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ABSTRACT

Let L¥ be an Orlicz space defined by a Young function iz over a ¢-finite
measure space, and let ©* denote the complementary function in the sense
of Young. We give a characterization of the Mackey topology 7(L*, L'*’*)
in terms of some {amily of norms defined by some regular Young functions.
Next, we describe order continuous (= absolutcly continuous) Ricsz semi-
norms on LY, and obtain a criterion for relative o( L%, L¥?" )-compactncss in
L¥?. As an application we get a representation of L¥ as the union of some
family of other Orlicz spaces. Finally, we apply the above results to the theory
of Lebesgue spacces.

0. Introduction and preliminaries

In 1915 de la Vallée Poussin (see [12]) showed that a sct Z of L! (for a
finite measure space (Q,Z,y)) has uniformly absolutely continuous L'-norms

(i.e., lim (sup [ |z(¢)|du) = 0) iff therc exists a Young function 4 such that
mWE)—=0 zez ‘

lim 9(u)/u =oc in terms of which sup [ ¢(|z(¢)|)du < oo.
U : L TEZQ

Oun the other hand, in view of the Dunford-Pettis criterion (on relatively com-
pact scts in L!)(sce [3, p. 294]) the set Z C L' has uniformly absolutely continuous
Ll-norms iff it is relatively o(L', L>)-compact.

Thus we have the following criterion for relative weak compactness in L' (for
finitc measures): a set Z of L! is relatively o(L!, L°°)-compact iff there exists a
Young function 9 such that ulingo ¥(u)/u = oo and sup [ ¢(|z(t)])dp < oo.

- T€EZ O

217



218 NowAK

In 1962 T. Ando [2, Theorem 2] found similar criterion for relative o(L¥,L¥")-
compactness in LY for £ being an N-function and a finite measure. This criterion was
extended by the present author to the case of o-finite measures ([15, Theorem 1.2]).

In this paper, using a different method, we extend the Ando’s criterion to the
case of © belonging to a much wider class of Young functions and o-finite measures.
We can include L¥ being equal to L + L™ (so L' if u(Q) < oc), L' + LP,LP + L*®
(p>1).

In section 1, making use of the author’s results concerning the so-called modular
topology 7. on L¥ (see [13], [14], [18], [19]), wc obtain a characterization of the
Mackey topology 7(L¥,L?") in terms of some family of norms defined by some
regular Young functions, dependent on ¢ (see Theorem 1.5). As an application we
have a description of absolutely continuous (= order continuous) Riesz seminorms
on L¥ (sce Corollary 1.6).

In scction 2, in view of the close connection between relative o(L¥,L#")-
compactness in L? and the absolute continuity of some seminorm in L¥", we can
describe relatively o(L?, L¥")-compact sets in L¥ as norm bounded subscts of an
Orlicz space L¥ for some regular Young function v (sec Theorem 2.4). As an appli-
cation we get a representation of the Orlicz space L¥ as the union of some family of
other Orlicz spaces. At last, we cxamine the absolute weak topology |o|(L¥#, L¥").

In scction 3 we apply the results of sections 1 and 2 to the theory of Lebesgue
spaces.

For notation and terminology concerning Riesz spaces we refer to [1], [21]. As
usual, N stands for the set of all natural numbers.

Let (€, X, i) be o-finite mcasure space, and let LY denote the set of equivalence
classes of all real valued measurable functions defined and a.e. finite on €. Then
LY is a super Dedckind complete Ricsz space under the ordering 2 < y whenever
z(t) < y(t) a.e. on Q. The Riesz F-norm

! I.'L'{t)l g [0
|-7: = / —_— i d/.I, for x € ’
| ”0 Ja 1 + Iz(t)lf( ) .

where f: Q2 — (0,0c) is measurable and [ f(t)dp = 1, determines the Lebesgue
Q

topology Ty on L°, which generates the convergence in measure on subsets of €
of finite measure. For a sequence (z,) in L° we will write 2, — () whenever
|#n — zilo — O.

For a subsct A of Q and a € LY we will write 4 = 2 - x4, where x4 stands for
the characteristic function of A. We will write E, \, @ if (E,) is a decreasing
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sequence of measurable subsets of € such that u(En, N E) — 0 for every set E C Q
of finite measure.

