Collect. Math. 44 (1993), 211-215
(© 1994 Universitat de Barcelona

Boundary spaces for inclusion map between
rearrangement invariant spaces

S. YA. NoviKkov

Samara State University, 443023 Samara 23, Russia

ABSTRACT
Let E([0, 1};m) be a rcarrangement invariant space (RIS) on [0, 1] with
Lebesgue measurc m. That is, E is a Banach lattice and if m(t: |z(t)| >
1) = m(t: |y(t)] > 7)VT, then ||z||g = |ly|lg. For cach of this kind of
spaces we have inclusions C C Lo, C E C L; and canonical inclusion
maps I{C, E) or I(E}, E»). The aim of this paper is to represent a number

of RIS, which are boundary for various properties of canonical inclusion maps.
There are slill some unsolved problem in this area.

1. Strict singularity

An operator T' € L(X,Y') between two Banach spaces (BS) X and Y is called strictly
singular if there is no infinite dimensional subspace Z of X such that the restriction
T|Z is an isomorphism. The set of this kind of operators will be denoted o(X.,Y).
It is an ideal in the Pietsch scnse.

According to a well-known Grothendieck’s theorem I(Ly,Lp)€ 0,1 < p < 00

(see, for example, the text book of W. Rudin). A more gencral fact seems to be
true:

Theorem 1

Let E be a RIS and E # Ly,. Then I(Ly, E) is strictly singular.
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Proof. The function @ge(t) := ||1j04lle. the so-called fundamental function of the
space E is a quasi-concave function. We may define Lorentz space A(pg) =
{f: jol fr*dp, < oc}, where f* is the decrcasing rearrangement of |f|, besides we
have another inclusion: £ D A(p,,), E # L. It's known, that if E # Ly, then the
function ¢, is continuous at zero and the space A(yp,) is weakly sequential com-
plete. From this we deduce that the p-convexification A,(p,) == {f:1fIP € Alpg)}
is reflexive for 1 < p < 00. So, we have: E D A(p,) D Ay(pr) D L. As Ly has
the Dunford-Pettis property (i.c., VY,V weakly compact T' € L{Ly,Y),V convex
weakly compact K C L., I'(K) is compact in Y'), we have that the unit ball By of
cach subspace II C F, such that H C L., is compact in E. O

In spite of the fact that Theorem 1 solves the problem of strict singularity of the
inclusion map I(L,., E), there arc still left a lot of problems concerning inclusion
maps between general RIS Ey C E,. For example, there is no full description of the
set of such RIS F, for which I(E, ;) € o. In this direction we know only a partial
answer:

Theorem 2

IfRIS E C Ly, then I(E. L)) € o iff E 2 G, where G is the closure of C0,1]
in the Orlicz space Ly, N(u) = ¢** — 1.

Proof. If E D G, then according to the classical result of Rodin-Semenov ([6], [2]),
E contains an infinite dimensional subspace IR closed in L;.

Now supposc that I(E, L) is not strictly singular. It means that E contains
an infinite dimensional subspace H, closed in L,. This subspace is closed in Lq
also (cf. condition). Let {f;} be a sequence of elements of H, equivalent to the
unit basis of Iy and ||fillz, = 1,2 = 1,2,.... We can assume that f; — 0 weakly
in Ly and liminf ||f;]|,, > 0; this may be done by choosing subsequences. The last
inequality ensures the existence of a function 0 < g € Ly with m(supp g) > 0 such
that f2 — g weakly in L;. Now we will use the following thcorem of V. Gaposhkin
(1], 'Th. 1.5.1):

If {fr} is a sequence of functions such that:

1) | fell. =1 V&;

2) fr — 0 weakly in Ly;

3) 3g € LT, |lgll, = 1 such that fy, — g weakly in Ly;
then it’s possible to choose a subsequence {fk, } such that the next equality, like in
central limit theorem, takes place

2

: 1 Y_ 1 [t —u
n}l_!;[locTrL {t. —ﬁgfk'(t) > .s} =5r /0 dt/;/mexp (T)du.
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Using this fact it’s not difficult to see that the function (In %)f € E”, where E” is

the Kothe dual of E. The last condition is known to be equivalent to the inclusion
£E>G. 0O

2. Absolutely summing properties

DEFINITION. An operator T is called (g,p) - absolutely summing (7" € I, ,(X,Y)
if3C > 03V{1’]_,.’L‘2,. . .,.’L‘n} eX

(Slr=zr)” < osw {( X 1FEF) " 1Fle <1},

i .

