Minimal projections onto subspaces of $l_{\infty}^{(n)}$ of codimension two

GRZEGORZ LEWICKI

Department of Mathematics, Jagiellonian University, Reymonta 4, 30-059 Kraków, Poland

ABSTRACT

Let $Y\subset l_\infty^{(n)}$ be one of its subspaces of codimension two. Denote by \mathcal{P}_Y the set of all linear projections going from $l_\infty^{(n)}$ onto Y. Put

$$\lambda_Y = \inf \left\{ \|P\| \colon P \in \mathcal{P}_Y \right\}.$$

An operator $P_0 \in \mathcal{P}_Y$ is called a minimal projection if $\|P_0\| = \lambda_Y$. In this note we present a partial solution of the problem of calculation λ_Y as well as the problem of calculation of minimal projection. We also characterize the unicity of minimal projection.

1. Introduction

Let X be a Banach space and let $Y \subset X$ be one of its subspaces. A bounded, linear operator $P: X \to Y$ is called a projection if Py = y for any $y \in Y$. Denote by $\mathcal{P}(X,Y)$ the set of all projections going from X onto Y. A projection P_0 is called minimal iff

$$||P_0|| = \lambda(Y, X) = \inf\{||P|| : P \in \mathcal{P}(X, Y)\}.$$
 (1.1)

The significance of this notion can be illustrated by the following, well known inequality:

$$||x - Px|| \le ||I - P|| \operatorname{dist}(x, Y) \le (1 + ||P||) \operatorname{dist}(x, Y).$$

Unfortunately, in many important cases we do not know effective formulas for minimal projections. For more complete information concerning this subject the reader is referred to [1-3, 5, 6, 8].

168 Lewicki

In this note, if nothing special will be assumed, Y will be a subspace of $l_{\infty}^{(n)}$, $n \geq 3$ (\mathbb{R}^n with the maximum norm) of codimension two. In Section 2 we find an effective formula for λ_Y (Theorem 2.5) and we calculate a minimal projection in this case. In Section 3 we deal with the problem of unicity of minimal projection (Theorems 3.1, 3.3, 3.4). Note that for Y being a hyperplane in $l_{\infty}^{(n)}$ the above problems were completely solved in [2].

Now we state a notation and some preliminary results which will be of use later. By S(X) we denote the unit sphere in a normed space X and by ext(X) the set of all its extreme points. We will write for brevity λ_Y instead of $\lambda(Y, l_{\infty}^{(n)}), \mathcal{P}_Y$ instead of $\mathcal{P}(l_{\infty}^{(n)}, Y)$. Let us denote

$$\mathcal{L}_Y = \{ L \in \mathcal{L}(l_{\infty}^{(n)}, Y) : L|_Y = 0 \}.$$
 (1.2)

It is easy to check that for any $P \in \mathcal{P}_Y$

$$\lambda_Y = \operatorname{dist}(P, \mathcal{L}_Y). \tag{1.3}$$

In the sequel we also need

Lemma 1.1 (see [2])

Assume X is a normed space and let Y be one of its subspaces of codimension $k, Y = \bigcap_{i=1}^k ker f^i$, where $f^i \in X^*$ are linearly independent. Then there exist $y^1, \ldots, y^k \in X$ satisfying $f^i(y^i) = \delta_{ij}$ for $i, j = 1, \ldots, k$ such that

$$Px = x - \sum_{i=1}^{k} f^{i}(x)y^{i} \quad \text{for} \quad x \in X.$$
 (1.4)

One the other hand, if $y^1, \ldots, y^k \in X$ satisfy $f^i(y_i) = \delta_{ij}$ then the operator $P = id - \sum_{i=1}^k f^i(\cdot)y^i$ belongs to $\mathcal{P}(X,Y)$.

At the end of this section we recall a notion of strong unicity. Let X be a normed space and let $Y \subset X$ be a nonempty subset. An element $y \in Y$ is called a strongly unique best approximation (briefly SUBA) to $x \in X$ iff there exists r > 0 such that for every $w \in Y$

$$||x - w|| \ge ||x - y|| + r||y - w||. \tag{1.5}$$

In the case of projections, (1.5) suggests the following

DEFINITION 1.2. Let $P_0 \in \mathcal{P}_Y$. Then P_0 is called a strongly unique minimal projection (we will write a SUM projection for brevity) if and only if there is r > 0 such that for any $P \in \mathcal{P}_Y$

$$||P|| \ge ||P_0|| + r||P - P_0||. \tag{1.6}$$

By [6,Th.2.3] it is easy to deduce

Theorem 1.3

Let $P_0 \in \mathcal{P}_Y$. Set

$$crit^*(P_0) = \{i \in \{1, \dots, n\}: ||e_i \circ P_0|| = ||P||\}$$
 (1.7)

where

$$e_i(x) = x_i \quad \text{for} \quad x \in l_{\infty}^{(n)}$$
 (1.8)

and

$$\mathcal{A}_i = \{ x \in ext(l_{\infty}^{(n)}) : e_i(P_0 x) = ||P_0|| \}. \tag{1.9}$$