Now we recall some notation and terminology concerning Orlicz spaces (sce [6],
[8], [10], [20] for more details).

By an Orlicz function we mean a function : [0,oc) — [0, oc] which is non-
decrcasing, left continuous, continuous at 0 with (0) = 0, not identically equal
to 0.

An Orlicz function g is called convex, whenever p(au + Gv) < ap(u) + Bp(v)
for ., > 0,a+ 8 =1 and u,v > 0. A convex Orlicz function is usually called a
Young function.

For a Young function ¢ we denote by o* the function complementary to ¢ in
the sense of Young, i.e.,

2*(v) = sup {uv — p(u):u >0} for v>0.
For a sct ¥ of Young functions we will write
U™ = {¢*:¢ € T}.

We shall say that an Orlicz function ¢ is completely weaker than another
for all u (resp. for small u; resp. for large u), in symbols ¥ 3 p (resp. ¥ 3 25
resp. ¥ <l1 ), if for an arbitrary ¢ > 1 there exists a constant d > 0 such that
w(cu) < dp(u) for u > 0 (resp. for 0 < u < ug; resp. for u > ug > 0). (See (2], [20,
Ch. 11]).

It is secn that ¢ satisfies the so called Ag-condition for all u (resp. for small u;
resp. for large u) if and only if 4 o (resp. p 3 P; resp. 11 ).

We shall say that an Orlicz function y increases more rapzdly than another ¥
for al] u (resp. for small u; resp. for large u) in symbols % <  (resp. ¢ < (0} resp.
] -<— ), if for an arbitrary ¢ > 0 there exists d > 0 such that cip(u) < do(du) for
all u > 0 (resp. for 0 < u < uyp; resp. for u > u, > 0).

Note that i satisfics the so called V,-condition for all u (resp. for small u; resp.
for large u) if and only if ¢ < p (resp. p < 5 TESP. P -l<— ).

One can vcnfy that for given Young functions u and p the rclahon (5] Y] @ (resp.

¥ 3 p; Tesp. 4 ) holds iff ©* < P* (resp. o™ + , Tesp. -<— $*) holds (see
[2], [20, Proposition 2.2.4]).
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An Orlicz function ¢ determines the functional m.,: L% — [0,00] by

my(z) = /Q (| x()])dye.

The Orlicz space generated by ¢ is the ideal of L° defined by
LY ={z € L% m,(\z) <oc forsome A>0}.
The functional my, restricted to L¥ is an orthogonally additive semimodular
(see [10], [11]).
L¥ can be cquipped with the complete metrizable linear topology 7, of the
Riesz F-norm

1o, =inf {3 > ():m.p(%) <A}

Moreover, when ¢ is a Young function, the topology 7, can be generated by two
Ricsz norms (called the Orlicz and the Luxemburg norms resp.) defined as follows:

lallo = sup { [ ety € 1" m () < 1}

illzl] = inf{)\ > 0: m,¢(§) < 1}.
For an Orlicz function ¢ let
E? ={zeL’:my(Ar)<oc forall X> 0}
and
L? ={z € L¥yzp,)lob— 0 as E,\ 0}.

It is well known that for p taking only finite values these spaces coincide, i.c.,
E? =L¥.

1. The Mackey topology 7(L¥,L¥")

First we recall the definition and the basic properties of the so-called modular topol-
ogy on Orlicz spaces (sce [13], [14]).

Let ¢ be an Orlicz function vanishing only at 0. For given € > 0, let U,(c) =
{x € L¥:my,(x) < €}. Then the family of all sets of the form

D ( ‘Zj U',p(En))
N=] n=lI

where (z,,) is a sequence of positive numbers, forms a base of neighborhoods of 0 for
a linear topology on L¥, that will be called the modular topology on L¥ and will be
denoted by 7.7

The basic properties of TLP’\ arc included in the following theorem (see {14, The-
orem 1.1], [18, Theorem 2.2}, [19. Theorem 4.2]):
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Theorem 1.1

Let p be an Orlicz function vanishing only at 0. Then the following statements
hold:
(i) Tf is the finest o-Lebesgue topology on L.
(ii) T, C T, and the equality T} = T, holds wheneve{ P € Ay.
(iii) T coincides with the Mackey topology T(L¥,L¥"), whencver ¢ is a Young
function.

