Remarks on the Istratescu measure of noncompactness

JANUSZ DRONKA

Department of Mathematics, Technical University of Rzeszów, 35-959 Rzeszów, W. Pola 2, Poland

ABSTRACT

In this paper we give estimations of Istratescu measure of noncompactness I(X) of a set $X \subset l^p(E_1, \ldots, E_n)$ in terms of measures $I(X_j)$ $(j = 1, \ldots, n)$ of projections X_j of X on E_j . Also a converse problem of finding a set X for which the measure I(X) satisfies the estimations under consideration is considered.

1. Introduction

Let E be a real Banach space with the norm $\| \|$. Given a nonempty subset A of E we say that it is ε - separated if for every pair x, y in A we have

$$||x-y|| \geq \varepsilon$$
.

For a nonempty and bounded subset X of E we shall consider the Istratescu measure of noncompactness of X, defined in the following way:

 $I(X) = \sup \{ \varepsilon > 0 \colon \text{ there exists an infinite } \varepsilon\text{-separated subset } A \text{ of } X \}.$

This classical measure was studied in many papers and has found many applications (cf. [1,2]).

AMS Subject Classification 46B20.

Particularly, in the geometry of Banach spaces the following "separation" constant, often called the Kottman constant, is considered:

$$K(E) = I(B(E))$$

where B(E) denotes the unit ball of a space E.

As it was indicated by Papini (see [13]) the Kottman constant is strictly related to other significant notions, for example:

$$K(E) = \frac{2P(E)}{1 - P(E)}$$
 (cf. [10,12]),

where P(E) is the packing constant of E, defined as follows:

 $P(E) = \sup \{r > 0 : \text{ infinitely many balls of radius } \geq r \text{ can be packed in } B(E) \}.$

(We say that a collection of balls $\{B(x_i, r_i)\}$ is packed in B(E) if $B(x_i, r_i) \subseteq B(E)$ for every index i, and moreover the interiors of any two of the balls are disjoint they do not "overlap").

We have also:

$$K(E) \cdot J(E) \ge 2$$
 (cf. [13]),

where J(E) is the Yung constant of E, defined by

$$J(E) = \sup \{2r(A)/\delta(A); A \text{ is bounded, nonempty subset of } E\},$$

where $\delta(A)$ is the diameter of A, and $r(A) = \inf_{x \in E} \sup_{a \in A} ||x - a||$.

We also know that K(E) is continuous with respect to the Banach-Mazur distance in any isomorphism class (cf. [11]).

If we want to get some numerical results we may start from the Elton-Odell $(1+\varepsilon)$ -separation theorem (cf. e.g. [4]), which gives us:

(the right inequality is trivial).

From the papers of Kottman, Papini, Domínguez Benavides and other authors it follows that:

- i) $K(H) = 2^{1/2}$, if H is a Hilbert space (cf. e.g. [5]),
- ii) $K(l^p) = 2^{1/p}$, for $1 \le p < \infty$ (cf. [10]),
- iii) $K(c_o) = K(l^\infty) = 2$,

- iv) $K(L^p) = \max\{2^{1/p}, 2^{1/q}\}$, for $1 \le p < \infty, 1/p + 1/q = 1$ and μ not purely atomic measure (cf. [3,12]).
- v) $K(l^p(E_1, E_2, ...)) = \max\{2^{1/p}, \sup_{i \in \mathbb{N}} K(E_i)\}$, where E_i are Banach spaces for i = 1, 2, ... (with a norm $\|\cdot\|_i$ respectively) and $l^p(E_1, E_2, ...)$, with $1 \leq p < \infty$, denotes the space of all sequences $\{x_i\}$, $x_i \in E_i$, with $\sum_{i=1}^{\infty} \|x_i\|_i^p < \infty$ ($l^p(E_1, E_2, ...)$) is a Banach space with the natural norm) (cf. [9,11]).