Then P_0 is a minimal projection (P_0 is a SUM projection with a constant r > 0 resp.) if and only if for every $L \in \mathcal{L}_Y$ there exists $i \in crit^*(P_0)$ such that

$$\inf_{x \in A_{+}} e_{i}(Lx) \le 0 \ (\le -r ||L|| \ resp.) \tag{1.10}$$

Theorem 1.4 (see [7])

Let X be a finite dimensional real normed space and let $Y \subset X$ be one of its subspaces. Assume that $card(ext(X)) < \infty$. Then $x \in X$ has a unique best approximation in Y iff X possesses a SUBA element in Y.

Section 2

First we prove some preliminary results. We start with

Lemma 2.1.

Let $Y \in l_{\infty}^{(n)}$ be one of its subspaces of codimension two. Then for every $i \in \{1, \ldots, n\}$ with $e_i \notin Y$ there exists one exact to a constant, $f^i \in l_1^{(n)} \setminus \{0\}$ such that $f^i|_Y = 0$ and $f_i^i = 0$.

Proof. Put $Y_i = Y \oplus [e_i]$. Since $e_i \notin Y$, $dimY_i = n - 1$. Consequently, there exists exactly one to a constant $f^i \in l_1^{(n)}$ satisfying $f^i|_{Y_i} = 0$, as desired. \square

Lemma 2.2

Let $Y \subset ker(f)$ for some $f \in S(l_1^{(n)})$. If there exists $i \in \{1, ..., n\}$ satisfying

$$|f_i| \ge \sum_{k \ne i} |f_k| \tag{2.1}$$

then for every $L \in \mathcal{L}_{\infty}^{(n)}(l_{\infty}^{(n)}, ker(f))$

$$||e_i \circ L|| \le \max_{j \ne i} ||e_j \circ L||. \tag{2.2}$$

Moreover, if in (2.1) we have the strict inequality then the same holds in (2.2).

Proof. Let us take any $f \in S(l_1^{(n)})$ such that in (2.1) we have the strict inequality. Then it is easy to deduce that $||e_i||_{ker(f)}|| < 1$. Hence

$$||e_i \circ L|| \le ||e_i|_{ker(f)}|| \ ||L|| < ||L||$$

and consequently

$$||e_i \circ L|| < \max_{l \neq i} ||e_l \circ L||.$$

If in (2.1) we have equality, then we can approximate f by a sequence $\{f^n\} \in l_1^{(n)}$ such that f^n satisfies the strict inequality in (2.1). From this, it is easy to derive that (2.2) holds true for any $L \in \mathcal{L}(l_{\infty}^{(n)}, ker(f))$. \square

Lemma 2.3

Let $Y = ker(f^1) \cap ker(f^2)$, where $f^1, f^2 \in l_1^{(n)}$ are linearly independent. Let $P \in \mathcal{P}_Y, P = id - (f^1(\cdot)y^1 + f^2(\cdot)y^2)$ where $y^1, y^2 \in l_{\infty}^{(n)}$. Then

$$||P|| = \max_{i=1,\dots,n} |1 - f_i^1 y_i^1 - f_i^2 y_i^2| + \sum_{j \neq i} |f_j^1 y_i^1 + f_j^2 y_i^2|.$$
 (2.3)

Proof. Note that $||P|| = \max_{i=1,\dots,n} ||e_i \circ P||$. So to finish the proof, it is sufficient to demonstrate that for each $i \in \{1,\dots,n\}$

$$||e_i \circ P|| = |1 - f_i^1 y_i^1 - f_i^2 y_i^2| + \sum_{j \neq i} |f_j^1 y_i^1 + f_j^2 y_i^2|.$$
 (2.4)

To do this, take any $x \in l_{\infty}^{(n)}$. Then

$$(e_{i} \circ P)x = x_{i} - f^{1}(x)y_{i}^{1} - f^{2}(x)y_{i}^{2}$$

$$= x_{i} - \left(\sum_{j=1}^{n} f_{j}^{1}x_{j}\right)y_{i}^{1} - \left(\sum_{j=1}^{n} f_{j}^{2}x_{j}\right)y_{i}^{2}$$

$$= x_{i}(1 - f_{i}^{1}y_{i}^{1} - f_{i}^{2}y_{i}^{2}) - \sum_{j \neq i} x_{j}(f_{j}^{1}y_{i}^{1} + f_{j}^{2}y_{i}^{2})$$

$$\leq |1 - f_{i}^{1}y_{i}^{1} - f_{i}^{2}y_{i}^{2}| + \sum_{j \neq i} |f_{j}^{1}y_{i}^{1} + f_{j}^{2}y_{i}^{2}|.$$