To present the crucial for this paper characterization of the modular topology
'Z;;\ we will distinguish some classes of Orlicz functions.

An Orlicz function ¢ continuous for all u > 0, taking only finite values, vanishing
only at zero, and such that ¢(u) — oo as u — oo is usually called a @-function (sce
[10]). We will denote by @ the collection of all -functions.

A Young function i vanishing only at () and taking only finitc values is called
an N -function whenever lll% (u)/u = 0 and uli_.rrcxx } of{u)/u = oo (see [6], [10]). We
will denote by @y the collection of all N-functions.

Let @4 be the collection of all Orlicz functions ¢ vanishing ounly at 0 and such
that p(u) — 00 as u — oc. Let

Doy = {p € Po:p(u) <00 for u >0}
D2 = {p € Bo:p jumps to 00, i.e., p(u) = o for u > up > 0}.

The following characterizations of the modular topology 7;’\ will be crucial for
this paper (scc [13, Theorem 2.1], [14, Theorem 1.2)).

Theorem 1.2
Let o € ®4;(i¢ = 1,2). Then the modular topology 'I,'p" is gencrated by the
family of F-norins:
{1 iLeiy € WG}
where
S = {peW:pay), T,={Yedvip)

Now, for y being a Young function we are going to apply Theorem 1.2 to obtain
a description of the Mackey topology 7(L¥, L¥") in terms of some family of norms
defined by some regular Young functions.

For this purpose we distinguish some classes of Young functions.
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Let ®§ be the collection of all Young functions ¢ vanishing only at 0 and such
that lim p(u)/u=00.
U—oC
Let
@5, = {p e ®§: p(u) < oo forall w>0and 11Liino —""—(:—) = 0},

®G2 = { € ®:p jumps to oo and lin%)""—gl“2 = 0},
u— :

63 ={p € ®§:¢(u) < ¢ forall u >0 and lin%) "’S:‘) > 0},
u—

@6, = {p € B§:» jumps to oc and linb f%l > 0}.
u—

4
Then ®§ = (J ®§;, and the sets ®§;(i = 1,2,3,4) are pairwise disjoint. It is seen

i=1
that ®G, = ®~. Denote by

U (c)={vedy:v b ¢}, whenever ¢ € ®§,,

U (c)={v € dn: v 3 v}, whenever ¢ € ®§,,
. _ 1

Ur.(c) = {¢ € Boz: 1y ¢}, whenever ¢ € By,

U¥ (c) = ®G;, whenever o € BE,.

The following two lemmas will be necded.

Lemma 1.3

Let p € ®§,(i = 1,2) and let ¢ be a p-function such that 3 @ for i = 1 (resp.
¥ A for i = 2). Then there exists vy € U¥ () such that

P(u) < o(2u) for u>0.

Proof. Take an arbitrary N-function ¢ such that 1 < p for i = 1 (resp. ¢ < for
i =2). Let us set

¥a(u) = max (¢(u),¥1(u)) for u>0.

0 for s=0,
p(s) = {

SUDpct<s ”—‘,(—Q for 5> 0,

Let us put
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and let

dolu) = /0 " pls)ds.

To show that g is an N-function we have to check that lirr}) p(u) =0and lim p(u) =
u— Uu—200

oc.
Indeed, since 9 < ¢ we get that ¥(u) < ap(u) for some a > 0 and u > 0. Hence

Do(t (¢ (¢
p(u) = sup E_Z(—) < sup -'}—(—) + sup ﬂ_)_
O0<tzu t O<t<u ¥ 0<t<u
t by (t ol W (t
<a sup —’0()4_ sup vl()za‘r’( )+ 1()
o<t<u b o<i<u u u

Thus lim p(u) = 0, because lin}) p(u)/u = 0 and lin}) ¥1(u)/u = 0. Moreover,
U— 0 u— U—

we have: p(u) = sup wa(t)/t > sup ¥1(t)/t = 91 (u)/u, because 9 is a Young
0<i<u 0<t<u
function. Hence lim p(u) = oc, because lim ¥ (u)/u = oc.
U—xc U-— 0 .
Now we shall show that v Q¢ if i = 1 (resp. v 9 ¢ if i = 2). Indeed, given
¢ > 0 there cxist d > 0 such that

wa(u) = ¥(u) Vi (u) < d',-a(%) for ©>0.

