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ABSTRACT

In this paper we give estimations of Istratescu measure of noncompactness
I(X) of a set X C IP(Ey,...,E,) in terms of measures I(X;) (j =
1,...,n) of projections X; of X on E;. Also a converse problem of
finding a set X for which the measure J(X) satisfies the estimations under
consideration is considered.

1. Introduction

Let E be a real Banach space with the norm || ||. Given a nonempty subset A of E
we say that it is e- separated if for every pair z,y in A we have

e —yll 2 €.

For a nonempty and bounded subset X of E we shall consider the Istratescu
measure of noncompactness of X, defined in the following way:

I(X) = sup {e > 0: there exists an infinite e-separated subset A of X} .

This classical measure was studied in many papers and has found many applications
(cf. [1,2]).
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Particularly, in the geometry of Banach spaces the following “separation” con-
stant, often called the Kottman constant, is considered:

where B(FE) denotes the unit ball of a space E.
As it was indicated by Papini (see [13]) the Kottman constant is strictly related
to other significant notions, for example:

K(B) = 2PE)

= -1_—H_E_) (Cf. [10,12]),

where P(E) is the packing constant of 14, defined as follows:
P(E) =sup {'r > 0: infinitely many balls of radius > r can be packed in B (E)} .

(We say that a collection of balls { B(z;,r;)} is packed in B(E) if B(z;,r;) C B(E)
for every index i, and moreover the interiors of any two of the balls are disjoint
they do not “overlap”).
We have also:
K(E)-J(E)>2 (cf. [13]),

where J(E) is the Yung constant of E, defined by
J(E) =sup {2r(A)/6(A); A is bounded, nonempty subset of E},

where 6§(A) is the diameter of A, and r(A) = 1161£ sup |lz — o[-
TEL gc A

We also know that K(F) is continuous with respect to the Banach-Mazur dis-
tance in any isomorphism class (cf. [11]).

If we want to get some numecrical results we may start from the Elton-Odell
(1 + &)-scparation theorem (cf. e.g. [4]), which gives us:

1< K(EY<2

(the right incquality is trivial).
From the papers of Kottman, Papini, Domingucz Benavides and other authors
it follows that:
i) K(H) =22, if H is a Hilbert space (cf. e.g. [5]),
ii) K(Ir)=2Y7, for1<p<oc (cf. [10]),
iif) K(c,) = K(1®) =2,
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iv) K(LP) = max{2!/7,21/9} for 1 <p<oc,1/p+1/g=1and p not purely
atomic measure (cf. [3,12]),
v) K(IP(E\,Ey,...)) = max{2"? supK(E;)}, wherc FE; arc Banach spaccs
iex

for i+ = 1,2,... (with a norm ||||z respectively) and IP(Fy, E,,...), with
1 < p < o, denotes the space of all sequences {z;}, z; € E; , with
i llz:||? < oo (IP(Eh, Es,...) is a Banach space with the natural norm) (cf.
o.11)).

Recently some new interesting results concerning the Kottman constant in Or-

licz and Musielak-Orlicz sequence spaces were obtained by H. Hudzik and others
[6,7.8]. :

The result  v) suggests the following question:

What can be said about Istratescu measure of a bounded subset of IP(Ey, Es, .. .)
if measurcs of its projections on subspaces It; are known?

The aim of this paper is to answer this question for the finite product space
IP(Ey, ..., E,;) which may be treated as the special case of the space P(E), Es, .. .).

2. Notation, definitions and some auxiliary facts

This section is devoted to establish some auxiliary results which will be needed
further on.

Let E; be a Banach space with a norm || ||; for 1< j <mn.

Let us recall that the product space IP(Ey, ..., E,) is defined as the linear space
FE; x ... x FE, with a norm:

1/p

n
lall = { Y llzslz | if 1<p<oo,
Jj=1

and

Izl = max llz;ll;, for p=oo,

where x = (2, ...,2,) € B} X ... X E,.
The basic properties of product spaces may be found in [9], for example.