Hence

$$||e_i \circ P|| \le |1 - f_i^1 y_i^1 - f_i^2 y_i^2| + \sum_{i \ne j} |f_j^1 y_i^1 + f_j^2 y_i^2|.$$

If we take $x=(x_1,\ldots,x_n)$ where $x_i=sgn(1-f_i^1y_i^1-f_i^2y_i^2), x_j=-sgn(f_j^1y_i^1+f_j^2y_i^2)$ for $j\neq i$ we get (2.4) which completes the proof of Lemma 2.3. \square

Lemma 2.4

Let f^1 , f^2 be as in Lemma 2.3. Put

$$g^1 = (sgn(f_1^2)f_1^1, \dots, sgn(f_n^2)f_n^1)$$

and

$$g^2 = (|f_1^2|, \dots, |f_n^2|).$$
 (2.5)

Then the set \mathcal{P}_Y is linearly isometric to \mathcal{P}_{Y_1} where $Y_1 = ker(g^1) \cap ker(g^2)$.

Proof. It is easily seen that the mapping $L: l_{\infty}^{(n)} \to l_{\infty}^{(n)}$ defined by

$$Lx = (x_1 sgn(f_1^2), \dots, x_n sgn(f_n^2))$$

is a linear isometry such that $L(Y_1) = Y$. Hence the mapping $\Psi(P) = L^{-1} \circ P \circ L$ for $P \in \mathcal{P}_Y$ is a required linear isometry between \mathcal{P}_Y and \mathcal{P}_{Y_1} . \square

Now we can state the main result of this section

Theorem 2.5

Let $Y \subset l_{\infty}^{(n)}$ be one of its subspaces of codimension two. Assume furthermore that there is $i_0 \in \{1,\ldots,n\}$ and $f^{i_0} \in l_1^{(n)} \setminus \{0\}, f_{i_0}^{i_0} = 0, f^{i_0}|_Y = 0$ such that

$$|f_j^{i_0}| \ge \sum_{k \ne j} |f_k^{i_0}| \quad \text{for some} \quad j \in \{1, \dots, n\}.$$
 (2.6)

Let $f^j \in S(l_1^{(n)})$ satisfy the assumptions of Lemma 2.1 for i=j. Then if there exists $j_0 \in \{1, \ldots, n\}$ such that

$$|f_{j_o}^j| \ge \sum_{k \ne j_0} |f_k^j|$$
 (2.7)

then $\lambda_Y = 1$. In the opposite case

$$\lambda_Y = 1 + \left(\sum_{i=1}^n |f_i^j|/(1 - 2|f_i^j|)\right)^{-1}.$$

Proof. First we consider the case described in (2.6) and (2.7). Let us define $y_j = (y_1^j, \ldots, y_n^j)$ by

$$y_k^j = \begin{cases} 0 & \text{if } k \neq j_0, j \\ 1/f_{j_0}^j & \text{if } k = j_0 \\ -f_{j_0}^{i_0}/f_{j_0}^j f_j^{i_0} & \text{if } k = j \end{cases}$$
 (2.8)

and $y^{i_0} = (y_1^{i_0}, \dots, y_n^{i_0})$ by

$$y_k^{i_0} = \begin{cases} 0 & \text{if } k \neq j \\ 1/f_j^{i_0} & \text{if } k = j. \end{cases}$$
 (2.9)

Consider the operator

$$P = id - f^{i_0}(\cdot)y^{i_0} - f^j(\cdot)y^j. \tag{2.10}$$

Since $f^j(y^{i_0}) = f^{i_0}(y^j) = 0$ and $f^j(y^j) = f^{i_0}(y^{i_0}) = 1$ the operator P belongs to \mathcal{P}_Y . In view of Lemma 2.3,

$$||P|| = \max\{1, ||e_{j_0} \circ P||, ||e_j \circ P||\}.$$

According to (2.6), (2.7) and Lemma 2.2, ||P|| = 1 and consequently, $\lambda_Y = 1$. Now let f^{i_0} satisfy (2.6) and let f^j does not satisfy (2.7). In view of Lemma 2.4 we may assume that $f^j \geq 0$. Put $w^j = (w_1^j, \ldots, w_n^j)$ where

$$w_k^j = \begin{cases} (\Sigma)^{-1}/(1 - 2f_k^j) & \text{if } k \neq j \\ -\Sigma_{l \neq j} (f_l^{i_0} \cdot (\Sigma)^{-1}/((1 - 2f_l^j)f_k^{i_0}) & \text{if } k = j \end{cases}$$
(2.11)

