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Inequalities and interpolation
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ABSTRACT

Some examples of the closc interaction between inequalities and interpolation
are presented and discussed. An interpolation technique to prove generalized
Clarkson type incqualities is pointed out. We also discuss and apply to the
theory of interpolation the recently found facts that the Gustavsson-Pectre
class PT~ can be described by one Carlson type incquality and that the
wider class Py can be characterized by another Carlson type inequality with
“blocks”.

0. Introduction

The first interpolation proof of an inequality (Hausdorf-Young's inequality) was
given already in 1926 by M. Ricsz [56]. He wanted to find a simple proof of the
Hausdorff-Young incquality and this was the main rcason to prove the convexity
theorem of Riesz. Nowadays it is well-known that also most of the other classical
inequalities (c.g. those by Palcy, Young, Hélder, Minkowski, Beckenbach-Dresher,
Clarkson, Carlson, Grothendieck ctc.) can easily be proved by using such interpola-
tion results. On the other hand, inequalities have been used to develop the theory
of interpolation and its applications in various ways. In this paper we will present,
discuss and complement some recently obtained examples of such interactions be-
tween inequalitics and interpolation in both directions. Some new examples, proofs
and results are also included. .

1 This research was partly supported by a grant of the Swedish Natural Science Council (Contract
F-FU 8685-300).

181



182 MALIGRANDA AND PERSSON

This paper contains the following contributions: For the reader’s convenience

and as an introduction of some ideas we use Section 1 to prescnt and discuss four
examples of well-known or “folklore” interpolation proofs of classical inequalities.
In Section 2 we present an elementary interpolation technique to create Clarkson
type incqualities and we also give some examples of results obtained in this way (see
Theorems 1 and 2). In Section 3 we discuss some recently found results concerning
gencralized Carlson type inequalities (see [33]) namely that the Gustavsson-Peetre
class P™~ can be cxactly described by one Carlson type incquality (see Theorem 3)
and that the wider class Py can be exactly characterized by another Carlson type
inequality with “blocks” (sec Th. 4). This exact information about incqualities
gives us new information in the theory of interpolation c.g. concerning the +—
mcthod by Gustavsson-Peetre (sce [21]) and that the Peetre interpolation functor
(see [45]) on a couple of Banach lattices can be characterized by the Calderdn-
Lozanovskii construction for every ¢ € 5. Ovchinnikov [43] was the first who used
the famous Grothendieck incquality to prove that the Gagliardo completion (-)¢
of the Calderén-Lozanovskii construction is an interpolation functor on a class of
Banach function spaces. Finally, Section 4 is reserved for some concluding remarks
and additional examples. .
The fundamental interpolation theorcms, e¢.g. the Ricsz-Thorin and Marcinkiewicz
interpolation theorems, and the basic results of the real interpolation mcthod of
Lions-Peetre and the complex interpolation method of Calderén can be found in the
books of Bennett-Sharpley [6], Bergh-Lofstrém [8], Brudnyi-Krugljak [11], Krein-
Petunin-Semcnov [32] and Tricbel {64].

CONVENTIONS. For 0 < p < oc,p’ is defined by % + z% =1 (p =occforp=1and
p' =1 for p=oc). Let f* denote the nonincreasing rearrangement of a measurable
function |f| on a measure space (2, 4). The Lorentz Ly g-spaces (0 < p < 00,0 <
q < o) are defined by using the quasinorm (with the usual supremum interpretation

when ¢ = oc)
. AN
e, = ([ re0g) "

1. Interpolation proofs of some classical inequalities

ExXAMPLE 1 (Hausdorfl-Young's and Paley’s incqualities): Consider the Fourier
transform

Fi(z) = / e~ f(y)dy.

arn
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Then we have boundedness

F:L; — L, with the norm M; <1, and

F: Ly — Ly with the norm M, = (2m)% (the Parseval equality).
1°. By using complex interpolation we obtain boundedness

F:L, = [L1, Lo]e = [Loo, L2]e = Ly,

where % =10 4 g and $n= 17_00- + % (which gives ¢ = p’) with the norm My <
MI=OME < (2m)%# = (2r)¥ . Equivalently, we can formulate this as the Hausdorff-
Young inequality:

IF fllzy < @m)"/7 | fllzp ¥f € Lpy 1 Sp < 2. (1.1)
20, By using real interpolation we obtain boundedncss

F:Lp_'q = (Ll, L‘Z)O,q — (L.,o, Lz)o,q = Lpl,q,

in

where 1 < p < 2,0 < q < 00, with the norm My < CMI"OJ\/Ig <C(@2nm)=.
Thus, in particular, we have proved the following version of the Paley inequality
(sometimes also called the Hardy-Littlewood incquality):

IFflle,  <Clflle, Vf € Lpl<p<2. (1.2)

n

Remark 1. The best constant in (1.1) is not (27)7". In fact, Babenko and Beckner
(cf. [2]) proved that the best constant is equal to Cpn = (Ap)"(27)7", where 4, =

[pilﬂ' /p’#]%. The best constant C = C,, ,, in (1.2) is not known for p # 2.

Remark 2. Some generalizations of the Hausdorff-Young inequality for the Fourier
transform on Orlicz spaces are done by Luxemburg [35] and Jodeit-Torchinsky [27],
and on the rearrangement-invariant spaces by Bennett {4], [5]. Moreover, Russo

[58] has obtained some generalizations of the Hausdorff-Young theorem on integral
operators.

Remark 3. According to 1° and 2° we scc that, for 1 < p < 2,
feL,=>FfelLy (*)

and
f € Lp = Ff < Lp',p7 (**)
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respectively. Moreover, since Ly , is continuously and properly embedded in Ly,
we scc that (xx) is a sharper criterion than (x). Moreover, it can be confusing to
compare these criterions with the following criterion (see [47]):

0 , 1 (2-)p/{p-1)
fELP=>/ |Ff|ph(ma,x(|Ff|,—)) dr < o0, (% % *)
Jo |Ff|

for some function h > 1,1/th(t) € L;(1,oc) such that h(z)z* is a decreasing or
increasing function of z for some real number a (1 < p < 2).

It is possible to prove directly that (**) and (% * %) are, in a way, equivalent (see
[48]). Another way to understand this fact is to use interpolation in the following
way: it is well-known that the Lorentz space L, , coincides with the interpolation
space (Lpy: Lp, )np:0 <1 < 1,1/p" = (1 —1n)/po +n/p1. Morcover, by restricting
the gencral descriptions of real interpolation spaces in off-diagonal cases obtained in
[48] to this case we find that (Ly,, Lp, )n,p 8lso coincides with the spaces described

by the right hand side of (* * %) (see [49], Corollary 3.3 and cf. also [38]).

Remark 4. This interpolation proof shows that both (1.1) and (1.2) are true not
only for the Fourier operator but also for any operators bounded from L) into Ly
and from L, into L.

EXAMPLE 2 (Young's inequality): Here we consider the convolution operator

Tf(z) = [

A

k(z—y)f(y)dy =k * f(z), with k€ L, (K"),1<q< .

Then we have boundedness 1': Ly — Lo with the norm < [|k|l., (by the Holder
inequality), and T: L; — L, with the norm < ||kl (by a generalized Minkowski
inequality).

By using complex interpolation we obtain boundedness

T:L, = [Ly,L1lg = [Loo, Lgle = Ly,

wherel=¥+%and$=lo:cg+% (which gives 1 <p < ¢ and%=%+%—l)
with the norm < ||k||.,.
Thus we have proved the Young incquality: if 1 < q < 00,1 < p < ¢ and % =
1411, then
P + q r
Ik fllo, < lIkllzylfllc,- (1.3)

By instcad using real interpolation we obtain the inequality

”k * f”Lr,.\l S C”k”Lq”f”Lp,s’ (1'4)

1<q<oc,1<p<q',%=%+%—1 and s > 0.
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Remark 5. Beckner [2] found the following sharp form of the Young incquality (1.3):
e * fllz, < (ApAgAr) Ikl IfllL, Yf € Ly(R™)-Vk € Ly(R"),

il n s
where A, = [s7/s'%]% and where (A,A,A.)" is the best constant. The best con-
stant C = Cp 4,r.n in (1.4) is not known when either r # p or r # ¢.