Hence ’
ot dp()  dp

p(cu) = sup 210 < sup () = plu) for u >0,
o<t<Lcu g 0<t<cu 4 cu

$0
o(en) < pleu) - cu < dp(u) for u > 0.

Similarly we can show that yq 3 pifi=2.

At last we will show that ¥(u) < 9¥o(2u) for w > 0. Indeed, we have 1 (2u) >
p(u) - v and ‘

¥a(t) v(t) J v(u)

p(u) = sup ——= > sup — >
0<t<u o<t<u t U

for u > 0.

Thus
Yo(2u) 2 9(u) for u>0.0
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Lemma 1.4 _
Let p € ®§; (i = 3,4) and let ¢ be a ¢-function such that ¢ 3 fori =3 (resp.
¥ 3 for i = 4). Then there cxists a Young function 1y € ¥ (c) such that

(u) < ¥o(2u) for uw>0.

Proof. Take an arbitrary N-function 9, such that ¥, (u) < p(u) and ¥, 4. Let
a > 1 be such that ay (1) = p(1). Let us set

max (t(u). p(u)) for0<u<l,
‘(Dz(’ll. =

max (¢(u), a1 (u)) for u > 1.

Let
0 for s =0,
p(s) = .

SUPp<r<s ”T(') for s > 0,
and let u
wo(u) = / p(s)ds for u > 0.
Jo

We shall show that ¢y € ¥§,, i.e., that lir% Po(u)/u > 0 and lim ¢o(u)/u = oo.
u— U—00
Indeed, for 0 < u < 1 we have

pa(t wlt 4

0<t<u o<i<u t (]

so
2@ 0.
u
Since ¥o(u) > p(3) - 5, we get 11‘13}J Yolu)/u > 0.
To show that ulEI;C Yo(u)/u = oc it is enough to show that lim p(u) = oo.

u—0

Indeed, let ug > 1 be such that ay; (u)/u > K = sup ,(t)/t for u > ug. Then for
0<t<1

litn p(2) > lim
u.—»OI( ) ~ u--0

u > ug we have:

f1o (1 o (t t
p('u,) = sup Y 2( ) = max (K sup wz_()_) > max (K, sup Ilp]_())
o<t<u U 1<t<u L 1<t<u b
= max (K, sup ’l,U1(u)) - mbl('u.).
1<t<y U u
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Thus lim p(u) = oc, because lim 1, (u)/u = .
U—X U0

! .
Now, for ¢ = 3 we shall show that ¥ < . Indeed, given ¢ > 1 there exists d > 1
such that for u >0

¥(u) < d\,o((ﬁ) and aty(u) < ¢1¢(E).

C

Let g > 0 be such that do(ug)/up > K = sup 92(t)/t. Then for u > u, we get
0<t<1

) (s 2 8200

pleu) = sup —— =max| sup —/—, sup
0<t<eun o<t<t b o<e<en

dip(4 d
< max (K, sup #(2) = max (K, elu)
1<t<cu . cu

) _ dp(u)
T oceu
Thus for u > ug

Yo(cu) < plcu) - cu < dp(u),

. .
i.e. wy Q.

At last, we shall show that ¥(u) < 9¥p(2u) for u > 0 (i = 3,4). Indeed, we have
p(2u) > p(u) - u and

sup —— > sup —— for uw>0.

p(u) = «
0<t<u O<t<u U

Thus (u) < ¥o(2u) for v > 0. O

We are now in position to present a description of the Mackey topology
7(L¥,L¥") in terms of some family of norms defined by some regular Young func-
tions.

Theorem 1.5

Let p € ®E; (i =1,2,3,4). Then the Mackey topology 7(L¥,L¥") is generated
by the family of norms:

{- Nbyire: v € TG (c)}-
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Proof. In view of Theorem 1.1 the equality 7' = 7(L¥,L¥") holds. Let ¢ €
¢ (i =1,2,3,4). Then p € &y, for i = 1,3, and ¢ € Pp for i = 2,4. Thus,
according to Theorem 1.2 the Mackey topology 7(L¥, L¥") is generated by the family
{1 WLe: ¥ € UE} for i = 1,3, and by the family {§ - byze:% € ¥4} for 1 =2,4.
Now let ¢ € UF, (resp. ¢ € ¥,), and let 7 > 0 be given. In view of Lemma
1.3 (resp. Lemma 1.4) there exists ¥p € U:(c) for i = 1,3 (resp. o € ¥§;(c) for
i = 2,4) such that ¢(u) < 9p(2u) for u > 0. Hence