(we will write

$$\left(\sum_{l=1}^{n} |f_l^j|/(1-2|f_l^j|)\right)^{-1} \tag{2.12}$$

for brevity) (compare with [2]). It is easy to check that $f^{j}(w^{j}) = 1$ and $f^{i_{0}}(w^{j}) = 0$. Let us define

$$P^{1} = id - f^{i_{0}}(\cdot)y^{i_{0}} - f^{j}(\cdot)w^{j}.$$
(2.13)

In view of Lemma 2.3 one can check that

$$\|P^1\| = \max \Big\{ \|e_j \circ P^1\|, 1 + \Big(\sum_{l=1}^n |f_l^j|/(1-2|f_l^j|)\Big)^{-1} \Big\}.$$

According to Lemma 2.2, $||e_j \circ P^1|| \le \max_{l \ne j} ||e_l \circ P^1||$. Hence

$$||P^1|| = 1 + \left(\sum_{k=1}^n |f_k^j|/(1 - 2|f_k^j|)\right)^{-1}$$

and $\lambda_Y \leq 1 + (\sum_{k=1}^n |f_k^j|/(1-2|f_k^j|))^{-1}$.

To prove the opposite inequality, we apply Theorem 1.3. First observe that $crit^*(P^1) \supset D = \{i: f_i^j > 0\}$. According to the proof of Lemma 2.3 and (2.13) for each $i \in crit^*(P^1) \setminus \{j\}$

$$\{x^{i,1}=(x_1^{i,1},\ldots,x_n^{i,1}),\ x^{i,2}=(x_1^{i,2},\ldots,x_n^{i,2})\}\subset \mathcal{A}_i$$

(see Theorem 1.3), where

$$x_l^{i,1} = \begin{cases} 1 & \text{if } l = j, i \text{ or } f_l^j = 0\\ -1 & \text{if } f_l^j > 0 \text{ and } l \neq j, i \end{cases}$$
 (2.14)

and

$$x_l^{i,2} = \begin{cases} 1 & \text{if } l = i \text{ or } (f_l^j = 0, l \neq j) \\ -1 & \text{if } l = j \text{ or } (f_l^j > 0, l \neq i). \end{cases}$$
 (2.15)

Now we will show that for every $L \in \mathcal{L}_Y$ there exists an index $i \in D$ such that $e_i(Lx^{i,k}) \leq 0$ for k = 1 or k = 2. Fix $L \in \mathcal{L}_Y$. According to Lemma 1.1 and (1.2) $L = f^{i_0}(\cdot)z^{i_0} + f^j(\cdot)z^j$ for some $z^{i_0}, z^j \in Y$. Observe that by (2.6) for any $i \in D$

$$f^{i_0}(x^{i,1})z_i^{i_0} \le 0 \quad \text{or} \quad f^{i_0}(x^{i,2})z_i^{i_0} \le 0.$$
 (2.16)

Hence, if $z_i^j = 0$ for some $i \in D$ then

$$e_i(Lx^{i,1}) \le 0$$
 or $e_i(Lx^{i,2}) \le 0$.

Now let $z_i^j \neq 0$ for any $i \in D$. Since $z^j \in Y$, $f_j^j = 0$ and $||f^j|| = 1$, $z_i^j > 0$ for some $i \in D$. Moreover, according to (2.14) and (2.15) $f^j(x^{i,1}) = f^j(x^{i,2})$. Hence for k = 1, 2

$$f^{j}(x^{i,k})z_{i}^{j} = \left(\sum_{l \neq j} f_{l}^{j} x_{l}^{i,k}\right) z_{i}^{j} = z_{i}^{j} \left(|f_{i}^{j}| - \sum_{l \neq i,j} |f_{l}^{j}|\right) < 0, \tag{2.17}$$

since f^j does not satisfy (2.7). Consequently, by (2.16) and (2.17) there exists $i \in D \subset crit^*(P^1)$ and $k \in \{1,2\}$ such that $e_i(Lx^{i,k}) \leq 0$. Since for k=1,2 $x^{i,k} \in \mathcal{A}_i$, according to Theorem 1.3, the proof of Theorem 2.5 is complete. \square

Corollary 2.6

Let f^{i_0} satisfy (2.6) and f^j (2.7). Then the projection P defined by (2.10) is a minimal projection in \mathcal{P}_Y . If f^j does not satisfy (2.7) the same holds for P^1 defined by (2.13).