Recently some new interesting results concerning the Kottman constant in Orlicz and Musielak-Orlicz sequence spaces were obtained by H. Hudzik and others [6,7,8].

The result v) suggests the following question:

What can be said about Istratescu measure of a bounded subset of $l^p(E_1, E_2, ...)$ if measures of its projections on subspaces E_i are known?

The aim of this paper is to answer this question for the finite product space $l^p(E_1, \ldots, E_n)$ which may be treated as the special case of the space $l^p(E_1, E_2, \ldots)$.

2. Notation, definitions and some auxiliary facts

This section is devoted to establish some auxiliary results which will be needed further on.

Let E_j be a Banach space with a norm $\| \|_j$ for $1 \le j \le n$.

Let us recall that the product space $l^p(E_1, \ldots, E_n)$ is defined as the linear space $E_1 \times \ldots \times E_n$ with a norm:

$$||x|| = \left(\sum_{j=1}^{n} ||x_j||_j^p\right)^{1/p}$$
 if $1 \le p < \infty$,

and

$$||x|| = \max_{1 \le j \le n} ||x_j||_j$$
, for $p = \infty$,

where $x = (x_1 \ldots, x_n) \in E_1 \times \ldots \times E_n$.

The basic properties of product spaces may be found in [9], for example.

In the sequel we will use the following fact concerning the Istratescu measure of noncompactness in product spaces.

Lemma 1

If X is a bounded and nonempty subset of the space $l^p(E_1, \ldots, E_n)$, $1 \le p \le \infty$, then

$$I(X) \geq I(X_j)$$
 for $j = 1, \ldots, n$,

where X_j denotes the projection of X on E_j .

Proof. Fix an arbitrary j, $1 \le j \le n$, and $\varepsilon > 0$. Let $\{x_{kj}\}$ be an $I(X_j) - \varepsilon$ -separated sequence in X_j . Then there exists a sequence $\{x_k\}$ of elements of X such that x_{kj} is a projection of x_k on the space E_j , for $k = 1, 2, \ldots$ It is easy to see that $\{x_k\}$ is $I(X_j) - \varepsilon$ -separated, too. Indeed, for any $k, l \in \mathbb{N}$ we get

$$||x_{k} - x_{l}|| = \left(\sum_{i=1}^{n} ||x_{ki} - x_{li}||_{i}^{p}\right)^{1/p} \ge \left(||x_{kj} - x_{lj}||_{j}^{p}\right)^{1/p}$$

$$\ge I(X_{j}) - \varepsilon \text{ if } 1 \le p < \infty,$$

and

$$||x_k - x_l|| = \max_{1 \le i \le n} ||x_{ki} - x_{li}|| \ge ||x_{kj} - x_{lj}||$$

$$\ge I(X_i) - \varepsilon \quad \text{for} \quad p = \infty.$$

Thus for any $\varepsilon > 0$ we have

$$I(X) \geq I(X_i) - \varepsilon$$
,

which ends the proof. \square

Now, let us formulate a few properties of the Istratescu measure of noncompactness which will be used later on (cf. [1,2]).

For any nonempty and bounded subsets X, Y of a Banach space E we have

$$(1) X \subset Y \Rightarrow I(X) \le I(Y),$$

(2)
$$I(RX) = RI(X) \text{ for any } R > 0,$$

(3)
$$I(X+a) = I(X)$$
 for any $a \in E$.

The next useful property of the Istratescu measure I is formulated in the following lemma.

