,b^{-1}y) \in \widetilde{G}, \quad a,b \in G$$

form a group of isometries acting transitively on \widetilde{G} . The transitivity of the action is obvious. Since $\Phi_{(a,b)} = \Phi_{(a,e)} \circ \Phi_{(e,b)}$, it is sufficient to prove that $\Phi_{(a,e)}$ and $\Phi_{(e,b)}$ are isometries. To prove that $\Phi_{(a,e)}$ is an isometry we ought to show that

$$\widetilde{g}_{(x,y)}(X,Y) = \overline{g}_{(xa,y)}(d_{(x,y)}\Phi_{(a,e)}X, d_{(x,y)}\Phi_{(a,e)}Y),$$
 (7)

for every $(x,y) \in \widetilde{G}$, $X,Y \in T_{(x,y)}\widetilde{G}$. Using the product structure of \widetilde{G} it is not difficult to see that $d_{(xa,y)}\pi_1 \circ d_{(x,y)}\Phi_{(a,e)} = d_yr_a \circ d_{(x,y)}\pi_1$, and $d_{(xa,y)}\pi_2 \circ d_{(x,y)}\Phi_{(a,e)} = d_{(x,y)}\pi_2$, where $r_a : G \ni x \to xa \in G$. These identities and the fact that r_a is an isometry of (G,\overline{g}) imply (7). The proof for $\Phi_{(e,b)}$ is the same. Thus $(\widetilde{G},\widetilde{g})$ is a Riemannian manifold with positive injectivity radius and bounded geometry and the spaces $B_{p,p}^s(\widetilde{G})$ are well defined on \widetilde{G} .

The following relation between the covariant differentiation $\overset{\sim}{\nabla}$ of $(\widetilde{G},\widetilde{g})$, ∇ of (G,g) and $\overline{\nabla}$ of (G,\overline{g}) is well known: $\overset{\sim}{\nabla}_{(X_1,X_2)}(Y_1,Y_2)=(\overline{\nabla}_{X_1}Y_1,\nabla_{X_2}Y_1)$, where X_1,X_2,Y_1,Y_2 are vector fields on G. The last identity makes it obvious that

$$\exp_{(x,y)} X = (\overline{\exp}_x d_{(x,y)} \pi_1 X, \exp_y d_{(x,y)} \pi_2 X), \quad X \in T_{(x,y)} \widetilde{G}.$$

Let $i(G), i(\overline{G})$ and $i(\widetilde{G})$ be the injectivity radius of (G, g), (G, g) and $(\widetilde{G}, \widetilde{g}), (G, g)$ respectively. Let $\varepsilon < \min \frac{i(G), i(\overline{G}), i(\widetilde{G})}{8}$. Then there are positive numbers α and β , $0 < \alpha < \beta < \varepsilon$, and sequences of points $\{x_i\}, \{y_i\} \subset G$ such that the family of geodesic balls $\{B(x_i, \beta)\}, (\{B(y_i, \beta)\})$ forms a uniformly locally finite covering of (G, g) (and $(G, \overline{g}), \text{ respectively})$, and the balls $B(x_i, \alpha)$ ($B(y_i, \alpha)$) are pairwise disjoint. The sets $B(y_i, \beta) \times B(x_j, \beta)$ are also pairwise disjoint. The geodesic balls $B_{ij} = B((y_i, x_j), \sqrt{2}\beta)$ form a covering of \widetilde{G} . It is not difficult to see that this covering is uniformly locally finite. In fact, the manifold \widetilde{G} has bounded geometry therefore there are constants $C_1, C_2 > 0$ such that $\operatorname{vol}(B(x, 3\sqrt{2}\beta)) < C_1$ and $\operatorname{vol}(B(x, \alpha)) < C_2$ for every $x \in \widetilde{G}$. Let $J_{ij} = \{(k, l): B((y_k, x_l), \sqrt{2}\beta) \cap B((y_i, x_j), \sqrt{2}\beta) \neq \emptyset\}$. Then

$$C_1 > \operatorname{vol} \left(B(y_i, x_j), 3\sqrt{2}\beta \right) > \sum_{k,l \in J_{ij}} \operatorname{vol} \left(B(y_k, x_l), \alpha \right) > C_2 |J_{ij}|$$

(cf. [1] Lemma 2.25 and 2.26, [8]).