"T'his definition makes sense only if 0 < p < ¢ < oc; if p > ¢ then only 0 - operator is
(g.p) - absolutely summming. For p = ¢ we usc the notations 11, and “p — absolutely
summing”.

Theorem 3

Let Ey C Ey and p > 1. The inclusion map I(E),E,) € II, ff Ey = Ly, Ey D
Ly.

Proof. Sufficiency is obvious. Now assume that I(F1, Ey) is p - absolutely summing,.
Then cach weak convergent sequence in E; is convergent in norm in E. Repeating
the proof of Theorem 1 we deduce that E; = L.. From classical factorization
theorem of Pietsch we have: 3 probability measure v on [0, 1] such that

/.
191z, <m0 [ 15(6)Pavts)) ™", £ € cio,
Now let t € [0,1] and fi(s) := f(t + s), addition by rn_qd 1. We have:
1, < mD( [ o)Pan()), te 0,1)

Integrating this inequality by Lebesgue measure, we have

1fllz, < mDflle,, feCl0,1].0

In order to give the analogous fact for (g, p) — absolutely slumming opcrators, we
again rceturn to Lorentz spaces Lgq,;1 := A(pg), where pq(t) = t7. Another description
of its norm is as following: ||f|| = [;°(m(|f] > t))%dt.
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Theorem 4
Let 1 < p < g < . The following assertions are equivalent:
1) I(C[O= 1]; E[Ov 1]) € HG,P;
2) AK > 0:p (t) < Ktv, 0<t< 1
3) ED Lq_']_.

Proof. This theorem may be easily deduced from the recent factorization theorem of
G. Pisier [5], but we prefer the direct way from the rather old paper of I. Novikov [3)].
1) = 2). Let I(C, E) € I, 5. Then, as is known from the results of B. Maurcy

I €11, ;, that is
. 1/q
3K > 0:V{z1, ..., 2.} € C[0, 1], (Z ||xi||q) < K“ > Jail ‘

This inequality may be continued on {z1,...,Zn} C L. If we set z; = 1r= e
then np?(1) < K, n=1,2,..; that is cquivalent to 2).

2)=>3) is well-known ( [7]

3)=1). Simple calculations (cf. [8] for ¢ = 2) show that I(C, L, 1) is (g,1) -
absolutely summing. O

There are some open problems in this area. As far as I know, there is not a

single result concerning the (g, p) — absolutely summing property of inclusion map
I(Ey, E,) for another RIS besides L,-spaces.

3. Another ideal properties

DEFINITION. An operator 7' € £(X,Y) is of g,aussmn cotype ¢ if for some C > 0
and all sequences (z;) of X, we have () [|Tz;||9) a < CE||lg;x;||, where (g;) denotes
a scquence of independent normalized N(0, 1) —gaussian random mnableb The sct
of all operators of such kind forms an ideal and will be denoted by C,, Not long ago
M. Talagrand (preprint) and S. Montgomery-Smith (disscrtation) found boundary
spaces for the gaussian cotype 2 - property of inclusion map. Their result is the
following

Theorem 5

I(C, E) is of gaussian cotype 2 iff E D L¢ 2, where ®(t) = t?logt. The space
Ly 2 is defined by the following norm:

I FIf = (/9(m(|f| > t))dtz)]/z, where 6(t) = tln%.
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It's not difficult to show that Lg s D L2 and so I(C;La;) € Iz, \Céy), ie.
we have a nice counterexample to the conjecture Céy ) = II3,1. Thus, the space La;
is still a rich source of counterexamples. Another example of this statement is the
following. Let E C L,. The following conjecture was made by M. Braverman, N.
Carothers and others. If (f)) C E and (f;) arc independent, identically distributed
random variables such that E'f; = 0, then [span (f;)]g is isomorphic to l3. But this
conjecture is not true. As shown in [4] the following equality is valid:

A(La,) = {(a;) € R*:Y" a;f; converges for cach sequence of iid. {fi}: [fi =
0,fi € Lyy} = la1. If the conjecture were true, we would have to have that
A(L2,;) =ly. The Theorems 1-5 give the basis for the following

CONJECTURE. For each ideal U of operators there exists a boundary RIS Ey such
that I(C,E) € U iff E D Ey, where the inclusion in the right hand may be strict
or unstrict in dependence of the ideal ¢f. As far as I know there is no answer to the
question about the boundary space for the ideal of Rademacher cotype ¢ — property.
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