EXAMPLE 2.7: Let f = (0, 1/3, 0, 1/3, 0, 1/3) and g = (1/3, 0, 1/3, 0, 1/3, 0). Then $Y = ker(f) \cap ker(g)$ does not satisfy the assumption of Theorem 2.5.

Section 3

In this section we present necessary and sufficient conditions for Y under which P and P^1 given by (2.10) and (2.13) are unique minimal projections. We start with

Theorem 3.1

Let f^{i_0} satisfy (2.6) and f^j (2.7). Then the projection P defined by (2.10) is a unique minimal projection if and only if

$$|f_{j_0}^{i_0}| = |f_j^{i_0}| \quad \text{and} \quad |f_{j_0}^j| > |f_l^j| \quad \text{for} \quad l \neq j_0.$$
 (3.1)

or

$$|f_i^{i_0}| > |f_l^{i_0}| \quad \text{for} \quad l \neq j \quad \text{and} \quad |f_{j_0}^j| > |f_l^j| \quad \text{for} \quad l \neq j_0$$
 (3.2)

(the indexes i_0, j, j_0 are the same as in Theorem 2.5).

Proof. Assume that (3.2) holds. We will show that P is a SUM projection. According to (2.10) and Lemma (2.3) the set $\{i: i \neq j, j_0\} \subset crit^*(P)$. Moreover, for each $i \neq j, j_0$ the set \mathcal{A}_i (see Th. 1.3) contains all the vectors from the set $ext(l_{\infty}^{(n)})$ having the i-th coordinate equal to 1. Since f^{i_0} and f^j satisfy (3.2), there exists two different indexes $i_1, i_2 \neq j, i_0$ such that $f_k^{i_0} \neq 0$ for $k = i_1, i_2$. Analogously, there exist two different indexes $j_1, j_2 \neq j, j_0$ such that $f_k^j \neq 0$ for $k = j_1, j_2$. Now take any $L \in \mathcal{L}_Y \setminus \{0\}$ (see (1.2)). We will show that there exist $i \neq j, j_0$ and $x \in \mathcal{A}_i$ such that $e_i(Lx) < 0$. By Lemma 1.1 and (1,2)

$$L = f_{i_0}(\cdot)z^{i_0} + f^j(\cdot)z^j$$

where $z_{i_0}, z^j \in Y$. Since $L \neq 0, z_i^{i_0} \neq 0$ or $z_i^j \neq 0$ for some $i \in \{1, ..., n\}$. Moreover, since $f_j^j = 0, f_j^{i_0} \neq 0$ and $f_{j_0}^j \neq 0$, we may assume that $i \neq j, j_0$. Now we divide the proof onto two cases.

Case 1: $z_i^{i_0} \neq 0$ and $z_i^j = 0$. Since $f_{i_1}^{i_0} \neq 0$ and $f_{i_2}^{i_0} \neq 0$ for two different indexes $\notin \{j, i_0\}$, there exist $x^1, x^2 \in \mathcal{A}_i$ such that $f^{i_0}(x^1) f^{i_0}(x^2) < 0$. Consequently, $e_i(Lx^k) < 0$ for k = 1 or k = 2.

Case 2: $z_i^j \neq 0$. Reasoning as above, we can find $x^1, x^2 \in \mathcal{A}_i$ such that $f^j(x^1)f^j(x^2) < 0$. Since $j_1, j_2, i \notin \{j_0, j\}$, modifying the j-th coordinate of x^1 and x^2

if necessary, we may assume that $f^{i_0}(x^1)z_i^{i_0} \leq 0$ and $f^{i_0}(x^2)z_i^{i_0} \leq 0$. Consequently, $e_i(Lx^k) < 0$ for k = 1 or k = 2.

Now consider the function

$$F(L) = \min_{i \neq j, j_0} \left(\min_{x \in \mathcal{A}_i} \left(e_i(Lx) \right) \right)$$
 (3.3)

for $L \in \mathcal{L}_Y$. It is easily seen that F is a continuous function as a minimum of a finite number of continuous functions. Moreover, by the reasoning presented above for every $L \neq 0$ F(L) < 0. Since \mathcal{L}_Y is finitely dimensional, the constant $\gamma = \sup_{L \in S(\mathcal{L}_Y)} F(L)$ is strictly negative. We will show that P given by (2.10) is a SUM $L \in S(\mathcal{L}_Y)$

projection with a constant $r = -\gamma$. To do this, take any $L \in \mathcal{L}_Y \setminus \{0\}$. Then there exist $i \neq j, j_0$ and $x \in \mathcal{A}_i$ with

$$e_i(L/||L||)x = F(L/||L||).$$

Hence

$$e_i(Lx) \leq -r||L||$$

which, according to Theorem 1.3, completes the proof of this part. Now assume that (3.1) holds. Define

$$g^{i_0} = f^{i_0} + (-f^{i_0}_{i_0}/f^j_{i_0}) \cdot f^j$$
.