Step 2. Let $\widetilde{f}(y,x) = f(yx)$, $x,y \in G$. We prove that $\widetilde{f} \in \overline{B}^s_{\infty,\infty}(\widetilde{G})$ if $f \in B^s_{\infty,\infty}(G) \cap \overline{B}^s_{\infty,\infty}(G)$. We will need the following lemma, which is a direct consequence of Theorem 2.5.13 in [13].

Lemma 1

Let $1 \le p \le \infty$ and s > 0. Then

$$||f|B_{p,p}^{s}(\mathbb{R}^{n+m})|| \sim ||||f(\cdot,y)|B_{p,p}^{s}(\mathbb{R}^{n})||L_{p}(\mathbb{R}^{m})|| + |||||f(x,\cdot)|B_{p,p}^{s}(\mathbb{R}^{m})||L_{p}(\mathbb{R}^{n})||.$$

Lemma 2

Let $-\infty < s < \infty, 0 < p \le \infty, 0 < q \le \infty$. Then L(x)(R(x)) is an isomorphism of $B^s_{p,q}(G)$ $(\overline{B}^s_{p,q}(G))$, and there is a constant C such that $||L(x)|| \le C$, $(||R(x)|| \le C)$ for every $x \in G$.

Proof of Lemma 2. Let κ and κ_0 be a rotation invariant C^{∞} functions in \mathbb{R}^n such that supp $\kappa \subseteq B(0,1)$, and $\kappa(0) \neq 0$, $\hat{\kappa}_0(\xi) \neq 0$ for all $\xi \in \mathbb{R}^n$, where $\hat{}$ denotes the Fourier transform. Let $k_{0,t}(x) = \kappa_0(t^{-1} \exp_e^{-1} x)$, and $k_{N,t}(x) = t^{-n}\kappa_N(t^{-1} \exp_e^{-1} x)$, where $\kappa_N = \left(\sum_{j=1}^n \frac{\partial}{\partial x_j^2}\right)^N \kappa$, $N = 1, 2, \ldots$ Then for sufficiently small $\varepsilon > 0$ and r > 0 and $N > \max(s, 5 + 2\frac{n}{p}) + \max(o, n(\frac{1}{p} - 1))$ the expression

$$||f|B_{p,q}^{s}(G)||_{1} = ||f * k_{0,\varepsilon}|L_{p}(G)|| + \left(\int_{0}^{r} t^{-sq} ||f * k_{N,t}|L_{p}(G)||^{q} \frac{dt}{t}\right)^{1/q}$$

is an equivalent norm in $B_{p,q}^s(G)$ (cf. [11]). But $(L(x)f)*k_{N,t}=L(x)(f*k_{N,t})$. Thus $||f|B_{p,q}^s(G)||_1=||L(x)f|B_{p,q}^s(G)||_1$. For right translations the proof is similar. \square

Let $\{\varphi_i\}$ be the resolution of unity corresponding to the covering $\{B(x_i,\beta)\}$ and $\{\psi_j\}$ the resolution of unity corresponding to the covering $\{B(y_i,B)\}$. If these resolutions of unity satisfy the assumptions needed to define the scale of Besov spaces (cf. [10], [12]) then $\chi_{ij}(y,x) = \psi_i(y)\varphi_j(x)$ is the resolution of unity corresponding to the covering B_{ij} and satisfying the same assumptions. We have

