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ABSTRACT

We give an operator approach to several inequalities of S. Kwapien and C.
Schiitt, which allows us to obtain more general results.

Section 0

Let n be an integer, = {x;;},1 < i,j < n,II =1II,, be the set of rearrangements of
{1,2,...,n}. Denote by s1,8,,...,S,2 the rearrangement of |z;;| in the decreasing
order. S. Kwapien and C. Schiitt proved the following statements.

Theorem A ([3])

The inequalities
1« 1 1
— E Sk < — max |[C;-il < — E s
2n k= ISiSnI (o) < n k
k=1 well k=1

are valid.

Theorem B ([5])

If1 <p<q< oo, then
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The operator approach to such problems is presented in this article. It allows to
obtain more general results.

Section 1

If 2(t) is a measurable function on [0, 1], we denote by z*(t) the decreasing rearrange-
ment of [z(¢)|. A Banach functional space F on [0, 1] with the Lebesgue measure m
is said to be rcarrangement invariant (r.i.) if it satisfies the following condition: if
y € E and z*(t) < y*(¢t) for all ¢t € [0,1], then z € E and ||z||g < |ly||g. Let 7 > 0.
The compression operators

z(L), 0<t<min(r,1)
oru(t) =
0, min(7,1) <t <1
act in cvery r.i. space. The numbers

1 1
op = lim 2oxllE gy Illorlle
=0 In7T r—oo In7T

are named Boyd indexes of the r.i. space E. It’s known that 0 < ap < 8z < 1. Let
z,y € L;. We denote z < y if

/x*(t)dtﬁ/ y*(t)dt
0 0

for each 7 € [0,1]. If a r.i. space E is separable or isometric to the conjugate of
some scparable r.i. space, then z < y implies ||z]|g < |ly||g. For simplicity we shall
assume that a r.i. space E satisfies this assumption. The Hardy operator

Hzx(t) = /Ll Mds

8

is bounded in a r.i. space E iff ag > 0. Without loss of generality ||1||g = 1.
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Orlicz, Lorentz, Marcinkiewicz spaces are r.i. ones. If a function M (u) is even,
convex, increasing on [0, 00) and

im M%) _ o M@) =0

u—0 U

1
Izllz,, = inf{,\:,\ >0, / M(‘”—(tl)dt < 1}.
0

then

A

Let o(t) be an increasing concave function on [0, 1] s.t. ¢(0) = 0. Then

lellvg = [ = (0dett)

All the above mentioned properties of r.i. spaces can be found in [1,2,4].

Section 2

Let us fix some one-to-one correspondence £ of Il into {1,2,...,n!}. Let 1 < g < o0
and z is an n-square matrix. We define the quasi-linear operator

Tqx(t) = (i|wi1.-(i)|q)l/q’ t€ (&T)_—l’ M)
i=1

n! n!

with usual modification for ¢ = oc. It’s evident that [|T,z||g does not depend on ¢
if F is a r.i. space. Define the opcrator
k-1 k

Sx(t) = s, tE( = ’ﬁ)’ 1<k<n.

The following statement generalizes Theorem A.

Theorem 1

Let E be a r.i. space. Then
1 \
S153)5 < |Toozlz < |1S]l5-

Proof. For simplicity we assume that s; > s3 > ... > s, > 0. Then m{t: Sz(t) >
sx} =k/nforeachk=1,2,...,n. As

o i =1 1 _
m{tl,xa'(t) —Sk} < T = E, k= 1,2,...,n
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then

el

m{t: Tooz(t) > sk} <
Hence (Toox)* () < Sz(t) and |[Inoz]|e < ||S2||E-

n

To prove the left side of the inequality, we fix k € {1,2,...,n} and construct

the matrix
1zijl,  |zii| = sk
Yij = :
0, I"I"i.'il < Sk
Applying Theorem A to matrix Y = {y;;} we have
1 1
on Zb‘i < ] Z lléliﬂ-sxn Yim(i)
1 mell
Denote e = {t: Tooy(t) # 0}. Then me, < k/n and
1 e
o ;” X Yin(i) = / Tooy(t)dt
™

Jep

k/n
< / Toox(t)dt < / (Toox)*(t)dt .
Jeg 0

As

0

1< k/n
—Zs,: =/ Sz (t)dt
ni=1

then (1) and (2) imply the inequalities

1 k/n k/n
= Sz(t)dt 5/ (Tooz)*(t)dt.
2 Jo 0
The function .
/ (Toox)*(t)dt
0
is concave on [0, 1] and the function
1 /T
= [ Sz(t)dt
3 ), )

is linear on each interval [%, %], 1 < k £ n. Therefore the inequality

T T
1 / Sa(t)dt < / (Tho)* (£)dt
2 Jo Jo
is valid for each 7 € [0,1]. Hence $Sz < 1xx and

1 ryY
SISzl < Moz

g-d

Usually the Orlicz space Ly where M(u) = el*! — 1 is denoted by exp L.