Then $Y = ker(g^{i_0}) \cap ker(f^j)$ and according to (3.1) g^{i_0} and f^j satisfy (3.2) which completes the proof of this part.

Now let (3.1) and (3.2) do not hold. We first consider the case: $|f_k^{i_0}| = |f_j^{i_0}|$ for some $k \neq i_0, j_0, j$. Let us define $z = (z_1, \ldots, z_n) \in l_{\infty}^{(n)}$ by

$$z_l = egin{cases} 1/f_k^{i_0} & ext{if } l = k \ -f_k^j/(f_k^{i_0}f_{j_0}^j) & ext{if } l = j_0 \ 0 & ext{if } l
otin k, j_0. \end{cases}$$

Set

$$Q = id - f^{i_0}(\cdot)z - f^j(\cdot)y^j$$

where y^j is given by (2.8). Since $|f_{j_0}^j|, |f_j^{i_0}|, |f_k^{i_0}| \ge 1/2$, according to Lemma 2.3, $||e_l \circ Q|| \le \max_{n \ne l} ||e_n \circ Q||$ for $l = j, j_0, k$. Observe that for $l \ne j, j_0, k, e_l \circ Q = e_l$.

Consequently, ||Q|| = 1. Since $z \neq y^{i_0}$ (see (2.9)), Q is a minimal projection different from P, which completes the proof of this case.

Now let $|f_k^j| = |f_{j_0}^j|$ for some $k \neq j, j_0$. Changing the role of f^{i_0} and f^j and by the above reasoning we can construct a projection Q of a norm one different from P. The proof of Theorem 3.1 is fully complete. \square

Lemma 3.2

Assume $Y = ker(f^{i_0}) \cap ker(f^j)$ where f^j and f^{i_0} are as in Theorem 2.5. Assume furthermore that

$$f_k^j \neq 0$$
 for $k \neq j$

and

$$1/2 = |f_j^{i_0}| > |f_k^{i_0}| \quad \text{ for } \quad k \neq j.$$

Then $||e_i \circ P^1|| < ||P^1||$ where P^1 is defined by (2.13).

Proof. In view of Lemma 2.4, we may assume $f_l^j > 0$ for $l \neq j$. Observe that by Lemma (2.3), (2.9) and (2.11)

$$||e_j \circ P^1|| = \sum_{k \neq j} \left| f_k^{i_0} - f_k^j \cdot \left(\sum_{l \neq i_0, j} f_l^{i_0} / (1 - 2f_l^j) \right) \cdot \left(\sum \right)^{-1} \right| / |f_j^{i_0}|.$$

If we fix f^j and $f^{i_0}_j$ the above formula may be considered as a convex function (we will denote it by φ) of variables $f^{i_0}_k$, $k \neq j$, satisfying $\sum_{k \neq j} |f^{i_0}_k| = 1/2$. Hence to finish

the proof, it is sufficient to show that φ is a strictly convex function. To do this, we demonstrate that for $\alpha, \beta \neq 0, |\alpha| + |\beta| = 1/2$, and two different indexes $k, l \neq i_0, j$

$$\varphi(\alpha \cdot e_k + \beta \cdot e_l) < ||P^1|| = 1 + \left(\sum_{l=1}^{\infty}\right)^{-1}.$$

Observe that

$$\begin{split} \varphi(\alpha \cdot e_k + \beta \cdot e_l) &= 1/f_j^{i_0} \cdot \left(\left| \alpha - f_k^j \left(\alpha/(1 - 2f_k^j) \right) \right. \\ &+ \beta/(1 - 2f_l^j) \right) \cdot \left(\sum \right) - 1 \right| \\ &+ \left| \beta - f_l^j \left(\alpha/(1 - 2f_k^j) + \beta/(1 - 2f_l^j) \right) \cdot \left(\sum \right)^{-1} \right| \\ &+ \sum_{m \notin \{j,l,k\}} |f_m^j| \left| \left(\alpha/(1 - 2f_k^j) + \beta/(1 - 2f_l^j) \right) \cdot \left(\sum \right)^{-1} \right| \right) \,. \end{split}$$

Hence if $\varphi(\alpha e_k + \beta e_l) = ||P^1||$ then

$$\left| \alpha \left(1 - \left(f_k^j / (1 - 2f_k^j) \right) \cdot \left(\sum \right)^{-1} \right) - \left(\beta f_k^j / (1 - 2f_l^j) \right) \cdot \left(\sum \right)^{-1} \right|$$

$$= \left| \alpha \left(1 - \left(f_k^j / (1 - 2f_k^j) \right) \cdot \left(\sum \right)^{-1} \right) \right| + \left| \left(\beta f_k^j / (1 - 2f_l^j) \right) \cdot \left(\sum \right)^{-1} \right|$$
(3.4)

and

$$|\alpha/(1-2f_k^j) + \beta/(1-2f_l^j)| = |\alpha/(1-2f_k^j)| + |\beta(1-2f_l^j)|.$$
 (3.5)