Lemma 2

Let X be a bounded and convex subset of a Banach space E such that $0 \in X$, and let $f: E \to \mathbb{R} \cup \{\infty\}$ be a function defined by

$$f(x) = \begin{cases} \inf\{t \geq 0 : x \in tX\} & \text{if the set is nonempty,} \\ \infty & \text{otherwise.} \end{cases}$$

Then for any sequence $\{x_k\}$ of elements of X and $\delta > 0$ there exist $0 \le R \le 1$ and a subsequence $\{y_k\}$ of $\{x_k\}$ such that:

$$\lim_{k \to \infty} f(y_k) = R,$$

and for any $k, l \in \mathbb{N}$:

$$||y_k - y_l|| \le RI(X) + \delta.$$

Proof. Since $x_k \in X$ we get $0 \le f(x_k) \le 1$ for $k = 1, 2, \ldots$ Hence using Weierstrass theorem we can choose a subsequence $\{w_k\}$ of $\{x_k\}$ and $0 \le R \le 1$ satisfying (4). Put $\varepsilon = \delta/(I(X) + 1) > 0$.

From (4) it follows that $w_k \in (R + \varepsilon)X$ for $k \geq k_0, k_0 \in \mathbb{N}$.

Now, using (2) and Ramsey's theorem (cf. [4], for example) we claim that there exists a subsequence $\{y_k\}$ of $\{w_k\}$ such that

$$||y_k - y_l|| \le (R + \varepsilon)I(X) + \varepsilon = RI(X) + \delta$$
 for any $k, l \in \mathbb{N}$.

If not, there would exist a subsequence of $\{w_k\}$ for which the opposite inequality holds, which in turn contradicts the fact that

$$I((R+\varepsilon)X) = (R+\varepsilon)I(X).$$

This completes the proof. \square

Finally, let us formulate a numerical lemma which is a simple consequence of Hölder's inequality.

Lemma 3

Let
$$1 \le p < q < \infty$$
, $R_j \ge 0$ and $m_j \ge 0$ for $j = 1, ..., n$, and

$$R_1^q + \cdots + R_n^q \le 1.$$

Then

$$\sum_{j=1}^n R_j^p m_j^p \le \left(\sum_{j=1}^n m_j^{pq/(q-p)}\right)^{(q-p)/q}.$$

The equality is attained for:

$$\hat{R}_j = m_j^{p/(q-p)} \left(\sum_{i=1}^n m_i^{pq/(q-p)} \right)^{-1/q}, \text{ where } j = 1, \dots, n.$$

Proof. Indeed, putting

$$x_j = R_j^p, \ y_j = m_j^p, \ s = \frac{q}{p}, \ t = \frac{q}{(q-p)},$$

we have s, t > 1 and $\frac{1}{s} + \frac{1}{t} = 1$. Hence, applying Hölder's inequality we obtain

$$\sum_{j=1}^{n} R_{j}^{p} m_{j}^{p} = \sum_{j=1}^{n} x_{j} y_{j} \leq \left(\sum_{j=1}^{n} x_{j}^{s}\right)^{1/s} \left(\sum_{j=1}^{n} y_{j}^{t}\right)^{1/t}$$

$$= \left(\sum_{j=1}^{n} R_{j}^{q}\right)^{p/q} \left(\sum_{j=1}^{n} m_{j}^{pq/(q-p)}\right)^{(q-p)/q}$$

$$\leq \left(\sum_{j=1}^{n} m_{j}^{pq/(q-p)}\right)^{(q-p)/q}.$$

The remainder of the proof is an easy calculation and is therefore omitted. \square

3. Main results

Let E_j be a Banach space with a norm $\| \|_j$ for j = 1, ..., n. For the Istratescu measure of noncompactness in the product space $l^p(E_1, ..., E_n)$ we have the following estimations.

Theorem 1

If X is a bounded subset of $l^p(E_1, ..., E_n)$ then

(5)
$$\max_{1 \le j \le n} I(X_j) \le I(X) \le \left(\sum_{j=1}^n [I(X_j)]^p \right)^{1/p}, \quad \text{if } 1 \le p < \infty.$$

and

(6)
$$I(X) = \max_{1 \le j \le n} I(X_j), \quad \text{if } p = \infty,$$

where X_j denotes a projection of X on E_j for j = 1, ..., n.