$$\begin{split} \|\widetilde{f}|B^{s}_{\infty,\infty}(\widetilde{G})\| &= \sup_{i,j} \|\chi_{ij}\widetilde{f} \cdot \exp_{(y_{i},x_{j})} |B^{s}_{\infty,\infty}(\mathbb{R}^{2n})\| \\ &\leq \sup_{i,j} \|\psi_{i}(\exp_{y_{i}}\xi)\|\varphi_{j}(\cdot)\widetilde{f}(\overline{\exp})_{y_{i}}\xi, \exp_{x_{j}}\cdot)|B^{s}_{\infty,\infty}(\mathbb{R}^{n})\|L_{\infty}(\mathbb{R}^{n})\| \\ &+ \sup_{i,j} \|\varphi_{j}(\exp_{x_{j}}\xi)\|\psi_{i}(\cdot)\widetilde{f}(\overline{\exp}_{y_{i}}\cdot, \exp_{x_{j}}\xi)|B^{s}_{\infty,\infty}(\mathbb{R}^{n})\|L_{\infty}(\mathbb{R}^{n})\| \\ &\leq \sup_{j} \sup_{x\in G} \|\varphi_{j}(\cdot)\widetilde{f}(x, \exp_{x_{j}}\cdot)|B^{s}_{\infty,\infty}(\mathbb{R}^{n})\| \\ &+ \sup_{j} \sup_{x\in G} \|\psi_{i}(\cdot)\widetilde{f}(\overline{\exp}_{y_{i}}\cdot, y)|B^{s}_{\infty,\infty}(\mathbb{R}^{n})\| \\ &\leq \sup_{i} \|f(x\cdot)|B^{s}_{\infty,\infty}(G)\| + \sup_{y\in G} \|f(\cdot y)|\overline{B}^{s}_{\infty,\infty}(G)\| \\ &\leq \|f|B^{s}_{\infty,\infty}(G)\| + \|f|\overline{B}^{s}_{\infty,\infty}(G)\|. \end{split}$$

The last inequality follows from Lemma 2. Thus

$$\|\widetilde{f}|B_{\infty,\infty}^{s}(\widetilde{G})\| \le C \max\left(\|f|B_{\infty,\infty}^{s}(G)\|, \|f|\overline{B}_{\infty,\infty}^{s}(G)\|\right). \tag{8}$$

Step 3. In the third step we deal with expansions of functions from the spaces $B^s_{\infty,\infty}(\widetilde{K})$ needed later on. On the Lie algebra $\widetilde{\Re}$ of \widetilde{K} we define a positive-defined quadratic form \widetilde{Q} by

$$\widetilde{Q}(X,Y) = Q(d_{(e,e)}\pi_1 X, d_{(e,e)}\pi_1 Y) + Q(d_{(e,e)}\pi_2 X, d_{(e,e)}\pi_2 Y), \quad X, Y \in \widetilde{\Re},$$

where Q is the form on \Re described in $\S 1$. The form \widetilde{Q} is invariant with respect to $Ad_{\widetilde{K}}$. Let X_1, \ldots, X_k be the base in \Re orthonormal with respect to Q. Then the vectors

$$\widetilde{X}_1 = (X_1, 0), \dots, \widetilde{X}_k = (X_k, 0), \widetilde{X}_{k+1} = (0, X_1), \dots, \widetilde{X}_{2k} = (0, X_k)$$

form a basis of $\widetilde{\Re}$ orthonormal with respect to $\widetilde{Q},$ and therefore the differential operator

$$\widetilde{\Omega} = I - \sum_{i=1}^{2k} \widetilde{X}_i^2$$

commutes with both left and right translations of \widetilde{K} . The operator $\widetilde{\Omega}$ is a positive-defined self-adjoint operator in $L_2(\widetilde{K})$ so we can define the abstract Besov spaces $B_q^s(\widetilde{\Omega}), s > 0, 1 \leq q \leq \infty$, connected with this operator (cf. [6], §6.2). The abstract Besov space $B_q^s(\widetilde{\Omega})$ coincides with the space $B_{2,q}^{2s}(\widetilde{K})$ defined on \widetilde{K} by the Riemannian approach (cf. [10], [12]).

