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Minimal projections onto subspaces of 1%’ of codimension two
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ABSTRACT
LetY C lf(,’cl) be one of ils subspaces of codimension (wo. Denote by Py

the sct of all linear projections going from lg:? onto Y. Put

Ay =inf {||P|: P Py}.

An operator Py € Py is called a minimal projection if || Po|| = Ay. In this
note we present a partial solution of the problem of calculation Ay as well
as the problem of calculation of minimal projection. We also characterize the
unicity of minimal projection.

1. Introduction

Let X be a Banach space and let Y C X be one of its subspaces. A bounded, linear
operator P: X — Y is called a projection if Py = y for any y € Y. Denote by
P(X,Y) the set of all projections going from X onto Y. A projection Py is called
minimal iff

1Pl = A(Y, X) = inf {|| P||: P € P(X,Y)}. (1.1)
The significance of this notion can be illustrated by the following, well known in-
equality:

lle — Pal| < || = P| dist(z, ) < (1 + | P|}) dist(z, Y).

Unfortunately, in many important cases we do not know cffective formulas for min-
imal projections. For more complete information concerning this subject the reader
is referred to [1-3, 5, 6, 8].
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In this note, if nothing special will be assumed, Y will be a subspace of lgg), n>3
(&™ with the maximum norm) of codimension two. In Scction 2 we find an effective
formula for Ay (Theorem 2.5) and we calculate a minimal projection in this case.
In Scction 3 we deal with the problem of unicity of minimal projection (Theorems
3.1, 3.3, 3.4). Note that for Y being a hyperplane in lg.f) the above problems were
completely solved in [2].

Now we state a notation and some preliminary results which will be of use later. By
S(X) we denote the unit sphere in a normed space X and by ext(X) the set of all
its extreme points. We will write for brevity Ay instead of A(Y, l&L‘)), Py instecad of
'P(l((x,"),Y). Let us denote

Ly ={Le (™, Y): L]y =0}. (1.2)
It is easy to check that for any P € Py
Ay = dist(P, Ly). (1.3)

In the sequel we also need

Lemma 1.1 (sce [2])

Assume X is a normed space and let Y be one of its subspaces of codimension
k.Y = ﬂf=1 kerf*, where f* € X* are linearly independent. Then there cxist
yl,...,y* € X satisfying fi(y') = 6;; fori,j =1,...,k such that

k
Pr=z— Zfi(a:)yi for zeX. (1.4)
=1

One the other hand, if y',...,y* € X satisfy fi(y;) = 6;; then the operator P =
ko

id— Y f*(-)y* belongs to P(X,Y).
i=1

At the end of this scction we recall a notion of strong unicity. Let X be a normed
space and let Y € X be a nonempty subset. An element y € Y is called a strongly
unique best approximation (briefly SUBA) to z € X iff there exists r > 0 such that
forevery w €Y

Iz —w|l = [l — yll + rlly — wi. (1.5)
In the case of projections, (1.5) suggests the following

DEFINITION 1.2. Let Py € Py. Then Py is called a strongly unique minimal
projection (we will write a SUM projection for brevity) if and only if there is r > 0
such that for any P € Py

1Pl 2 [|Poll + 7l P — Poll. (1.6)
By [6,Th.2.3] it is easy to deduce
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Theorem 1.3
Let Po € Py. Set

crit*(Po) = {i € {1,...,n}:|le; o Pol| = || PlI} (1.7)
where
ei(z) =x; for zel® (1.8)
and
A;={z € e:z:t(lﬁ,'g)):ei(P():t:) = | Poll}. (1.9)

Then Py is a minimal projection (P is a SUM projection with a constant r > 0
resp.) if and only if for every L € Ly there exists i € crit*(Py) such that

ienj e;(Lz) <0 (L —r||L}| resp.) (1.10)

Theorem 1.4 (see [7])

Let X be a finite dimensional real normed space and let Y C X be one of
its subspaces. Assume that card(ext(X)) < oc. Then z € X has a unique best
approximation in Y iff X possesses a SUBA element in Y.

Section 2

First we prove some preliminary results. We start with
Lemma 2.1.

Let Y € l(£) be onc of its subspaces of codimension two. Then for every
i € {l,...,n} with e; ¢ Y there exists onc exact to a constant, f* € lsn) \ {0} such
that fily =0 and f} = 0.