12k <1 2z, foral ze€ LY. (1)
Since the F-norms | - ky, and ||| - |||, are equivalent on L¥°, there exists ry > 0
such that
B(%’)o)(rl) c Bk’f‘o (7')> (2)
where

By,(r)={z € L zpy, <1} and B,(r1) = {z € L¥:|||z||lyo < 1}

We shall show that By )(5) N L? C By(r). Indeed, let = € By,)(%5) N L¥.
Then [||2z]||w, < r1; hence by (2), | 22 ky, < r. Next, by (1) we get that Jz p, < 7.

Thus we proved that the topology 7 generated by the family of norms
{11 - Nw: % € ¥E(c)} is finer than 7(L¥, L¥").

On the other hand, since for 9 € ¥¥;(c) the F-norms| -}y and ||| ||| are equiv-
alent on L¥, we get that 7(L¥, L*") is finer than 7. Thus the proof is completed. O

As an application of Theorem 1.5 we obtain a characterization of absolutely
continuous (order continuous) seminorms on L¥ (sce [2, Theorem 3]).

Corollary 1.6
Let p € ®f; (i =1,2,3,4). Then for a Riesz seminorm p on L? the following
statements arc cquivalent:
(i) p is order continuous (i.e., p(xz,) | 0 whenever z, | 0 in L¥).

(ii) p is absolutely continuous (i.c. p(zg,) — 0 whenever E, \, ) and = € L¥ ).
(iii) There exists ¢ € ¥¥.(c) and a number a > 0 such that

p(z) < alllz|l], for =z e LY.
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Proof. (i)&(ii) See [9, Theorem 2.1].

(i)=>(iii) Lety € ®, (i =1,2,3,4). Since 7(L¥, L¥") is the finest o-Lebesgue
topology on L¥ (see Theorem 1.1) in view of Theorem 1.5 and [5, Ch. 4, § 18, (4)]
there exist ¥1,..., %, € ¥¥.(c) and a number a > 0 such that

p(@) < amax{|llallly,. - .. llzllly,} forall «e LP.

Let us put
P(u) = max (P1(u),...,¥n(u)) for u>0.

Then ¢ € U3.(c) and |||z|||y, < |||z]||4 for z € L¥, so p(z) < all|z]||y for = € L¥.

(ili)=(i) Since 7(L¥,L¥") is a o-Lebesgue topology, by Theorem 1.5, for each
v € ¥ (c) the norm ||| - ||| is order continuous on L¥; so p is also order continuous
on L¥. O

2. Weak compactness in Orlicz spaces

Throughout this scction we assume that (€2, X, i) is a o-finite measure space.

For any Young function i the following criterion for relative o(L¥,L¥")-
compactness is well known (see [11, §28], [8, Ch. I, §3, Theorem 3], [20, Corollary
4.5.9)):

Theorem 2.1

Let v be a Young function. For a subset Z of L¥ the following statements are
equivalent:
(i) Z is relatively o(L¥,L¥")-compact.
(ii) Z is o(L¥®, L¥")-bounded and for cach y € L¥"

lim sup/ lz(t)y(t)|dp = 0 whenever E, \ 0.

=0 rcZ JE

The next theorem presents conditions for relative o(L¥, L¥" )-compact embeddings
of Orlicz spaces. This theorem was proved in a different way in [20, Theorem 5.3.3]
for y being an N-function.
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Theorem 2.2
Let  and ¢ be Young functions.

1 s
10 Ifp < ¥ (resp. p < ¢ if u(Q2) < oo, resp. < ¥ if p is the counting measure
on N), then the embedding
LY — LY

is relatively a(L¥, L¥" )-compact (i.c., every norm bounded subset of L¥ is relatively
o(L?,L¥")-compact).

20 Let LY C L¥ with lim ¥(u)/u = o, and let the measure space (S}, ¥, 1) be

u —roo

infinite and atomless (resp. finite and atomless; resp. @ = N with p being the
counting measure). If the embedding

itLY — L¥

. a 1 s
is relatively o(L¥, L¥ )-compact, then p < v (resp. o < ¥; resp. @ < ).