The converse is also true, which is stated in the next theorem.

Theorem 2

If X_1, \ldots, X_n are bounded and convex subsets of E_1, \ldots, E_n respectively, then for any number μ satisfying

$$\max_{1 \le j \le n} I(X_j) \le \mu \le \left(\sum_{j=1}^n [I(X_j)]^p\right)^{1/p}, \quad \text{where} \quad 1 \le p < \infty,$$

there exists a subset X of $l^p(E_1, \ldots, E_n)$ such that $I(X) = \mu$ and projections of X on each of E_i coincide with X_i .

Proof of Theorem 2. Let $1 \leq p < \infty$, E_1, \ldots, E_n and X_1, \ldots, X_n be as in the statement of the theorem. Keeping in mind (3), without loss of generality we may assume that $0 \in X_j$ for $j = 1, \ldots, n$. Denote $m_j = I(X_j)$.

We define $f_j: E_j \to \mathbb{R} \cup \{\infty\}$ (j = 1, ..., n) similarly as in Lemma 2, namely:

$$f_j(x) = \begin{cases} \inf\{t \ge 0 : x \in tX_j\} & \text{if the set is not empty,} \\ \infty & \text{otherwise .} \end{cases}$$

Consider the sets

$$D_q = \left\{ (x_1, \dots, x_n) \in l^p(E_1, \dots, E_n) : \sum_{j=1}^n [f_j(x_j)]^q \le 1 \right\}$$

for $1 \le q < \infty$, and

$$D_{\infty} = X_1 \times \ldots \times X_n$$

It is easy to see that

(7) the projection of
$$D_q$$
 onto the space E_j coincides with X_j for any $1 \le q \le \infty$ and $j = 1, ..., n$.

Now we will calculate the Istratescu measure of noncompactness of the sets D_q in the space $l^p(E_1, \ldots, E_n)$.

We have:

(8)
$$I(D_q) = \max_{1 \le i \le n} I(X_j) \text{ for } 1 \le q \le p,$$

(9)
$$I(D_q) = \left(\sum_{j=1}^n [I(X_j)]^{pq/(q-p)}\right)^{(q-p)/pq} \text{ for } p < q < \infty,$$

(10)
$$I(D_q) = \left(\sum_{j=1}^n [I(X_j)]^p\right)^{1/p} \quad \text{for } q = \infty.$$

To prove (8) fix p and q, where $1 \le q \le p < \infty$. The inequality

$$I(D_q) \ge \max_{1 \le j \le n} I(X_j)$$

follows immediately from (7) and Lemma 1.

To prove the opposite, since $D_q \subseteq D_p$ for $1 \le q \le p$, taking into account (1) it is sufficient to show that

$$I(D_p) \le \max_{1 \le j \le n} I(X_j).$$

Suppose to the contrary that there exists an $\alpha + \varepsilon$ -separated sequence $\{x_k\}$ contained in D_p , where $\alpha = \max_{1 \leq j \leq n} I(X_j)$ and $\varepsilon > 0$. Denote $x_k = (x_{k1}, \ldots, x_{kn})$ for $k = 1, 2, \ldots$ Put $\delta = (\alpha + \varepsilon)^p - \alpha^p > 0$. Applying consecutively Lemma 2 to each of X_j and taking a subsequence of $\{x_k\}$ in place of $\{x_k\}$ if necessary, we may assume that:

(11)
$$\lim_{k\to\infty} f_j(x_{kj}) = R_j, \text{ where } 0 \le R_j \le 1 \text{ for } j = 1, \dots, n,$$

and

(12)
$$||x_{kj} - x_{lj}||_{j}^{p} \leq R_{j}^{p} m_{j}^{p} + \frac{\delta}{2^{j}} \text{ for } l, k \in \mathbb{N}.$$