Proof. Put Y; =Y & [e;]. Since e; ¢ Y,dimY; = n — 1. Consecquently, there exists
exactly one to a constant f* € lsn) satisfying f*ly, = 0, as desired. O

Lemma 2.2
Let Y C ker(f) for some f € S (li")). If there exists 1 € {1,..., n} satisfying

H H

FAEDMIA (2.1)

k#i
then for every L € cS,’é)(IS,L", ker(f))
le; o L]| < max [lej o L] . (2.2)
it

Moreover, if in (2.1) we have the strict inequality then the same holds in (2.2).
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Proof. Let us take any f € S(lg") ) such that in (2.1) we have the strict inequality.
Then it is easy to deduce that ||e;|ker(s)|| < 1. Hence
llei o LIl < llesfkercnll 11 < IILI
and consequently

lle; o L|| < max|le; o L]|.
l#1

If in (2.1) we have equality, then we can approximate f by a sequence {f"} € lﬁ"’
such that f™ satisfies the strict mequahty in (2.1). From this, it is easy to derive
that (2.2) holds true for any L € L',(loo Jker(f)). 0O

Lemma 2.3
Let Y = ker(f') Nker(f?), where f*, f? € l&"’ are lincarly independent. Let
P € Py, P =id— (f()y' + f2(-)y?) where y',y? € I{2). Then
1Pl = max |L- fiy} = fivil+ ) 1fjul + fivil. (2.3)
o

Proof. Note that ||P|| =  ax lle; o P||. So to finish the proof, it is sufficient to
i=l,...,n

demonstrate that for cach i € {1,...,n}

“(EiOP" = Il— ilyz] zyzl +Z| 7/1. + (24)
J#i

To do this, take any = € I, Then
(eio P = z; — f'(x)y; — f2(2)y}

n n
- (Z fg"l%')y;‘ - (Zfﬂ?”’j)yiz
=1 g=1
= zi(1 - flyi - fiyi) ZZJ fl”’ %)

J#i
Sll— 1.]!/': zyt|+Z| 1/'1,+ 1/1.
J#
Hence
les o Pl < {1 — flyi — fFRuil+ ) |fjvi + f
i#j
If we take = (3, ...,25) where z; = sgn(1— fly) — [2y2),z; = —sgn(f}y} +f;-2yi2)

for j # i we get (2.4) which completes the proof of Lemma 2.3.0
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Lemma 2.4

Let f!, f? be as in Lemma 2.3. Put

gt = (sgn(fD)fL, ..., sgn(f2)fL)

and
@ =(f2h.. . 172]). (2.5)

Then the sct Py is linearly isometric to Py, where Y1 = ker(g') N ker(g?).
Proof. It is easily seen that the mapping L: lS,Z’ - lg'c") defined by

Lz = (z13gn(f7),- . -, Znsgn(f}))

is a linear isometry such that L(Y;) = Y. Hence the mapping ¥(P) = L 1o PoL
for P € Py is a required linear isometry between Py and Py,. O

Now we can state the main result of this section

Theorem 2.5

LetY C lé,’;’ be one of its subspaces of codimension two. Assume furthermore

that there isip € {1,...,n} and fi € lg") \ {0}, :g =), fi°|y = 0 such that
|f;°|ZZ|fé°| for some je{l,...,n}. (2.6)
k#j

Let fies8 (lg"')) satisfy the assumptions of Lemma 2.1 fori = §. Then if there exists
jo € {1,...,n} such that

121> 3 15l (2.7)

k#3jo

then Ay = 1. In the opposite case

w =1+ (IR -28D)
i=1
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Proof. First we consider the case described in (2.6) and (2.7). Let us define y; =

(¥]s---+94) by

yl =1 £}, if k= jo (2.8)
—fal ol k=3

and g = (yi°,...,yi) by

_ 0 ifk#j
yi° = _ 2.9
Yr {1/f;° i k= ;. (2.9)
Consider the operator
P=id— f*°()y* - )y (2.10)

Since fi(y®°) = fio(y?) = 0 and fi(y?) = fo(y'0) = 1 the opecrator P belongs to
Py . In view of Lemma 2.3,

Il = max {1, lez, o Pll, llej o PII} -

According to (2.6), (2.7) and Lemma 2.2, ||P|| = 1 and consequently, Ay = 1.
Now let fi satisfy (2.6) and let f7 does not satisfy (2.7). In view of Lemma 2.4 we
may assume that f7 > 0. Put w/ = (w],...,w]) where

J —
wy, =

{(2)‘ /(1—2f;) if k # j (2.11)

T (fo- (E) (1 -2f)fie) k=

(we will write
(2)" = (Sva-agn)” @.12)
=1

for brevity) (compare with [2]). It is casy to check that f/(w’) = 1 and fi*(w’) = 0.
Let us define