Consequently, according to (3.5), $sgn(\alpha) = sgn(\beta)$. But, by (3.4), $sgn(\alpha) = -sgn(\beta)$; a contradiction $(\alpha, \beta \neq 0)$. The proof of Lemma 3.2 is complete. \square

Theorem 3.3

Let f^{i_0} , f^j be as in Theorem 2.5. Assume furthermore that f^j does not satisfy (2.7) and

$$|f_k^{i_0}| = |f_i^{i_0}| = 1/2$$
, for some $k \neq j, i_0$ (3.6)

or

$$f_l^j = 0$$
 for some $l \neq j$. (3.7)

Then the projection P^1 defined by (2.13) is not a unique minimal projection.

Proof. According to Lemma 2.4 we may assume that $f^j \geq 0$. Let f^{i_0} satisfy (3.6). For $\alpha \in \mathbb{R}$ put

$$u_{\alpha}^{j} = w^{j} - (\alpha e_{i_0} + \beta e_j + \gamma e_k),$$

where w^j is given by (2.11) and β, γ are chosen so that $f^j(u^j_\alpha) = 1, f^{i_0}(u^j_\alpha) = 0$. Define for $x \in l^{(n)}_\infty$

$$Q^{\alpha}x = x - f^{i_0}(x)y^{i_0} - f^j(x)u_{\alpha}^j,$$

where y^{i_0} satisfies (2.9). By Lemma 1.1, Q^{α} belongs to \mathcal{P}_Y . We will show that for α sufficiently small $\|Q^{\alpha}\| = \lambda_Y$. According to (2.4) and (2.11) $\|e_{i_0} \circ Q^{\alpha}\| < \lambda_Y$ for $\alpha \geq 0$ sufficiently small. By Lemma 2.2,

$$||e_l \circ Q^{\alpha}|| \le \max_{u \ne l} ||e_u \circ Q^{\alpha}||$$

for l = j, k. For $l \neq i_0, j, k$, in view of (2.3) and (2.11), $||e_l \circ Q^{\alpha}|| = \lambda_Y$. (Since f^j does not satisfy (2.7) such an index exists.) Consequently, $||Q^{\alpha}|| = \lambda_Y$ which proves that P^1 is not a unique minimal projection.

Now let f^j satisfy (3.7). For $\alpha \in \mathbb{R}$ define

$$z_{\alpha}^{j} = w^{j} - (\alpha e_{i} + \beta e_{j}),$$

where w^j is given by (2.11) and β is chosen so that $f^j(z^j_\alpha) = 1$ and $f^{i_0}(z^j_\alpha) = 0$. Define for $x \in l_\infty^{(n)}$

$$Z^{\alpha}x = x - f^{i_0}(x)y^{i_0} - f^j(x)z^j_{\alpha}.$$

By Lemma 1.2, Z^{α} belongs to \mathcal{P}_{Y} . Reasoning in a similar way as in the case of Q^{α} we can show that $\|Z^{\alpha}\| = \lambda_{Y}$ for α sufficiently small. The proof of Theorem 3.3 is complete. \square

Before presenting the next result of this section let us set for $i \neq j$

$$E_1 = \{i: f^{i_0}(x^{i,1}) = 0\}$$
(3.8)

and

$$E_2 = \{i: f^{i_0}(x^{i,2}) = 0\}$$
(3.9)

where $x^{i,1}, x^{i,2}$ are defined by (2.14) and (2.15).

178 Lewicki

Theorem 3.4

Let f^{i_0} , f^j be as in Theorem 2.5. Assume furthermore that f^{i_0} does not satisfy (3.6) and f^j does not satisfy (3.7). Then P^1 is not a unique minimal projection if and only if E_1 and E_2 are nonempty sets.