The functions $\beta_{\delta_1,\delta_2}(x,y) = \alpha_{\delta_1}(x)\alpha_{\delta_2}(y)$ as well as the functions $\chi_{\delta_1,\delta_2}(x,y) = \chi_{\delta_1}(x)\chi_{\delta_2}(y)$ are the eigenfunctions of $\widetilde{\Omega}$ with eigenvalues $c(\delta_1,\delta_2) = c(\delta_1) + c(\delta_2) - 1$, $\delta_1,\delta_2 \in \Sigma(K)$. The operator $\widetilde{\Omega}$ has a pure point spectrum and the functions χ_{δ_1,δ_2} form the orthonormal system of eigenvectors of $\widetilde{\Omega}$ therefore for every $r,w \in \mathbb{R}$ such that $w + k(1 - \frac{r}{2}) > 0$, there is a positive constant C such that

$$\sum_{\delta_1, \delta_2 \in \Sigma(K)} c(\delta_1, \delta_2)^w | < \chi_{\delta_1, \delta_2}, f > |^r \le C \|f| B^s_{2,r}(\widetilde{K}) \|^r$$

holds for all $f \in B^s_{2,r}(\widetilde{K})$, $s = 2\frac{w}{r} + 2k(\frac{1}{r} - \frac{1}{2})$ (cf. Theorem 6.4.3 in [6]). Here $\langle \cdot, \cdot \rangle$ denotes the scalar product in $L_2(\widetilde{K})$. Thus

$$\sum_{\delta_{1},\delta_{2} \in \Sigma(K)} c(\delta_{1},\delta_{2})^{w} | < \beta_{\delta_{1},\delta_{2}}, f > |^{r}$$

$$\leq C \sup_{\delta_{1},\delta_{2}} \left(c(\delta_{1},\delta_{2})^{-m} d(\delta_{1})^{r} d(\delta_{2})^{r} \right) ||f| B_{2,r}^{s}(\widetilde{K})||^{r}$$

holds for $s = 2\frac{w+m}{r} + 2k(\frac{1}{r} - \frac{1}{2})$. But $c(\delta_1, \delta_2) \ge \max(c(\delta_1), c(\delta_2))$ therefore the last inequality and (6) imply

$$\sum_{\delta_1, \delta_2 \in \Sigma(K)} c(\delta_1, \delta_2)^w | < \beta_{\delta_1, \delta_2}, f > |^r \le C \|f| B_{2,r}^s(\widetilde{K}) \|^r, \tag{9}$$

for $s > \frac{2}{r}(w + 2m_r) + 2k(\frac{1}{r} - \frac{1}{2})$.

The following embedding is a consequence of the compactness of the manifold \widetilde{K} :

$$B^s_{\infty,\infty}(\widetilde{K}) \subset B^{s_0}_{2,r}(\widetilde{K}), \ 1 \le r \le \infty, \ -\infty < s_0 < s < \infty, \ \text{cf. [7]}.$$

Now if w=0 and r=1 then (9) implies that there is a positive constant c>0 such that

$$\sum_{\delta_1, \delta_2 \in \Sigma(K)} | \langle \beta_{\delta_1 \delta_1}, f \rangle | \le C \| f | B^s_{\infty, \infty}(\widetilde{K}) \|$$
 (10)

holds for every $f \in B^s_{\infty,\infty}(\widetilde{K}), \ s > 4m_1 + k$.

Step 4. Let f be a suitable function on G. Then

$$\begin{split} (\alpha_{\delta_1}*f*\alpha_{\delta_2})(x) &= \int_K \int_K \alpha_{\delta_1}(y)\alpha_{\delta_2}(z^{-1})f(y^{-1}xz)dzdy \\ &= \int_K \int_K \overline{\alpha_{\delta_1}(y)\alpha_{\delta_2}(z)}f(yxz)dzdy = \int_{\widetilde{K}} \overline{\beta_{\delta_1\delta_2}(y,z)}f(yxz)dydz. \end{split}$$

We put $\widetilde{f}_x(y,z) = f(yxz), \ x,y,z \in G$. Then $f_x = f_e \circ \Phi_{(e,x^{-1})}$ and

$$(\alpha_{\delta_1} * f * \alpha_{\delta_2})(x) = \int_{\widetilde{\mathcal{K}}} \overline{\beta_{\delta_1,\delta_2}(y,z)} \widetilde{f}_x(y,z) dy dz = \langle \widetilde{f}_x, \beta_{\delta_1,\delta_2} \rangle. \tag{11}$$