Pl =id— fo()y' — fI(-)u. (2.13)
In view of Lemma 2.3 one can check that

1P = max {Jes o P11+ (3 171/ - 257)) "}

=1
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According to Lemma 2.2, |le; ¢ P!l < max lles o P||. Hence
j

1P =1+ (1A -215D)

k=1

n . .
and Ay <1+ (% 11/ =207
To prove the ol—oposite' inequality, we apply Theorem 1.3. First observe that
crit*(P') > D = {i: f/ > 0}. According to the proof of Lemma 2.3 and (2.13)
for each i € crit*(P') \ {5}

{zi = (b, ..., 25"), =42 = (z}%,. .. 2h?)} C A

(see Theorem 1.3), where

1 ifl=jior fi=0
zi! = { _ : (2.14)
-1 ifff >0and ! #3j,i
and ( y
. 1 ifl=dior(fji =0,1#7)
oi? ={ ’ (2.15)
-1 ifl=jor (f] >0,1l#1).

Now we will show that for every L € Ly there exists an index ¢ € D such that
e;(Lz**) < 0for k=1or k=2. Fix L € Ly. According to Lemma 1.1 and (1.2)
L = fio(.)z% + fI(-)27 for some 2%, 27 € Y. Observe that by (2.6) for any i € D
fio(ziNzle <0 or flo(zh?)zl <. (2.16)
Hence, if z{ =0 for some i € D then
e;(Lz") <0 or e (Lz'?) <0.

Now let 2/ # 0 for any i € D. Since 2/ € Yf’ =0 and | ff]| = 1,27 > 0 for
some i € D. Moreover, according to (2.14) and (2. 1o ) fi(z*1) = f7(z*?). Hence for

k=1,2
I(atk)ed = (3 fait)ed =2 (18- 30 IF1) <o, (2.17)
I 1#1,j

since f7 does not satisfy (2.7). Consequently, by (2.16) and (2.17) there exists i €
D C crit*(P!) and k € {1,2} such that e;(Lz**) < 0. Since for k = 1,2 z** € A;,
according to Theorem 1.3, the proof of Theorem 2.5 is complete. O
Corollary 2.6

Let fio satisfy (2.6) and f7 (2.7). Then the projection P defined by (2.10) is a

minimal projection in Py . If fJ does not satisfy (2.7) the same holds for P! defined
by (2.13).
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EXAMPLE 2.7: Let f = (0,1/3,0,1/3,0,1/3) and g = (1/3,0,1/3,0,1/3,0). Then
Y = ker(f) N ker(g) does not satisfy the assumption of Theorem 2.5.

Section 3

In this section we present necessary and sufficient conditions for Y under which P
and P! given by (2.10) and (2.13) arc unique minimal projections. We start with

Theorem 3.1

Let fio satisfy (2.6) and f7 (2.7). Then the projection P defined by (2.10) is a
unique minimal projection if and only if

Ifiol=|f°| and |fL|>1|ff| for 1# jo. (3.1)

or
o) > 1ffe] for 1#5 and |fL1> ] for 1#o (32)
(the indexes ig, j, jo are the same as in Theorem 2.5).

Proof. Assume that (3.2) holds. We will show that P is a SUM projection. Ac-
cording to (2.10) and Lemma (2.3) the set {i: # j,jo} C crit*(I?). Moreover, for
each 1 # 7, jo the set A; (see Th. 1.3) contains all the vectors from the set e:ct(lgg))
having the i-th coordinate cqual to 1. Since f* and f7 satisfy (3.2), there exists two
different indexes 4;,i2 # j,ip such that f,’;“ # 0 for k = iy,1i2. Analogously, there
exist two different indexes ji, jo # j,jo such that f,z # 0 for k = j1,j2. Now take
any L € Ly \ {0} (sce (1.2)). We will show that therc exist i # j,j0 and z € A;
such that e;(Lz) < 0. By Lemma 1.1 and (1,2)

L= fio(')zin + .fj(')zj

where z;,, 2/ €Y. Since L #0, zi° £ 0 or 2] # 0 for some i € {1,...,n}. Morcover,
since f] =0, f;° # 0 and f] # 0, we may assume that i # j, jo. Now we divide the
proof onto two cascs.