Moreover it is easy to see that

$$(13) \qquad \qquad \sum_{j=1}^{n} R_j^p \le 1$$

(if not, due to (11), x_k with sufficiently large k would not belong to D_p). Now, using (12) and (13) we get

$$||x_{k} - x_{l}||^{p} = \sum_{j=1}^{n} ||x_{kj} - x_{lj}||_{j}^{p} < \sum_{j=1}^{n} R_{j}^{p} m_{j}^{p} + \delta$$

$$\leq \alpha^{p} (\sum_{j=1}^{n} R_{j}^{p}) + \delta \leq \alpha^{p} + \delta = (\alpha + \varepsilon)^{p}$$

which contradicts the fact that $\{x_k\}$ is $\alpha + \varepsilon$ -separated. This implies (8).

To prove (9) let
$$1 \le p < q < \infty$$
. Denote $\beta = (\sum_{j=1}^n [I(X_j)]^{\frac{pq}{q-p}})^{\frac{q-p}{pq}}$.

First we will prove that $I(D_q) \leq \beta$. Suppose to the contrary that there exists a sequence $\{x_k\}$ of elements of D_q which is $\beta + \varepsilon$ -separated, where $\varepsilon > 0$. Denote $\delta = (\beta + \varepsilon)^p - \beta^p > 0$. Using the same argumentation as above we may assume without loss of generality that for the sequence $\{x_k\}$ the properties (11), (12) and $R_1^q + \cdots + R_n^q \leq 1$ hold.

Now, taking into account (12) and applying Lemma 3 we obtain

$$||x_k - x_l||^p = \sum_{j=1}^n ||x_{kj} - x_{lj}||_j^p < \sum_{j=1}^n R_j^p m_j^p + \delta$$

 $\leq \beta^p + \delta = (\beta + \epsilon)^p$

which contradicts the fact that the sequence $\{x_k\}$ is $\beta + \varepsilon$ -separated. Thus we have proved that $I(D_q) \leq \beta$,

To prove the opposite inequality let $\varepsilon > 0$ and $\delta = \beta^p - (\beta - \varepsilon)^p$. Consider $\hat{R}_1, \ldots, \hat{R}_n$ such as in Lemma 3. We have:

$$\sum_{j=1}^{n} \hat{R}_{j}^{q} = 1, \quad \sum_{j=1}^{n} \hat{R}_{j}^{p} m_{j}^{p} = \beta^{p} \text{ and } \hat{R}_{j} \ge 0 \text{ for } j = 1, \dots, n.$$

From (2) it follows that

$$I(\hat{R}_j X_j) = \hat{R}_j m_j$$
 for $j = 1, \dots, n$.

Thus we can choose a sequence $\{x_{kj}\}_{k\in\mathbb{N}}$ of elements of \hat{R}_jX_j such that

$$||x_{kj} - x_{lj}||_j^p \ge \hat{R}_j^p m_j^p - \frac{\delta}{n}$$
 for $j = 1, ..., n$ and $k \ne l$.

Let

$$x_k = (x_{k1}, \dots, x_{kn})$$
 for $k = 1, 2 \dots$

Since $x_{kj} \in \hat{R}_j X_j$ we have $f_j(x_{kj}) \leq \hat{R}_j$ for j = 1, ..., n and

$$\sum_{j=1}^{n} [f_j(x_{kj})]^q \le \sum_{j=1}^{n} \hat{R}_j^q = 1.$$

Hence $x_k \in D_q$ for k = 1, 2, ... Moreover we have:

$$||x_k - x_l||^p = \sum_{j=1}^n ||x_{kj} - x_{lj}||_j^p \ge \sum_{j=1}^n \hat{R}_j^p m_j^p - \delta$$
$$= \beta^p - \delta = (\beta - \varepsilon)^p \quad \text{for} \quad k, l \in \mathbb{N}, k \ne l.$$

Thus for an arbitrary $\varepsilon > 0$ there exists a sequence of elements of D_q which is $\beta - \varepsilon$ -separated. So $I(D) \ge \beta$. This ends the proof of (9).