Remark 6. The inequality (1.4) is still true even if we only assume that k €
L4, (R™). This sharper result is due to O'Neil [42]. All such incqualities are very
useful for numerous applications, e.g. in fractional diffcrentiation, imbeddings be-
tween Sobolev spaces etc.

Remark 7. A bilinear interpolation theorem for the general K-method of inter-
polation (generated by the Banach scquence lattices @, not only by 1,(27™%)) is
equivalent to the boundedness of the convolution operator from @y x @ into ® (sec
[1] and [36]). In this connection we remark that Cwikel and Kerman [18] recently
have used interpolation to prove some new interesting incqualities of Young type to
hold for the more gencral casc with positive multilinear operators acting on weighted
L,-spaces.

ExAaMprLE 3 (Holder’s inequality): We notc that the multiplication opcrator
T(f,g) = fgis a bilincar bounded operator from Ly, X Ly into Ly and from Ly X Ly
into Ly, and that

“T(f7g)”Ll < ”f“[hx-, “g”fq Vf € L Vg € L,
IT(f, gile, < Nfllellglle,. Yf € L1 Vg € Lec.

Using the interpolation theorem for bilinear operators in complex spaces (Calderén
theorem [12]) we find that

1:[L1,L)o X [Locy Li]o — [L1, Li]g with the norm < 1.

Since [Ly, Lyl = Ly, (p = %),[Lx,Ll]o = [L1,Loc)i0 = Ly (p' = ﬁ) and
[L1, Ly]o = Ly we obtain the Hélder inequality

I£glley = ITCf ey < N Fllzpll9llz, VF € Lp Vg € Ly (1.5)

Remark 8. It is well-known that the Minkowski and Beckenbach-Dresher inequalities
follow from the Holder inequality (1.5). Herc we remark that also the Carlson
inequality (see [14])

[o o] o' 1/4 20 ]/4
Zan <Vr ( aﬁ) (Z nZa%) ) (1.6)
n=1 1

n= n=1
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where a,, arc positive numbers, follows from the Holder inequality in the following
way (cf. Hdrdy [22])

Let a = Z n?a2 and 8 = Z a2. Then

n=1

2 2
n = InV '3 P -
(’;a ) (nz=:la aten \/a-i—[}n?)

<3 fn?
S D
o oo 1/2 /o 1/2
= 3 — 2 2,2
< 2a,B/0 Wd.z, =myaf=mn (‘;an) (,;n an) .

(Carlson in his original paper [14] suggested that (1.6) docs not follow from the
Holder incquality). It is obviously easy to generalize this proof in various directions.
In our Section 3 we discuss some new precise forms of Carlson type inequalities,
which recently have been proved partly guided by the Hardy idca presented above
(sce [33]).

ExaMPLE 4 (Clarkson’s incqualities): Lot 15,2) be the 2-dimensional complex /-

](2)

space. Clearly, I;” can be identified with €2 endowed with the p-norm

(e, B)llp = (lal? + [o[")!/2.

We consider an elementary operator T+ l§,2) — 15,2) given by

1'(a,b) = (a+ b,a — b).

By the triangle incquality, 1% lg'z) — l(of-,) has norm 1 and, by the parallelogram law,
T: l(lz) — léz) has norm 2%. Therefore, by using complex interpolation, we find that,

forl<p<2,T: lé,z) — lr(f) has norm < 2Fl’, ie,forl<p<2andallabel,
(la+ b +la — b7 ) /7" < 2P (jaf? + [b]P) /P (L7)

By integrating (1.7) and using standard arguments we obtain the Clarkson incqual-
ities:

((ll2 + yll2, ) + (llz = yll,)*) 7 < 2Y7 (I2ll2,)? + (yllz,)) 7, 1<p <2,
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(e +yllz,)? + (llz =yl )P < 2P (Jl2)2, )P + (llyll, )P )7, p = 2.