Case 1: z° # 0 and zg = 0. Since f:f # 0 and fz'-";’ # 0 for two different indexes

¢ {j,io}, there exist z',22 € A; such that fio(z!)f(z?) < 0. Consequently,
e;(Lz*) <0 fork=1or k=2

Case 2: z,’ # 0. Reasoning as above, we can find z!,22 € A; such that
f3(x") fi(x?) < 0. Since j1, jo, i & {jo.Jj}, modifying the j-th coordinate of z! and z2
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if necessary, we may assume that f%(z!)z < 0 and fi(22)2i° < 0. Consequently,
e;(Lz*) <0fork=1or k=2

Now consider the function
F(L) = min ( min (e:(Z2))) 3.3
( ) ir%a.‘io :£I€1{4: (eZ( .’I:)) ( )
for L € Ly. It is easily seen that F is a continuous function as a minimum of a
finite number of continuous functions. Moreover, by the reasoning presented above
for every L # 0 F(L) < 0. Since Ly is finitely dimensional, the constant v =

sup F(L) is strictly negative. We will show that P given by (2.10) is a SUM

projection with a constant r = —y. To do this, take any L € Ly \ {0}. Then there
exist i # j, jo and z € A; with

ei(L/||L|))x = F(L/||L|)).
Hence

e;(Lx) < —r|| L]

which, according to Theorem 1.3, completes the proof of this part.
Now assume that (3.1) holds. Define

g° = fo+ (-f3/fl) .
Then Y = ker(g™) N ker(f?) and according to (3.1) g’ and f satisfy (3.2) which
completes the proof of this part. . _
Now let (3.1) and (3.2) do not hold. We first consider the case: |f;°| = |f;°| for

some k # 4o, jo. j- Let us define z = (21,...,2,) € lf,::’ by

1/fi° ifl=k
2= —fl/(fio Jjo) if I = jo
0 if I # k. jo.

Set ' o
Q=id—f*()z— ()
where 3/ is given by (2.8). Since |; ;0|, |f;°|, |fie} > 1/2, according to Lemma 2.3,
llero @l < mgic llen © Q|| for I = 4, jo, k. Obscrve that for [ # j, jo,k,e; 0 Q = e;.
n

Consequently, ||Q|| = 1. Since z # y° (see (2.9)), Q is a minimal projection diffcrent
from P, which completes the proof of this case.

Now let |fl| = | JJO| for some k # j, jo. Changing the role of fi and f7 and by the
above reasoning we can construct a projection Q of a norm one different from P.
The proof of Theorem 3.1 is fully complete. O
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Lemma 3.2

AssumeY = ker(f*)Nker(f7) where f7 and fi° are as in Theorem 2.5. Assume
furthermore that

f#0 for k#j
and . _
2=|fP|> |fPl for k#j
Then |le; o P!|| < ||P!|| where P! is defined by (2.13).
Proof. In view of Lemma 2.4, we may assume flj > 0 for [ # j. Observe that by
Lemma (2.3), (2.9) and (2.11)

leso P=Y |5 - - (3 fera—2)- ()7 |/ 151
k#j l#i0.5

If we fix f7 and f;° the above formula may be considered as a convex function (we
will denote it by ) of variables f;°, k # j, satisfying 3 |fi°| = 1/2. Hence to finish
k#j

the proof, it is suflicient to show that ¢ is a strictly convex function. To do this, we
demonstrate that for a, 3 # 0, |a| + |8] = 1/2, and two different indexes k,1 # iq, j

oloex+B-e)<[P=1+ ()"

Observe that
wlo-ex+B-e)=1/fp- (la — fl{a/(1 - 2£])

+a/-26)- (2)1]
+p- /-2 +p/a-2)) - (T) |

+ Y, lf;’;l||((¥/(1—2f£)+ﬁ/(1—2ff)) : (Z)”D :

mg{j.l.k}
Hence if @(aer, + Be;) = || P!|| then

o1 - (s —28) - ()7 - (efira-26) - (L)
=lo(1- (ra-2) - (X)) +|@rra-2m)- ()]
la/ (1= 2f]) + B/(1 = 2f7)| = lo/ (1 = 2£])| + 181 — 27)] - (3.5)

Consequently, according to (3.5), sgn(a) = sgn(B). But, by (3.4), sgn(a) =
—sgn(f); a contradiction (a, 8 # 0). The proof of Lemma 3.2 is complete. O

(3.4)

and
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Theorem 3.3

Let f'o, f7 be as in Theorem 2.5. Assume furthermore that f7 does not satisfy
(2.7) and ' _
[l =1l =1/2, forsome k # j,io (3.6)
or _
fi =0 forsome [#j. (3.7)

;I‘I1en the projection P! defined by (2.13) is not a unique minimal projection.