To prove (10) let $q = \infty$. Arguing similarly as above it is easy to check that:

$$I(D_{\infty}) \ge \gamma$$
, where $\gamma = \left(\sum_{j=1}^{n} m_{j}^{p}\right)^{1/p}$.

Suppose that the opposite inequality does not hold. Then there exists a sequence $\{x_k\}$ of elements of D_{∞} which is $\gamma + \varepsilon$ -separated, where $\varepsilon > 0$. Let $x_k = (x_{k1}, \ldots, x_{kn})$ where $x_{kj} \in X_j$ for $k = 1, 2, \ldots$ Put $\delta = (\gamma + \varepsilon)^p - \gamma^p$. Using Ramsey's theorem we can choose a subsequence of the sequence $\{x_k\}$ (without loss of generality all $\{x_k\}$) such that:

$$||x_{kj} - x_{lj}||_j^p \le I(X_j)^p + \frac{\delta}{2n} \text{ for } j = 1, ..., n, k, l \in \mathbb{N}.$$

Therefore

$$||x_k - x_l||^p = \sum_{j=1}^n ||x_{kj} - x_{lj}||_j^p \le \sum_{j=1}^n m_j^p + \frac{\delta}{2} < \gamma^p + \delta = (\gamma + \varepsilon)^p.$$

The obtained contradiction proves (10).

Finally, observe that

$$\lim_{q \to p} \left(\sum_{j=1}^n [I(X_j)]^{pq/(q-p)} \right)^{(q-p)/pq} = \max_{1 \le j \le n} I(X_j)$$

and

$$\lim_{q \to \infty} \left(\sum_{j=1}^n [I(X_j)]^{pq/(q-p)} \right)^{(q-p)/pq} = \left(\sum_{j=1}^n [I(X_j)]^p \right)^{1/p},$$

which in conjunction with (8), (9) and (10) completes the proof of Theorem 2. \square

Since the proof of (10) is valid for any $1 \le p < \infty$ and bounded (not necessarily convex) sets we obtain the following corollary.

Corollary 1

If X_1, \ldots, X_n are bounded and nonempty subsets of Banach spaces E_1, \ldots, E_n respectively, then for the measure I in the space $l^p(E_1, \ldots, E_n)$, where $1 \leq p < \infty$, we have

$$I(X_1 \times \ldots \times X_n) = \left(\sum_{j=1}^n [I(X_j)]^p\right)^{1/p}.$$

Proof of Theorem 1. Let X be a bounded subset of $l^p(E_1, \ldots, E_n)$. Observe, that in view of Lemma 1 the inequality

(14)
$$I(X) \ge \max_{1 \le j \le n} I(X_j)$$

holds for any $1 \leq p \leq \infty$, where X_j denotes a projection of X on E_j for $j = 1, \ldots, n$. On the other hand, we have $X \subseteq X_1 \times \ldots \times X_n$. Thus, using (1) and Corollary 1 we obtain:

$$I(X) \leq I(X_1 \times \ldots \times X_n) = \left(\sum_{j=1}^n [I(X_j)]^p\right)^{1/p},$$

for $1 \le p < \infty$, which in conjunction with (14) gives (5).

Now, we will show that for $p = \infty$:

$$I(X) \le \max_{1 \le j \le n} I(X_j).$$

Given $\varepsilon > 0$ let $\{x_k\}$ be an $I(X) - \varepsilon$ -separated sequence of X. Denote $x_k = (x_{k1}, \ldots, x_{kn})$, for $k = 1, 2, \ldots$ We have

$$||x_k - x_l|| = \max_{1 \le j \le n} ||x_{kj} - x_{lj}||_j \ge I(X) - \varepsilon$$
, for $k, l \in \mathbb{N}, k \ne l$.