Remark 9. Consider 4, = (|al? + |b|”)% and B, = (la + b + |a — bjP)s. It
is well-known that A,, B, are nonincreasing in p and that 2-1/?PA, 2-'/?B, are
nondecreasing in p. By using these facts together with the (Clarkson-Hausdorff-
Young) cstimate (1.7) we obtain the following inequality:
Let r € R,r #0,s > 0,¢ = min(2, s) if »r < 2 and ¢ = min(r’, s) if » > 2. Then, for
a,b € C (for the case r < 0 we put by definition 0" = 0),

(la+b8" +la= b)Y/ < 27(lal* + b]")/®, v==-~== :

This cstimate was proved in [39]. The case » > 0 with a different proof is due to
Koskela [31].

2. An interpolation technique to obtain Clarkson type inequalities

The idca to prove Clarkson type inequalities presented in Example 4 is easy to
generalize in various directions, e.g. to more dimensions. Here we present some
results which can be obtained in this way.

Let m,n € N and consider any linear bounded operator T:1{™ — {7 with the
norm M; which is also bounded 1™ lg") — lgm) with the norm Mj. By using complex
interpolation we obtain the (Hausdorff-Young type) estimate

T(E)”l;:n) S J\{[:'—]-/P M;/P ”E”l;’")’ 1 S P S 2, (21)

which may be secn as a genuine generalization of (1.7). By using this interpolated
estimate with different operators and using the monotonicity arguments discussed in
Remark 9 we can prove the following Clarkson type inequality, which, in particular,
unifics and generalizes some earlier results of this kind (see e.g. [15], [29], [31], [39],
[61] and [66]).

Theorem 1

Let T be any linear bounded opcrator ’1':l§") — lg,? ) with the norm M,

_z_ 2

and T:15Y — 1™ with the norm M,. Put M, = M} %My and assume that
r € R,r #0,s > 0,u = max(r,2),q = min(s,2) if r < 2 and ¢ = min(r’, s) if r > 2.
Then, for any complex numbers @ = (a,a2,...,ay,),

m 1/r n 1/s
(Xlw@)r) " < Mamt/rtentlats (3 e ) (22)
1 1
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Proof. We put

Ar=(i|(T(E))il’)l/r and B,—_—(imir)w
1 1

and note that, by (2.1), A,r < My, B,. Moreover, by using this estimate together
with the well-known facts that A,, B, are nonincreasing in r and Arm"%,Brn"%
arc nondecreasing in r (sce e.g. [39, Lemma 1]), we obtain the following estimates:

r<2,s<2:4, <m/mY24, < Mym!/"12B, < Mymt/m-1/2B,,
r<2s<2 A4, <mYr124, < Myml/"12B, < Mym!/*=1/2,\/2-1/sg |
r<2s<2:A, < M;By < M, By,

r<2,s<2A, < MBy < Mynl/m V0B,

The proof of (2.2} follows by combining these inequalities. O

n

n n .
EXAMPLE 5 (see [39]): Consider the operator I:a@ — (3 ai,..., . €i@iy ..., 3, —ai),
1 1 1
where ¢; = £1,1 < 7 < n (cach coordinate of the vector 1'(@) € K™,m = 2", is
n
equal to a sum of the type > €;a;). It is easy to sce that here M; =1 and My = 2%

]
and, thus, according to Theorem 1, we obtain that

n r 1/r / / n 1/s
2-" £:0; < nl/a-1/s | 'ila) )
(B riEeel) e (S

€i=:l:l

for every r € R,r # 0,8 > 0,9 = min(2, s) for r < 2 and ¢ = min(r’, s) for r > 2.
For the case r > 0 this inequality can be rewritten as

1, n . 1/r n 1/s
(/ > gitt)es dt) < nla-1/s (Zmir’) ,
0 1 -

where ;(t) =sign (sin(2'wt)) arc the usual Rademacher functions. For the casc
n = 2 the last estimate coincides with a result of Koskela [31, Th. 1] and for the
case s =r',7 > 2 and s = r < 2 another proof has been done by Williams-Wells {66,
formulas (26)-(27)].
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EXAMPLE 6: Consider the Littlewood-Walsh matrices Ay» = (g;5),1 < 4,5 < 27,
defined recursively in the following way:

({1 1 _ [ An-r Agn —
A21-—(1 —1)’“.’A2n_(A2n—1 —Azn—1>, n_273""'

By applying Theorem 1 to the operator

2n 211 2n '
on n .
T:@a — €137, Y €2:Gi, ...,y Egnia; | from R?" to ®2" | we find that
o C1395, 24 £254 2 34 )

211, 2" l/r

on 1/s
r \
Z | Z’Eijaj ‘ < g1/r=1/s+1/q) (Z |a]_‘.q) ,
1 i=1 1

for every r € R,r # 0,58 > 0,9 = min(2,s) if r <2 and ¢ = min(r’, ¢) if r > 2.
For some special cases this estimate was also proved by Pietsch {51, p. 15] (see also
Kato [29, p. 164]).

Remark 10. Gurarii-Kadec-Macaev [20] used also an interpolation proof in the
estimate of the Littlewood-Walsh matrix operator between /,-spaces. Their interest
was to find the order of the Banach-Mazur distance between the spaces [ and [7.

EXAMPLE 7: We note that for the operator

n
T:a— (E Qj, Q3 — A, 0] — 03,01 —Q4,..c;8] — Qpyneny Oyl —an)
1

from R" to R™,m = E(—",;—l) + 1, we have M; = 1 and My = nz and, thus, by
Theorem 1, it holds that if r € R,r # 0 and s > 0, then

1/

" n 1/s
b Y Ja-al sc(z|a,.|s) ,
1

1<i<j<n

n
P
1

1411 . 1411 .
where C = m+~2n2+¢™%, g=min(2,s) forr <2and C = n+te ;,q = min(s, ')
for r > 2. In particular, for the case r = s = p > 2, this estimate reads

n P n
[Saf+ ¥ m-ap<wtYjap
1 1

1<i<j<n
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For the case n = 3 Shapiro proved (by interpolation) this and some similar estimates
already 1973 in a talk at the meeting of the Swedish Mathematical Society (see [61]).

It is well-known that local versions of the Clarkson typc inequalities always
imply some corresponding global versions yielding e.g. for L,-spaces or more general
function spaces. Here we consider the following situation: Let 7" denotc a lincar class
of functions f = f(t) defined on a non-empty sct E. Moreover, we let B:I' — R,
denote an isotone sublincar functional (“isotonc” means that for every f,g € L such
that |f(t)| > |g(t)] on E it holds that L(f) > L(g)). We also say that f € B, if
Bp(f) = (B(|f|”))% < o¢,0 < p < oc. Qur global version of Theorem 1 reads

Theorem 2

Let T' be any lincar operator such that T li"') — l.,(,? ), with the norm M,

and 1" lgn) — lém), with the norm My. Put M, = M11 _%Mz% and assume that
r € R,v # 0,p,5 > 0,u = max(r,2) and q = min(p,p’,r’,s) with the conventions
that p' is omitted if 0 < p < 1 and r' is omitted if r < 1. Then, for any isotone
linear functional B and any fi, fa,..., fn € By, it holds that

1/s

m 1/r m
(Z B;((T(?))J) < 17\/Iu’m,1/7'_l/"nl/q_l/3 (Z B;(fz))
1 1

By applying Theorem 1 to various opcrators, c.g. those considered in Examples
5-7, we obtain Clarkson type inequalitics, for example those obtained in [29], [31],
[39], [50]. Here we only give the following example:

EXAMPLE 8 (sce [39, Theorem 4.1]): We apply Theorem 2 with the operator consid-

cred in Example 6 and obtain the following result: Let 0 < p,s < coandr € R,r # 0.
Then, for any n € Z, and any fi, fa,..., fon € By,

on on 1/7' on 1/8
(Z B, (Z Eijfj)) < onll/r=1/s+1/a) (Z BZ(fj)) ,
1 1

where ¢ = min(p, p’, s,7') with the convention that p’' is omitted if 0 < p <1 and '
is omitted if r < 1.