Proof. According to Lemma 2.4 we may assume that f7 > 0. Let fio satisfy (3.6).
For . € R put

ul, = w — (s, + Bej + ver),
where w’ is given by (2.11) and 3, v are chosen so that fI(ul) = 1, fie(ul) = 0.
Define for z € 12

Q%z =z — f(z)y" — f(x)ul,
where ¢ satisfies (2.9). By Lemma 1.1, Q% belongs to Py. We will show that for
a sufficiently small ||[Q%]| = Ay. According to (2.4) and (2.11) |le;, © Q*|| < Ay for
o 2> 0 sufficiently small. By Lemma 2.2,

ller o @l < maxle, o Q7|
u#l

for | = j, k. For | # ip, j, k, in view of (2.3) and (2.11), |le; o Q*|| = Ay. (Since f7
does not satisfy (2.7) such an index cxists.) Consequently, ||Q%|| = Ay which proves
that P! is not a unique minimal projection.

Now let f7 satisfy (3.7). For a € R define

2 = wl — (ae; + PBe;),

where w? is given by (2.11) and J is chosen so that fI(z}) = 1 and fio(z]) = 0.
Dcfine for z € lf,g) ' . _ .

Z% =z — fo(x)y' — fI(x)2l,.
By Lemma 1.2, Z% belongs to Py. Reasoning in a similar way as in the case of Q*

we can show that ||Z*|| = Ay for a sufficiently small. The proof of Theorem 3.3 is
complete. O

Before presenting the next result of this scction let us set for ¢ # j
E; = {i: fio(z*) = 0} (3.8)
and |
E» = {i: fio(z*?) = 0} (3.9)
where z!, 732 are defined by (2.14) and (2.15).
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Theorem 3.4

Let fio, fi be as in Theorem 2.5. Assume furthermore that f* does not satisfy
(3.6) and fJ does not satisfy (3.7). Then P! is not a unique minimal projection if
and only if Ey and E, arc nonempty scts.

Proof. In view of Lemma 2.4, we can assume that f7 > 0 and f;° > 0. Suppose
Ey, E5 arc nonempty scts. By [4,Th. 2.2a, card(ext(ﬁ*(l(o'é)))) is finite. Hence,
according to Theorem 1.4, it is sufficient to show that P! is not a SUM projection.
To do this, take y € S(Y) such that y, < Ofork € Eq,yx > Ofork € Ey and y =0
for k ¢ EyUE;U{j}. Put L = fio(.)y. We will show that for any i € crit*(P!) (sec
(1.7)

a,-iélft.- ei(Lz) > 0. (3.10)
Following Lemma 3.2 and (2.13) crit*(P!) = {1,...,n}\ {j}. Since f;" > 0, for any

ke E; .
fe@d) <0 (1=1,2)

or for any k € E»
fe(zky >0 (1=1,2).

Consequently, for any i # j, { = 1,2 fio(z¥!)y; > 0. Since f does not satisfy (3.7)
A; = {z¥!, 22} for i # j. Hence, by the above rcasoning, (3.10) holds true. In view
of Theorem 1.3, P! is not a SUM projection as desired.

'To prove the converse, suppose that E| # (0 and E; = (). Take any L € Ly \ {0}
(scc 1.2). We will show that there is ¢ € crit*(P!) such that

inf e;(Lz) < 0.
©wEA;

According to Lemma 1.2 and (1.2) L = fio(-)z% + f(-)2%. Since L # 0,2° # 0
or z{ # 0 for some i € {1,...,n}. Moreover, since f;:“ # 0, we may assume that
i # j. If 29 # 0, reasoning as in Theorem 2.5, we can show that e;(Lz"!) < 0 or
e;(Lz*?) < 0. In the opposite case, since f;’ > 0 for i # 5,2 > 0 for some i € E)
or z° # 0 for some i ¢ Ey U {j}. Since E; is an empty sct, it is easy to check that
mien;fl 1_ e¢;(Lz) < 0, where the index i is defined as above. To finish the proof of this

part, let us consider the function F' defined by (3.3). Applying Theorem 1.3 and
rcasoning as in Theorem 3.1, we get that P! is a SUM projection.

If E; # 0 and E; = 0 or E;, F3 = 0, reasoning in the same manner as in the previous
part of the proof, we get that P! is a SUM projection. The proof of Theorem 3.4 is
complete. O



Minimal projections onto subspaces of lf,g) of codimension two 179

EXAMPLE 3.5 (nonuniquencss): Let
fio =(1/2,0,1/4,-1/4), f? =(0,1/3,1/3,1/3).

Then it is easy to check that E; = {4}, E; = {3}. Hence, in view of Theorem 3.4,
P! is not a unique minimal projection.

ExXAMPLE 3.6 (uniquencss): Let
fo=1(1/2,0,1/4,1/4), 7 =(0,1/3,1/3,1/3).

Then E; = {2}, E; = 0. By Theorem 3.4, P! is a SUM projection.
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