Proof. In view of Lemma 2.4, we can assume that $f^j \geq 0$ and $f^{i_0}_j > 0$. Suppose E_1, E_2 are nonempty sets. By [4,Th. 2.2a], $card(ext(\mathcal{L}^*(l_\infty^{(n)})))$ is finite. Hence, according to Theorem 1.4, it is sufficient to show that P^1 is not a SUM projection. To do this, take $y \in S(Y)$ such that $y_k < 0$ for $k \in E_1, y_k > 0$ for $k \in E_2$ and $y_k = 0$ for $k \notin E_1 \cup E_2 \cup \{j\}$. Put $L = f^{i_0}(\cdot)y$. We will show that for any $i \in crit^*(P^1)$ (see (1.7))

$$\inf_{x \in \mathcal{A}_i} e_i(Lx) \ge 0. \tag{3.10}$$

Following Lemma 3.2 and (2.13) $crit^*(P^1) = \{1, \ldots, n\} \setminus \{j\}$. Since $f_j^{i_0} > 0$, for any $k \in E_1$

$$f^{i_0}(x^{k,l}) \le 0 \quad (l=1,2)$$

or for any $k \in E_2$

$$f^{i_0}(x^{k,l}) \ge 0$$
 $(l=1,2).$

Consequently, for any $i \neq j$, l = 1, 2 $f^{i_0}(x^{i,l})y_i \geq 0$. Since f^j does not satisfy (3.7) $\mathcal{A}_i = \{x^{i,1}, x^{i,2}\}$ for $i \neq j$. Hence, by the above reasoning, (3.10) holds true. In view of Theorem 1.3, P^1 is not a SUM projection as desired.

To prove the converse, suppose that $E_1 \neq \emptyset$ and $E_2 = \emptyset$. Take any $L \in \mathcal{L}_Y \setminus \{0\}$ (see 1.2). We will show that there is $i \in crit^*(P^1)$ such that

$$\inf_{x\in\mathcal{A}_i}e_i(Lx)<0.$$

According to Lemma 1.2 and (1.2) $L = f^{i_0}(\cdot)z^{i_0} + f^j(\cdot)z^j$. Since $L \neq 0, z_i^{i_0} \neq 0$ or $z_i^j \neq 0$ for some $i \in \{1, \ldots, n\}$. Moreover, since $f_j^{i_0} \neq 0$, we may assume that $i \neq j$. If $z^j \neq 0$, reasoning as in Theorem 2.5, we can show that $e_i(Lx^{i,1}) < 0$ or $e_i(Lx^{i,2}) < 0$. In the opposite case, since $f_i^j > 0$ for $i \neq j, z_i^{i_0} > 0$ for some $i \in E_1$ or $z_i^{i_0} \neq 0$ for some $i \notin E_1 \cup \{j\}$. Since E_2 is an empty set, it is easy to check that $\inf_{x \in \mathcal{A}_i} e_i(Lx) < 0$, where the index i is defined as above. To finish the proof of this part, let us consider the function F defined by (3.3). Applying Theorem 1.3 and reasoning as in Theorem 3.1, we get that P^1 is a SUM projection.

If $E_2 \neq \emptyset$ and $E_1 = \emptyset$ or $E_1, E_2 = \emptyset$, reasoning in the same manner as in the previous part of the proof, we get that P^1 is a SUM projection. The proof of Theorem 3.4 is complete. \square

EXAMPLE 3.5 (nonuniqueness): Let

$$f^{i_0} = (1/2, 0, 1/4, -1/4), f^j = (0, 1/3, 1/3, 1/3).$$

Then it is easy to check that $E_1 = \{4\}$, $E_2 = \{3\}$. Hence, in view of Theorem 3.4, P^1 is not a unique minimal projection.

EXAMPLE 3.6 (uniqueness): Let

$$f^{i_0} = (1/2, 0, 1/4, 1/4), f^j = (0, 1/3, 1/3, 1/3).$$

Then $E_1 = \{2\}, E_2 = \emptyset$. By Theorem 3.4, P^1 is a SUM projection.

References

- 1. M. Baronti, P.L. Papini, Norm one projections onto subspaces of l_p , Ann. Math. Pura Appl. 4 (1988), 53-61.
- J. Blatter, E.W. Cheney, Minimal projections onto hyperplanes in sequence spaces, Ann. Math. Pura Appl. 4 (1974), 215-225.
- 3. E.W. Cheney, W.A. Light, Approximation Theory in Tensor Product Spaces, Lecture Notes in Math. 1169 Springer-Verlag.
- 4. H.S. Collins, W. Ruess, Weak compactness in spaces of compact operators and vector valued functions, *Pacific J. Math.* 106 (1983), 45–71.
- 5. C. Franchetti, Projections onto Hyperplanes in Banach Spaces, J. Approx. Th. 38 (1983), 319-333.
- G. Lewicki, Kolmogorov's Type Criteria for Spaces of Compact Operators, J. Approx. Th. 64 (1991), 181-202.
- 7. P.F. Mah, Characterizations of the strongly unique best approximations, *Numer. Funct. Anal. Optimiz.* 7 (1984-85), 311-331.
- 8. Wl. Odyniec, G. Lewicki, *Minimal Projections in Banach Spaces*, Lecture Notes in Math. 1449 (1990), Springer-Verlag.