Proof. 1°. We have LY C L¥ and the Young function ¢* is finite valued because
lim ¥(u)/u = oo. Let the set Z C L¥ be norm bounded, i.e., sup{|||z|||y:z € Z} <
uU—0c

oo. For y € L¥" let us put

pa) = sup{ [ e(t)ldp:z € 2}.

In view of Theorem 2.1 we have to show that the seminorm pz is absolutely contin-
wous on L¥, ie., pz(yg,) — 0, as E, \, 0 for y € L¥". Indeed, let y € L¥" and

a 1 s
E, \, 0. Since ¢ < v (resp. p < ; resp. @ < ¥) we get that ¥* 4 o* (resp.

P* <l1;p*; resp. ¥* Q¢*). Hence L¥" C E¥" = LY (see [20, Theorem 5.3.1}).
By applying Hélder’s incquality (see [20, Ch. III, §3]) we get

pz(YE,) = sup { /n lz(t)yg, (t)|dp:x € Z}

< lyz.lly- -sup { lizllly: = € 2}

Thus pz(yr,) — 0, because y € LY".
20, Since LY C L¥ we have L¥" C LY, and +* is finite valued. To prove that
a 3 1 - -
@ < U (resp. @ < 1, Tesp. p < ) it is enough to show that L¥” C E¥", because

this inclusion implies that * 3 p* (resp. ¢* a ©*; resp. ¥* llap*) (see {20, Theorem
5.3.1]).
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Indeed, let y € L*". Since the unit ball By(1) = {z € LY:|||z|||ls <1} C L¥ is
a(L¥, L¥ )-compact, in view of Theorem 2.1 we get that

Iyl = sup { [ lethvm, (Olduic € L0 € By}~ 0 as En 0
'T'his means that y € LY = E¥™. 0O

Corollary 2.3

Let ¢ be a Young function, and let the measure space (2, %, 1) be infinite and
atomless (resp. finite and atomless; resp. Q = N with u being the counting measure).
Then the following statcments arc equivalent:

(i) @ satisfies the $7o-condition for all u (resp. for large u; resp. for small u).
(ii) Every norm bounded subset of L¥ is relatively o(L¥, L?")-compact.

The main aim of this section is to show that a relatively o(L¥, L¥" )-compact
subset of L¥ (for ¢ being a finite valued Young function) is norm bounded in LY
for some regular Young function ¢ dependent on ¢.

This result extends the well-known Ando’s criterion for relative weak compact-
ness in LY obtained for ¢ being an N-function and finite measures (sec [2, Theo-
rem 2]). For this purpose we distinguish some classes of Young functions.

Let ®{ be the collection of Young functions taking only finite values and such
that 11}_12) o(u)/u=0.

Let
1 ={p€®f:p(u) >0 foru>0, and ullrr;o ‘p(u“) =oc} ,
(a={p e df:p(u) >0 foru>0,and 1}520 f% < oo},

€3 ={p€®:p(u) =0 ncaru>0, and lim Y = oc},

u—oo U

B¢, = {p € BS:p(uw) =0 mear u> 0, and lim €% < x5} .

U-—

=

Then & = Ej ®f,, and the sets ®f; arc pairwisc disjoint. It is seen that ®$, = dy.
DenotcT))lr
V() ={Yednyp < ¥}, whenever € @5,
Wc)={pedn:y < ¥}, whenever ¢ € @5,
UEy(0) = (¥ € Vgip < ¥}, whenever € 05,
U, (c) = ®5, whenever o € ®5,.

'The next important lemma shows the relation between the sets ®; and ®§;,
and the sets ¥§;(c) and ¥¥,(c) (i=1,2,3,4).
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Lemma 2.4
10. Let "2 € @81 (7. = 1,2; 37 4) Then ()0* € Qil and

(T6(0))" = ¥%; ().
20. Let © c @f"' (2 = 1,2,3,4). Then (p* € @81 and

(¥5:(0))" = §, (c).

Proof. In view of [17, Lemma 3.1] ¢* € ®§; whenever » € ®f;, and ¢* € ®;
whenever o € 8§, (i =1,2,3,4).