In the sequel we will use the following fact concerning the Istratescu measure
of noncompactness in product spaces.
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Lemma 1

If X is a bounded and nonempty subset of the space IP(E;,...,E,), 1 < p < oo,
then
I(X) > I(X;) for j=1,...,n,

where X; denotes the projection of X on E;.
Proof. Fix an arbitrary j, 1 < j < n, and € > 0. Let {zx;} be an I(X;)—e-scparated
sequence in X;. Then there exists a sequence {zx} of elements of X such that zy;

is a projection of zj on the space Ej, for £ =1,2,.... It is easy to see that {zx} is
I(X;) — e-separated, too. Indeed, for any k,l € N we get

n 1/p
1
lzk — ]| = (Z ki — fﬂti"?) > (llzeg — z5]I2)
i=1
>I(X;)—¢ if 1<p< oo,

and
lzk — 2l = Joax |lzki — zull 2 lzeg — 5]
> I(X;)—¢ for p=oo.
Thus for any € > 0 we have
I(X) 2 I(X;) — ¢,
which ends the proof. O
Now, let us formulate a few properties of the Istratescu measure of noncom-

pactness which will be used later on (cf. [1,2]).
For any nonempty and bounded subsets X,Y of a Banach space F we have

1) XcY=I(X)<I(Y),
(2) I(RX) = RI(X) forany R> 0,
(3) I(X +a)=I(X) for any a € E.

The next useful property of the Istratescu measure I is formulated in the fol-
lowing lemma.
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Lemma 2

Let X be a bounded and convex subset of a Banach space E such that 0 € X,
and let f: E — R U {oc} be a function defined by

i { inf{t > 0:x €tX} if the set is nonempty,
) =
00 otherwise.

Then for any sequence {zx} of elements of X and 6 > 0 there exist 0 < R < 1 and
a subsequence {yi} of {z\} such that:

@ lim f(y) =R,

and for any k,1 € N:
lye — wll < RI(X) + 6.

Proof. Since xx € X we get 0 < f(xx) < 1for k=1,2,.... Hence using Weierstrass
theorem we can choose a subsequence {wy} of {zx} and 0 < R < 1 satisfying (4).
Put e =6/(I(X)+1) > 0.

From (4) it follows that wy € (R+ €)X for k > ko, ko € N.

Now, using (2) and Ramsey’s theorem (cf. [4], for example) we claim that there
exists a subsequence {yx} of {wx} such that |

Nuk —wll < (R+€)I(X) +e=RI(X)+8 forany k,leN.

If not, there would exist a subsequence of {w;} for which the opposite inequality
holds, which in turn contradicts the fact that

I(R+e)X)=(R+¢e)I(X).

This complctes the proof. O

Finally, let us formulate a numerical lemmma which is a simple consequence of
Holder’s inequality.

Lemma 3

Let1<p<q<oo, Rj>0andm; >0 forj=1,...,n, and

Ri+---+RIL1L
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Then
(g-p)/q
- - /(q—p)
P D pa/lq—
D Emi< (3 om]
=1 j=1
The equality is attained for:
n _l/q
R; = m;-’/(q—”) (Z mf’q”q_p)> , wherej=1,...,n.
i=1
Proof. Indeed, putting
q

N 4 —_
.'I,'_:,'ZR_{;! y.f=nL5’ '5—1_7, t—(q—P)

we have 5,¢ > 1 and 4 riaals 1 = 1. Hence, applying Holder’s inequality we obtain

. 1/s . 1/t
S mn=S s (La) (Lo
j=1 i=1 j=l1
n r/q n (a—p)/a
— ZR;I Z Pe/(a—p)
j-1 i=1
(g—p)/a
n
< m?q/(q—ﬂ)
=1

The remainder of the proof is an casy calculation and is therefore omitted. O

3. Main results

Let E; be a Banach space with a norm || ||; for j = 1,...,n. For the Istratescu mea-
sure of noncompactness in the product space I[P(E4,..., E,) we have the following
estimations.

Theorem 1
If X is a bounded subset of IP(E, ..., Ey,) then

1/p

(5) pex 1(X;) SI(X) < ;[I(Xj)lp , if 1<p<oo.
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and

(6) 1) = max I(X;), if p=oo,

where X denotes a projection of X on E; for j =1,...,n.
The converse is also true, which is stated in the next theorem.

Theorem 2
If X,,..., X, are bounded and convex subsets of E,, ..., E, respectively, then
for any number p satisfying
1/p
n
max I(X;)<p< Z[I(X_,,-)]" . where 1< p< oo,
j=1

1<j<n

there exists a subset X of [P(E;, ..., E,) such that I(X) = p and projections of X
on each of E; coincide with Xj;.