Remark 11. We can e.g. use Example 8 with By(f) = ||filxr (X is any Banach
function space) and, thus, in particular, with B(f) = [, |f(#)|dp(t) (f is a mea-
surable function on a measure space (Q, X, 1)) so that B,(f) = ||f||.». Thercfore
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Example 8 generalizes some previous results by Kato [29, Th. 1], Koskela [31, Th. 2]
and Persson [50, Th. 5.1].

Proof of Theorem 2. 1°. Let 0 < s < p < 7 < 00. According to the well-known
facts that By is superadditive and Bz is subadditive (see e.g. [46, Lemma 1.2]) we
find that

> BI((T(F)i) =Y Bose(ITF)il") < Byye (Z IT(T))il’) (2.3)
1 i 1

and

o () ) )

n r/s n
< (213 Bp/.e(lfil’)> = (;(Bpm))-*)

In view of (2.3) and (2.4) we can use Theorem 1 and the isotonity of the functional
B to obtain that

L. 29

m 1/r n 1/s
(Z B;(T(?))l) < Myml/r=1/vpl/a=1/s (Z B;(f,-)) , (2.5)
i L

where ¢ = s for 0 < r < 2 and ¢ = min(s,7’) for r > 2.

20, Let s, < p. We use (2.5) for the case 1° with r = p and also the well-known

fact that m—+ (E B;(T(?))i> is nondccreasing in 7 to see that in this case (2.5)
1

holds with ¢ = s for 0 < r < 2 and ¢ = min(p, ') for r > 2.

30, Let p < s,r. Here we use (2.5) for the case 1° with s = p and find as above

that in this case (2.5) holds with ¢ = p for 0 < r < 2 and ¢ = min(p,r’) for r > 2.

The proof is complete. O

3. Some exact Carlson type inequalities and interpolation

Let P denote the set of all positive concave functions p: R, — Ry (R4 = (0,¢)).
It is easy to see that y(t) is nondecreasing and that ¢(t)/t is nonincreasing. For
ip € P we consider

p(st)
(G

8,(t) = sup

),0<t<oo.
8>0
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We also define the following subsets of P:

_{ im oft) = tim 28 =
Py= {\,0 € P| t}i%ﬂ- p(t) = lim = ()},

t—oo ¢

+__ , . — » slp(t)_
Pt = {o e Pl lim, sut) = Jim 25 =0},

For our discussions later on it is important to note that P*~ is a genuine subset of
P,. For example, the functions ¢, (t) = min(1,¢) and p(t) = min(1,¢2) belong to
P, but not to P*~. Moreover, in the sequcl we let ©(s,t) denote a 1-homogeneous
function of two variables defined as (s, t) = sp(%) if s, > 0 and ¢(s,t) =0if s =0
ort=0.

Next, we remark that some straightforward calculations show that the Carlson

type inequality
. - 14 7 oo 1/4
Y a.<C <Z “?L> (Z n%ﬁ)
n=1 n=!
I{an i, < C"""(“{tpén")}

n=|\
(o)
p(2")
where ¢(t) =12 and p= g = 2.

In 1977 Gustavsson and Peetre [21] proved (in connection to some problems
in the theory of interpolation between Orlicz spaces) that (3.1) holds for any ¢ €
P*~ and for all p,q > 1 (cf. also [37, pp. 143-145]). The following recent result
by Krugljak-Maligranda-Persson [33] shows that, in fact, the (Carslon-Gustavsson-
Peetre) inequality (3.1) is cxactly equipped with the class P*~ in the following
way:

can equivalently be rewritten as

l ) (3.1)

[T' q

Theorem 3

Let p € Py and let 1 < min(p, q) < oc. The following statements are equivalent:
(i) pe PT~.
(ii) The following inequality holds:

o}, < Co(|{ 755}

(o)

D

v’
(iii) The following inequality holds:

||{aa(an,bn>}||hsc¢(||{ > oawlJ{ X w}

I l ) !
k:(ak,bk)€Sn g k:(ax,bk)ESn “

where Sp, n = 1,2,..., are the areas in IR_%_ between the lines y = 2"z and
Y= 2n+1 .
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For any couple of Banach lattices X= (Xp,X1) we consider the Calderén-

Lozanovskii interpolation space ¢(X) cquipped with the norm
£l < = infmax(|| foll x,: [lf1llx.),
w(X)

where the infimum is taken over all representations of |f| in the form |f| =
e(lfol; I£1]), fi € Xi,i=0,1.