But it is known that for Young functions ¥ and ¢ the relation ¥ d (resp.
P 3 p; resp. ¥ él ) holds if and only if the relation ¢* % ¥* (resp. ©* < *; resp.
o™ -L— ¥*) holds (see [20, proposition 2.2.4]). O

Now we are ready to obtain our desired description of relatively o(L¥,L¥")-
compact sets in L¥.

Theorem 2.5

Let g € ®f; (i = 1,2,3,4). For a subsct Z of L¥ the following statements arc
equivalent:
(i) Z is relatively o(L¥, L¥")-compact.
(ii) There exists ¢ € U¥,(c) such that Z C LY and

sup {||z|ly:z € Z} < .

Proof. (i)=-(ii) Since the set Z C L¥ is relatively o(L¥?, L¥" )-compact, in view
of Theorem 2.1 the seminorm pz(y) = sup{[ |z(t)y(t)|du:z € Z} is absolutely
Q

continuous on L¥". Hence by Corollary 1.6 there exist 1 € \Il(",’i. (¢) (so LY  C E¥o)
and a number a > 0 such that

pz(y) < alllyllly, for yeL¥ . (1)

We shall show that Z C LY and sup{||z|ly;: 2z € Z} < a.
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Indeed, let z € Z. Then by (1), for y € L¥?", |||yl||ly, < 1 we get that

| leu®ldn <a 2)
Since the measure space (2, £, 1) is o-finite, there exists a sequence (§2,,) of measur-
able subsets of Q such that Q, 1,2 = |J Qn, () < co. Let z € L¥° and z # 0.
n=1
For n =1,2,... denote by
z(t) if|2(t)| <nandteq,,
z(n)(t)z{ (&) i [=(0) .

0 elsewhere.

Then |z(t)z(™ (t)| Tn |z(t)2(t)] on Q, so by Fatou's lemma and (2) we obtain
1 1
e [ 10Ol < e sup [ 202 (Oldp
Tellen Ja*®) Mellen o Jo

< sup {

| lely(Oldu:y € 17 lyllles <1} <a.

Hence x € (L¥°)* = L¥%, where (L¥0)* denotes the Kothe dual of L¥°. Moreover,
since

llsg = sup | /Qw(t)Z(t)dul= z€ L%, 2y < 1}

we get that ||z|lys < a. Putting 1) = 45 and using Lemma 2.4 we get that ¢ € ¥¥(c)
and Z C LY with sup{||z|y:z € Z} < a.

(ii)=() It follows from Theorem 2.2. O

As an application of Theorem 2.5 we obtain a representation of L¥ as the union
of some family of other Orlicz spaces.

Corollary 2.6
Let p € ®f;, (i =1,2,3,4). Then the following equality holds:

L? = | J{L¥:% € ¥} (0)}.

Proof. From Theorem 2.5 we obtain that LY C [J{L¥:¢ € ¥%,(c)}. On the other
hand, L¥ C L¥ for each ¢ € ¥%(c). O

Remark. The equality from Corollary 2.6 for i = 1,2 was obtained in a different
way in [14, Theorem 2.6).

At last, we apply Theorem 2.5 to examination of the absolute weak topology
lo|(L¥,L¥") (sce [8, Definition 2, p. 27]).
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Theorem 2.7
Let p € ¥, (i =1,2,3,4). For a sequence (xn) in L¥ the following statements
are equivalent:
(i) z, — 0 for |o|(L¥,L¥").
(i) 2, — O(u) and the set {z,,} is relatively o(L¥, L*")-compact.
(iii) =, — O(u) and sup,, |zl < oc for some Young function v € ¥¥,(c).
Proof. (i)<(ii) See [16, Theorem 2.1).
(ii)¢>(iii) It follows fromn Theorem 2.5. O

Theorem 2.8

Let o € ®$, (i =1,2,3,4). Ifyp € ¥¥,(c) and Z C L¥ C L¥ and sup{||z||y:z €
Z} < oc, then the topologies Ty and |o|(L¥, L¥") coincide on Z, i.c.,

Tz = 0l(L?, L") 2.

Proof. It is well known that T, C lo|(L¥?,L¥ )z (see [7, Ch. X, §5, Lemma
1]). Since 7o is a linear metrizable topology from Theorem 2.7 it follows that
lo|(L?, L?" )z C Ty, ;- O

Theorem 2.9
Let o € @, (i = 1,2,3,4). For a subset Z of L? the following statements are
equivalent:
(i) Z is relatively compact for |a|(L?, L¥*").
(ii) Z is relativelly compact for Ty, and there cxists a Young function ¢ € ¥¥,(c)
such that Z C LY and sup{||z||y:z € Z} < oo.