Proof of Theorem 2. Let 1 < p < o¢, Ey,..., E, and X;,...,X, be as in the
statement of the theorem. Keeping in mind (3), without loss of generality we may
assume that 0 € X; for j=1,..., n. Denote m; = I(X;).

We define f;: E; — kU {oc} (j =1,...,n) similarly as in Lemma 2, namely:

NS inf{t > 0:z € tX;} if the set is not empty,
: hler= {oo otherwise .
Consider the sets
n
D, = {(:1:1,...,.1:,,,) €P(By, ..., En): Y [fi(;)]7 < 1}
j=1

for 1 < g < o0, and
Do =X1 x...xX,.

It is easy to sec that

) the projection of D onto the space E; coincides with X

forany1<g<ocandj=1,...,n.
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Now we will calculate the Istratescu measure of noncompactness of the sets D,
in the space (P(E),..., E,).

We have:

(8) I(D,) = max I(X;) for1<q<p,

1<j<n

n (a—p)/pq
(9) I(D,) = Z[I(Xj>]*’q/<q-">) for p < g < o,
Jj=1
n 1/p

(10) I(Dg) = Z[I(Xj)]” for ¢ = 00

j=1

To prove (8) fix p and ¢, where 1 < g < p < co. The inequality
I(Dg) 2 maéc I(X;)

follows immediately from (7) and Lemma 1.
To prove the opposite, since Dy C D, for 1 < q < p, taking into account (1) it
is sufficient to show that

I(Dp) < max I(X;).

Suppose to the contrary that therc exists an a+e-separated sequence {zx} contained
in Dp, where a = maxi<j<n I(X;) and € > 0. Denote zx = (Tk1,...,%kn) for
k=1,2,.... Put 6 = (a+¢€)? —aP > 0. Applying consecutively Lemma 2 to each of
X; and taking a subsequence of {zx} in place of {z\} if necessary, we may assume
that:

(11) klim fi(zxj) = Rj, where0< R;<1forj=1,...,n,
—00
and
)
(12) 1Tk — -Z'zJ||p<Rpmp+2— for I,k e N.

Moreover it is easy to see that

(13) Y R<

j=1
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(if not, due to (11), zx with sufficiently large k¥ would not belong to D,).
Now, using (12) and (13) we get

n n
lze — 2illP = Y Nz — z5lf2 < > RPm® +6
j=1 j=1

<oP() RO +6<aP+6=(a+e)
j=1 ‘

which contradicts the fact that {zx} is o + s-separated. This implies (8).
n -
To prove (9) let 1 <p < q < oc. Denote 8= (3 [I(XJ)]?E‘:?)SF:‘!a
=1

First we will prove that I(D,) < . Suppose to the contrary that there exists a
sequence {zx} of elements of D, which is § + e-scparated, where ¢ > 0. Denote
§ = (B+¢e)P — BP > 0. Using the same argumentation as above we may assume
without loss of generality that for the sequence {zx} the propertics (11), (12) and
R} +---+ R <1 hold.

Now, taking into account (12) and applying Lemma 3 we obtain

n n
lzx = zillP = Y llok; — ws5llf < Y RIm? + 6

J=1 i=1
<HP+6=(B+¢)P

which contradicts the fact that the sequence {zx} is B + e-separated. Thus we have
proved that I(D,) < 8,

To prove the opposite inequality let £ > 0 and § = 3P — (8 — €)P. Consider
Rl,: .., R, such as in Lemma 3. We have:

n n
ZR;=1, Zfignz_?:ﬁp and R; >0 for j=1,...,n.

From (2) it follows that

I(R;X;) = R_,-mj for 7=1,...,n.

"Thus we can choose a sequence {zx; }rex of clements of R;X; such that

R b
. — oy ||P PP __ q = "
llck; |5 = REm] - for j=1,...,nand k#1.
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Let
e = (Zk1s.--,%kn) for k=1,2....