Remark 12. By using Theorem 3 it is possible to prove that, for any ¢ € P+ the

Peetre interpolation functor G2 (X ) (see [44]) and its Gagliardo closure [GY, ( ]" can
be identified with a Caldcron—Lozanovsku interpolation space (cf. also Remark 14).

In order to be able to generalize the statements in Theorem 3 and Remark 12 to the
“final” case p € Py, Krugljak-Maligranda-Persson [33] considered a tricky increasing
sequence {t,} constructed by Brudnyi-Krugljak already in 1981 (in connection to
their final solution of the K-divisibility problem in interpolation theory, cf. [11])
and having the uscful properties that, for o € I,

- i t
w(t) = Z'ﬁ(bnﬂ)mm (1, ) and (t) =~ max (@(t2n+1)mm (1, t2n+1)) ;

2n+1
where the constants of equivalences are independent of ¢ and t. More exactly, the

following Carlson type inequality with “blocks” was proved in [33]:

Theorem 4

Assume that 1 < p,q < oc,p € Py and let xp = [tan,tent+2). Then, for any
positive sequence {an}, it holds that

e zoolll, 3 I T S e

with the constant C not depending on {a,}. Morcover, the inequality (3.2) is
equivalent to the following incquality:

Ittt <Co(J{ X o}

k:(a" ?bk)eTﬂ

l1’

), (3.3)

LY |

L’ I
P k:(ak.bx) €Ty

1

where T,,n = 1,2,..., are the areas in Rﬁ_ between the lines y = top,z and y =
ton+2Z.
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Our proof of Theorem 4 shows that the constants in the inequalities (3.2) and (3.3)
can be cstimated by (1 + v/2)2 and 2(1 + v/2)?, respectively.

Remark 13. By using Theorem 4 it is possible to prove the following generalization
of an interpolation result by Ovchmmkov [43] and Nllsson [41] (sce [33]) Ifpe Po,

then, for any couple of Banach IattuesX G° (X) p(X and [GQ( X)]’ = [~,0(X)]c
and the constants in the equivalence of the norms in these equalities do neither

depend on the couple X nor on the function ¢ (here, as usual, for any intermediate
space A, A® denotes the closure of AyNA; in A and A€ denotes the Gagliardo closure
with respect to Ag + A;).

Remark 14. The main interest to consider the Peetre functor Gg(X ) is inspired by

the fact that if ©(¢) = t¢ (0 < 0 < 1), then, on couples of Banach lattices X , and
their retracts, this functor coincides with the complex method (see [62], [41], [44],
[11]) and, thus, it may be regarded as a “real version” of the complex mecthod of
interpolation.

4. Concluding remarks

19, Calderén [13] generalized the classical Marcinkiewicz interpolation theorem.
He cven pointed out the maximal operator (1 < pg <py <oc,1 < qo # q1 < 00)
> ds

Sf(t) = A mln(t ]/qo ]/PO t 1/‘11 l/p‘l)f( ) s,

which is bounded from Ly, | to Lg, oc and for any operator acting from Ly, to
Lg, ~ we have the estimate (7°f)*(z) < CSf* (), where C depends only on p; and
gi (i =0,1). The Calderén operator can be written as

m

Sf(t) = A / sl/P"f(s)% +1~Ya / s"/’"f(s)%,
. Jim b

JO

a1
where m = 22—, Therefore, in order to obtain generalized forms of the

Po Pl
Marcinkiewicz interpolation theorem, we only nced to investigate the boundedness
of the Hardy operator H and its dual H*, defined by

o0

Hyg(x) =a;_1/0 g(s)ds and H*g(rz:)z:c"l/ g(s)ds,

Jx
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in the function spaces we arc interested in. These types of the Hardy inequalities
can be found in many places (cf. [32], [10], [7] and the literature given there).