Let $\widetilde{K}_x = \{(y,z) \in \widetilde{G}: (y,x^{-1}z) \in K\} = \Phi_{e,x^{-1}}(\widetilde{K}), x \in G$. Then \widetilde{K}_x is a compact submanifold of G. Let $\mathcal{R}_x: B^s_{\infty,\infty}(\widetilde{G}) \to B^s_{\infty,\infty}(\widetilde{K}_x)$ be the restriction operator (cf. [8]). We recall that it is a continuous surjective linear operator. It was proved in Lemma 1 of [7] that the norms in the spaces $B^s_{\infty,\infty}(\widetilde{K}_x)$ can be defined in such a way that

$$\|\mathcal{R}_e(\widetilde{f}_x)|B^s_{\infty,\infty}(\widetilde{K})\| = \|\mathcal{R}_x(\widetilde{f}_e)|B^s_{\infty,\infty}(\widetilde{K}_x)\| \quad \text{and} \quad \|\mathcal{R}_x\| \le C, \tag{12}$$

where C is a constant independent of x.

If $f \in B^s_{\infty,\infty}(G) \cap \overline{B}^{s^-}_{\infty,\infty}(G)$, $s > 4m_1 + k$, then $\widetilde{f}_e \in B^s_{\infty,\infty}(\widetilde{G})$ (cf. Step 2). Now it follows from (8) and (10)-(12) that

$$\sum_{\delta_1,\delta_2 \in \Sigma(K)} \|\alpha_{\delta_1} * f * \alpha_{\delta_2}\|_{\infty} \le C \max \left(\|f|B^s_{\infty,\infty}(G)\|, \|f|\overline{B}^s_{\infty,\infty}(G)\| \right).$$

Thus the series converges absolutely in C(G). But it converges to f in the sense of the strong topology of $\mathcal{D}'(G)$ so it converges to f also in C(G). \square

References

- T. Aubin, Nonlinear Analysis on Manifolds, Monge-Ampere Equations. Springer Verlag, New York, 1982.
- 2. Harish-Chandra, Discrete series for semi-simple Lie groups II, Acta Math. 116 (1966), 1-111.
- 3. J.F. Price, Lie Groups and Compact Groups, University Press, Cambridge 1979.
- 4. D.W. Robinson, Lie group and Lipschitz spaces, Duke J. Math. 57 (1988), 357-395.
- 5. D.W. Robinson, Lipschitz operators, J. Funct. Anal. 85 (1989), 179-211.
- H.J. Schmeisser, H. Triebel, Topics in Fourier Analysis and Function Spaces, Wiley, Chichester 1987.
- 7. L. Skrzypczak, Besov Spaces and function series on Lie Group, Comment. Math. Univ. Carolinae 34 (1993), 193-147.
- 8. L. Skrzypczak, Traces of function spaces of $F_{p,q}^s B_{p,q}^s$ type on submanifolds, *Math. Nach.* 146 (1990), 137-147.
- 9. H. Triebel, Diffeomorphism properties and pointwise multiplier for function spaces, In: Function Spaces. Proc. Inter. Conf. Poznań 1986, Teubner-Texte, Leipzig 1988, 75-84.
- 10. H. Triebel, Function spaces on Lie groups, the Riemannian approach, J. London Math. Soc. 35 (1987), 327-338.
- 11. H. Triebel, How to measure smoothness of distributions on Riemannian symmetric manifolds and Lie groups? Zeitsch. Anal. ihre Anwend. 7 (1988), 471-480.
- 12. H. Triebel, Spaces of Besov-Hardy Sobolev type on complete Riemannian manifolds, *Ark. Mat.* 24 (1986), 299-337.
- 13. H. Triebel, Theory of function spaces, Birkhäuser, Basel 1983.
- 14. G. Warner, Harmonic Analysis on Semi-simple Lie groups I, Springer Verlag, Berlin 1972.