Since z3; € f\’,ij we have fj(zg;) < RJ forj=1,...,n and

n n
S lfilae)? <Y Ri=1.
j=1 J+ 1
Hence z € Dy for k =1,2,... Morcover we have:

e n
lze — zll? = lowg — 2yl > D Romh - 6
Jj=1 Jj=1
=0 —6=(8—¢<)? for kleNk#I
Thus for an arbitrary € > 0 there cxists a scquence of clements of Dy which is
B3 — e-separated. So I(D) > . This ends the proof of (9).

To prove (10) let ¢ = oc. Arguing similarly as above it is casy to check that:

1/p
n

I(Dy) >, where v= me;
j=l1

Suppose that the opposite inequality does not hold. Then there exists a sc-

quence {zr} of elements of D, which is v + e-separated, where € > 0. Let

Tk = (Tk1, -+, Zkn) Where 2x; € X; for k=1,2,... Put 6§ = (v + )P — 4P.

Using Ramsey’s theorem we can choose a subsequence of the sequence {zx} (without

loss of generality all {zx}) such that:

. 6
“.’L‘kj—-.’l:lj“;-)SI(Xj)P-i—ﬁ for j=1,...,n, kleN.

Thercfore
n ’ n 6
lzx —zll? =Y llwky — lly < Y m? + g <7 +é=(r+e).
j=1 j=1
The obtained contradiction proves (10).

Finally, observe that

" (4—p)/pq
lim ;[I(X.-i)]”“/(""” = max [(X;)
and . (a-p)/pa N 1/p
S | e = |\ 2w )

which in conjunction with (8), (9) and (10) completes the proof of Theorem 2. O
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Since the proof of (10) is valid for any 1 < p < 20 and bounded (not necessarily
convex) sets we obtain the following corollary.

Corollary 1

If X,,...,X, are bounded and nonempty subscts of Banach spaces E; ..., E,
respectively, then for the measure I in the space IP(Eq,...,Ey,), where 1 < p < oo,

we have
1/p

I(X, x...x X,) = Z[I(Xj)]”

Proof of Theorem 1. Let X be a bounded subset of IP(Ey, ..., E,). Obscrve, that
in view of Lemma, 1 the inequality

> ‘ i
(14) I(X) 2 max I(X;)
holds for any 1 < p < oo, where X; denotes a projectionof X on Ejforj =1,...,n.

On the other hand, we have X C X x ... x X,,. Thus, using (1) and Corollary

1 we obtain:
1/p

I(X)<SI(Xyp x...x Xo) = | D _[I(X5)P
j=1

for 1 < p < oc, which in conjunction with (14) gives (5).
Now, we will show that for p = oc:

I < I(X;).
(X) < max I(X;)
Given € > 0 let {zx} be an I(X) — e-separated sequence of X. Denote zx =
(Tk1y---Tkn), for k=1,2,... We have
|lze — x| = max ||lwx; — zy4ll; > I(X) —€, for k,leN,k#L
1<5<n
From Ramsey’s theorem it follows that for at least onc of the indices j, 1< j <mn,
there cxists a subsequence {yi} of {zx} such that
lye — will = llyr; —w;ll; forall k,leN.

‘The sequence {yx;} of elements of X is thercfore I(X) — e-separated and we have

I(X)—-e<I(X;) £ 1I£iagxnI(Xi)’

for any £ > 0, which completes the proof of (6) and Theorem 1. O

As an immediate consequence of Theorems 1 and 2 we obtain the following
corollary concerning the Kottman constant of product spaces.
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Corollary 2
Let E; be a Banach space for j =1,...,n and let 1 < p < co. Then:

(15) K(lP(El, En)) = max K(E])

1<j<n

Proof. For p = oc the statement simply follows from the equality (6) of Theorem 1.
Indeed, putting X = B(I*°(Ey,..., E,)) in (6) we have:

o -_— .
I(B(I™(Ey,...,E,))) = 1rg;aécnI(B(EJ))
which is (15).
If 1 < p < oo then putting in (8) of the proof of Theorem 2 X; = B(Ej;) for
1 < j < n, and using the same notation, we have:

fi(z) = |lzll; for = € Ej,

and
D, = B(IP(Ey, ..., Eq)),

so (15) is an immediate consequence of (8). This completes the proof. O

Finally, let us mention that analogous estimations as in Theorems 1 and 2 may
be obtained for the space IP(E|, E»,...), however they are not satisfactory since the
series which appears on the right hand side of (5) need not be convergent.
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