Proof. It follows from Theorem 2.5 and [8, Ch. I, §3, Corollary of Lemma 11]. O

3. Applications to the theory of Lebesgue spaces

In this section we will apply Theorem 1.5, Corollary 1.6, Theorem 2.5 and Corollary
2.6 to the theory of Lebesgue spaces. We will assume that (Q, X, p) is a o-finite
measure space.

A. Let

p(u) = x1{(w) V xoo(u) for u>0,
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where
0 for0<u<l,
x1(u)=u for u>0, xo= {
oo foru>1.

Then ¢ € ®§, and L¥ = L' N L®. Moreover, by Lemma 2.4, p* € ®$, and
2 = (X1 V Xoo)* ~ X3V X% = Xoc V X1, 80 L¥" = L! + L*® (sce [4, Theorem 3)).

Theorem 3.1

The following statements hold:
1°. The Mackey topology T(L' N L>®, L' + L*>) is generated by the family of norms:

{1 Hlyizrare v € BGy}.
29, For a Riesz seminorm p on L' N L™ the following statements are cquivalent:
g
(i) p is order continuous.
(ii) There exist 4 € ®§; and a number a > 0 such that
p(z) < d|||zllly for ze LinL>.
3°. For a subset Z of L' + L™ the following statcments arc equivalent
(i) Z is relatively o(L' + L™, L* N L>)-compact.
(ii) There exists € ®$, such that Z C LY and
sup{|||z||lv: =z € Z} < <.

4. The following equality holds

L'+ L™ = | J{LY:9 € 853}

B. Let p> 1,q>1and%+i=1. Let

w(u) = xp(u) V Xeo(u) for u>0,

where xp(u) = wP for u > 0. Then ¢ € ®§, and LY = LP N L. Moreover, by
Lemma 2.4, * € ®f, and ©* = (XpV Xoo)* ~ X5 A X2 = XqAX1i 50 L¥" = L' + L.
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Theorem 3.2.

The following statements hold:
1°. The Mackey topology T(LP N L*, L9 + L!) is generated by the family of norms:

{lll |lpjLrnL=:v € @y and limsupw < oo}.
u—0 up

29. For a Riesz seminorm p on LP N L™ the following statements are equivalent:
(i) p is order continuous.
(ii) There exist an N-function 1 with limsup -"igu#l < oc and a numbera >0

u—0
such that
p(z) L all|z|lly for =z € LPNL*.

39, For a subset Z of L9 + L! the following statements are equivalent:
(i) Z is relatively (L9 + L', LP N L>)-compact.

(ii) There exists an N-function ¢ with x < % such that Z C LY and
sup{[[[zlll4: = € Z} < o0.

49, The following equality holds:

L+ L =| J{L¥:y ey and x, < ¥}

C.Letp>1,q>1a.nd%+g=1. Let

plu) = x1(u) V xp(u) for u>0.
Then ¢ € ®§; and LY = L' N LP. Moreover, by Lemma 2.4, p* € ®%;, and
©* = (x1V Xp)* ~ X1 AXp = Xoo A Xq- Hence L¥" = L9+ L*°.

Theorem 3.3

The following statements hold:
19, The Mackey topology (L' N LP, LY + L) is gcnerated by the family of norms:

{l“ “WlyizrnLe: % € @53 and limsup (u)

u—oc UP

<ocl.

29, For a Riesz seminorm p on L' N LP the following statements are equivalent:
(i) p is order continuous on L' N LP.
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(ii) There exist ¢ € ®§; with lim sup ""S,f) < o0 and a number a > 0 such that
U—00

p(z) < alllz]lly for ze€ L'NLP.

39. For a subset Z of L9 + L™ the following statements are equivalent:
(i) Z is relatively o(L? + L*, L' N LP)-compact.

1 .
(ii) There exists ¢ € ®§5 with xq < v such that Z C LY and
supd{llzlllg: = € Z} < .

49. The following equality holds:

1
L1+ L° = J{L¥:9 €3}, and x, < ¥}
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