From Ramsey's theorem it follows that for at least one of the indices $j, 1 \le j \le n$, there exists a subsequence $\{y_k\}$ of $\{x_k\}$ such that

$$||y_k - y_l|| = ||y_{kj} - y_{lj}||_j$$
 for all $k, l \in \mathbb{N}$.

The sequence $\{y_{kj}\}$ of elements of X_j is therefore $I(X) - \varepsilon$ -separated and we have

$$I(X) - \varepsilon \le I(X_j) \le \max_{1 \le i \le n} I(X_i),$$

for any $\varepsilon > 0$, which completes the proof of (6) and Theorem 1. \square

As an immediate consequence of Theorems 1 and 2 we obtain the following corollary concerning the Kottman constant of product spaces.

Corollary 2

Let E_j be a Banach space for j = 1, ..., n and let $1 \le p \le \infty$. Then:

(15)
$$K(l^p(E_1,\ldots,E_n)) = \max_{1 \le j \le n} K(E_j).$$

Proof. For $p = \infty$ the statement simply follows from the equality (6) of Theorem 1. Indeed, putting $X = B(l^{\infty}(E_1, \ldots, E_n))$ in (6) we have:

$$I(B(l^{\infty}(E_1,\ldots,E_n))) = \max_{1 \le j \le n} I(B(E_j))$$

which is (15).

If $1 \le p < \infty$ then putting in (8) of the proof of Theorem 2 $X_j = B(E_j)$ for $1 \le j \le n$, and using the same notation, we have:

$$f_j(x) = ||x||_j \text{ for } x \in E_j,$$

and

$$D_p = B(l^p(E_1, \ldots, E_n)),$$

so (15) is an immediate consequence of (8). This completes the proof. \Box

Finally, let us mention that analogous estimations as in Theorems 1 and 2 may be obtained for the space $l^p(E_1, E_2, ...)$, however they are not satisfactory since the series which appears on the right hand side of (5) need not be convergent.

References

- R.R. Akmerov, M.I. Kamenskii, A.S. Potapov, A.E. Rodkina, B.N. Sadovskii, Measures of noncompactness and condensing operators, Nauka, Novosibirsk 1986 [English translation: Operator Theory, Advances and Applications 55, Birkhäsuser Verlag, Basel-Boston-Berlin 1992].
- 2. J. Banaś, K. Goebel, Measures of noncompactness in Banach spaces, Lecture Notes in Pure and Applied Mathematics 60, Marcel Dekker, Inc., New York and Basel 1980.
- 3. C.E. Cleaver, Packing spheres in Orlicz spaces, Pacific J. Math. 65 (1976), 325-335.
- 4. J. Diestel, Sequences and Series in Banach Spaces, Springer-Verlag New York, 1984.
- 5. T. Domínguez Benavides, Some properties of the set and ball measures of non-compactness and applications, J. London Math. Soc. (2) 34 (1986), 120–128.
- 6. H. Hudzik, Any nonreflexive Banach function lattice has packing constant equal to 1/2, preprint.

- 7. H. Hudzik, C. Wu, Y. Ye, Packing constant in Musielak-Orlicz sequence spaces equipped with the Luxemburg norm, to appear.
- 8. H. Hudzik, T. Landes, Packing constant in Orlicz spaces equipped with the Luxemburg norm, to appear.
- 9. G. Köthe, Topological Vector Spaces I, Springer-Verlag, Berlin-Heidelberg-New York, 1969.
- 10. C.A. Kottman, Packing and reflexivity in Banach spaces, Trans. Amer. Math. Soc. 150 (1970), 565-576.
- 11. C.A. Kottman, Subsets of the unit ball that are separated by more than one, Studia Math. 53 (1975), 15-27.
- 12. P.L. Papini, Some parameters of Banach spaces, Rend. Sem. Mat. Fis. Milano 52 (1983), 131-148.
- 13. P.L. Papini, Jung's constant and around, preprint (1989).