(2)
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Theorem 2

There cxists a constant C > 0 such that

II-'Z!]-'L'”exDL < C( In";x |-’L'u| + = Z IL'UI) (3

171

—

Proof. Tt is well known that the extremal points of the convex set
n

max |zij] <1 and Z |zij| <m
1<i,j<n P

arc matrices such that some n elements z;; (1 < i,j < n) arc equal to +1 and n? —n
elements are cqual to (). It is sufficient to prove inequality (3) only for such matrices.
Let matrix z belong to this set and 2 > 0, 1 < j < n. We have

m {t: 13 (2(t)) = j} < C{lw = % (4)

Therefore
eI/

/(PT 3 —1(11‘<Z———1—e”)\—2.

This means that C in (3) may be chosen as ﬁﬁ O

Lemma 3

If x is an n xXn  matriz and

(i, 5): 25 # 0} < m

then
Tz <8HS«zx.

Proof. First we consider the casc:

1, 1<i<k
S; =
0, k<i<n

for some k < n. Given 1 < j < k we denote

n k
Rj = {71-:1‘- € Hv Zmir(i) = .7}, Q_] = U R,
i=1 m=j
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and 7; = l—?ﬂ—l It is clear that
20i(n—35)! 2%Nn—7)! 2k-j+1)...k _ 2k
Tj < — = k= il i <.|
n! Wk —=j)n! jHn—-3j+1).. jin
As <k
InL, O<t<k
HSz(t)={ ™ i
0, &gtgl
n
then
m{t: HSz(t) > j} = —e ™.
Therefore
262k
m{t:Tiz(t) > j} =7, < ?n—e'J < 8m{t: HSz(t) > j}.
So

Tixz < 8HSz.

Let us consider the general case. There exist a; > 0, n-square matrices 2z, (1 <

k < n) such that some k elements of z; arc cqual to 1 and the other n? — k elements
are cqual to 0,

{(i,5): (zk)i5 = 1} C {(is 5): (2k41)i5 = 1}
foreach k=1,2,...,n—1 and

n
r = E (11 ¥4
k=1

Then

/ (Tyx) dt<Zak/ (T 2x)* (t)dt
0 .

< SZak / HSz,(t)dt = 8 / HSz(t)dt. O
k=1 0 J0

Theorem 4

Let 1 < g < oo, E bear.i. space, ag > 0. Then

Tq!||F<C(IIS1IIF+( Z 1) ) (5)

k=n+1

where C depends only on E.
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Proof. Let

nz

1
ISzllz <1, ~ > sf<1L (6)

k=n+1
We find n-square matrices y and z such that their supports are disjoint, = = y +
2, |suppy| £ n and Sz = Sy. By Lemma 3, we have
1Tyl < 8llHSyle < 8l H|£||Sylle
= 8||H||ellS=ll&.

Denote |2;;{9 = u;j, 1 <4,j < n. Then

id al 1
T,2) g = |(Tiw) )| < | Thul )%

Assumptions (6) imply that

n
0<u; £1,1<4, j<n, Zuian.
i,j=1
Applying Theorcm 2 we have
2l <
1ulle —_
1Hleel = 113
It is well known that the assumption ap > 0 implies E D L, for some 7 < 00. So
E DexplL and
H‘E”E < Cl“-'l""exp L

for some C; > 0 and every z € exp L. Thercfore

- Cy /4
Tozlle £ (lnlnB)
and

1Tzl < | Tyyile + |1 T4zl e
Ci

1/q
<8||Hllr + (111—111—3) .0

The assumption ag > 0 in Theorem 4 is essential, however it is not necessary.
In fact, the function 1,1, (t) takes the value n'/? on some interval of length 1/n!.
Hence

. gt _ .
nh_l};c 17gIn|lL = oc-

On the other hand, SI,,(t) =1 and s = 0 for n < k < n2.
The inequality inverse to (5) is true without any restrictions.
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Theorem 5
Let E be ar.d. space and 1 < g < 0o. Then

2
1 1 «~— g\
— | ISz||£ = LY <N x|l &
lz(umnm G2 i) ) < |Tyele

Proof. By Theorem 3,
1Szl g < 2||Teox

<2

A space E is cmbedded into Ly with constant 1 ([2], I1.4.1). Applying Theorem B
with p = 1 we have

1 n? L/q
(— > s,g) < 10| Tz, <10
n

k=n+1

From the above given inequality we obtain the needed one. O
Corollary 6

IfMe As, 1<qg< 00, then
o

2 1/q

k=n+1

| Tqx

3|+

Ly & ”S‘T“LM + (

Corollary 7
1< p, q<octhen

Tz

1 1/p 1 n? 1/q
L= = Z sh + | = Z sy .
n k=1 n k=n+1

Corollary 7 states that the restriction p < ¢ in Theorem B is superfluous.

References

1. C. Bennett, R. Sharpley, Interpolation of Operators. Academic Press, London, 1988.

2. S.G. Krein, Ju.l. Petunin, E.M. Semenov, Interpolation of Linear Operators. Transl. Math.
Monogr., Amer. Math. Soc., Providence, 1982.

3. S. Kwapien, C. Schiitt, Some combinatorial and probabilistic inequalitics and their applications
to Banach space theory, Studia Math. 82 (1985), 91-106.

4. J. Lindenstrauss, L. Tzafriri, Classical Banach Spaces. Il. Springer Verlag 1979.

5. C. Schiitt, Lorentz spaces that are isomorphic to subspace Lj. Trans Amer. Math. Soc. 89,
No 2 (1985), 583-595.