20, Interpolation theorems can also be used to obtain estimates of operators be-
tween vector-valued spaces (sce e.g. [19]). For example, if T: L, — L, is bounded
then the natural vector-valued extension Tz: Lp(Lyp) — Lyp(Ly) given by

(Tef)(z,y) = Tf(-,y)(z)

has the same norm. On the other hand, according to the Marcinkiewicz-Zygmund
theorem, 1% has also the same norm on L,,(Ly). Thus, by using interpolation, we find
that T has the same norm on Ly(L,) for all g satisfying min(p,2) < g < max(p, 2).
3%, Jameson [23] proved the famous Grothendieck inequality by using an in-
terpolation technique. Moreover, Pisier [54] used the Riesz-Thorin interpolation
thecorem to obtain the following estimate of the complex Grothendicck constant:
Kg < el=7 =1.527..., where ~ is the Euler constant.

4%, Interpolation techniques can also be used to find the “regularity” of the so-
lutions of boundary-initial value problems. For example, if we consider the Klein-
Gordon equation (KG) in R? given by

ust — Dzu+u = 0,u(z,0) = 0,us(x,0) = f(’r)a

and the operator 1 f = u(-,t), then 1;: L, — Ly is bounded if and only if 4/3 < p <
2 (see [40]). This statement in onc direction can casily be proved by interpolation
(for p = 2 we use the cnergetic identity and for p = 4/3 we use the fact that the
KG equation is connected with the wave equation us;; = A, u and in this case it is
well-known that we have boundedness of 7}). Some similar results connected to the
Korteweg-De Vries equation and other equations can be found in [9], [34] and [63].

5°. Karadzov (1973), Birman-Solomjak (1977), Kénig (1978) and Pietsch (1980)
have used interpolation techniques to improve s-number estimates or estimates of
entropy numbers or eigenvalues of operators in Banach spaces. For all these results
and related references we refer to the books of Kénig [30] and Pietsch [52], [563].

6°. Rochberg-Weiss [57], Jawerth-Rochberg-Weiss [26] and Kalton [28] used the
complex and rcal methods of interpolation to obtain nonlinear inequalities of the
form (1<py<p<p <oc)

IT(f log|f]) = T'flog |T flllr, < Cpllfllz,,

for opcrators 1" which maps L,, boundedly into L,, for i =0,1.
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7°.  Wells-Williams [65] used a gencralized Riesz-Thorin interpolation theorem to
obtain the cxact value of so-called packing constant for the space L, ().

80, Interpolation results for vector-valued spaces give us information about the
type and cotype of concrete spaces because a Banach space X has Rademacher type
p,1 < p < 2, if the opcrator T:1,(X) — Lp(X) given by T((zx)) = Y zars(t) is
bounded. This possibility to usc interpolation was investigated by Cobos [16], [17].
9°. Pisier [55] used the complex method of interpolation to prove the inverse Brunn-
Minkowski inequality due to V.D. Milman.

10°. In connection to the real method of interpolation there is also an cxtrapolation
theory giving some old and new inequalitics like those by Yano (1951), Stein (1969),
Moser (1971) cte. (cf. Jawerth-Milman [25]).

11°. Another example of a new interesting incquality where interpolation is used
in a crucial way can be found in Semenov’s paper [60] in this volume.

12°. For concrete operators, e.g. the average opcerator, the Hardy maximal opera-
tor, the conjugate opcrator, the Hilbert transform, the singular integral operators,
ete., we can use Riesz-Thorin or Marcinkiewicz interpolation theorems to prove their
boundedness between L,-spaccs and more general function spaces. This bounded-
ness can be interpreted as an inequality. Such simple interpolation techniques to
prove inequalities can be avoided in many concrcte cases but to the cost of some
more complicated computations.
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