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ABSTRACT

This paper presents some properties of singular functionals on Orlicz spaces,
from which, criteria for weak convergence and weak compactness in such
spaces are obtained.

In [1], T. Ando shows that every linear bounded functional can be decomposed into
a function part and a singular part, and the last part is represented by some class
of finite additive set functions. Since very few properties of such set functions are
known, most problems concerning weak topology in Orlicz spaces are left open; for
instance, even T. Ando himself in [2], leaving the singular functionals aside, discusses
only the Ly-weak convergence and L y-weak compactness. In this paper, we first
give criteria for a singular functional on an Orlicz space to be norm attainable and
to be an extreme point of the unit ball of the dual space, then, applying Rainwater’s
Theorem, we obtain criteria for weak convergence and weak compactness in the
space.

Throughout this paper, we denote by M:R — R+ an Orlicz function, i.c., it
is even, continuous, convex and satisfies M (u) =0 iff u = 0, and Muﬂ — 0 as

u — — oc as u — 00. If M is an Orlicz function, then its complemented
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72 CHEN AND SUN
Orlicz function N is defined by

N(v) = sup{uv — M(u)}.

u€lR

Let (G,%,n) be a non-atomic, o-finite and complete measurable space. For
cach p-measurable function z(t) on G, we dcfine

plz) = pu(z) = L M(z(t))dp

Ly = {z: pm(Az) < o0 for some A > 0}
Ex = {z:py(Az) < oc forall >0}

|]| = inf {)\ > 0:pm (%) < 1},

then the Orlicz space Las and its subspace Ep arc Banach spaces with the Luxem-
burg norm || -

The following four lemmas can be found in [1].

Lemma 1

For any f € L}, there exist unique v € E}; = Ly (the Orlicz space generated
by the complemented Orlicz function N) and ¢ € S = {f € L};: f(Em) = {0}}

such that f = v + p. Moreover, || f|| = ||v|l + ll¢ll, where ||v]| and ||¢|| are norms of
v and  as functionals on Ly respectively.

Let LY, = {|z| = (Jz(t)]):z = (x(t)) € Lm}. If p € § is nonnegative on L},
then we say ¢ is positive. For any p € S, = € L}\L,,, let

o (z) = sup{p(y): 0 < y(t) < x(t),t € G}
¢~ (z) = —inf{p(y): 0 < y(t) < z(t),t € G}.

When z € Ly is arbitrary, we denote 2zt = “”l%l and - = z — =¥, and define
ot (x) = pE(zt) — p*(—z~), then both p* are positive and p = ¢+ — ™.

Lemma 2

For any ¢ € S, we have [lp|| = [lo™ || + il -

Lemma 3

lle + Wl = llell + |||l for all positive y,9 € S.
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Lemma 4

If p € S is positive, then there exists z € L3, with ||z|| = 1 such that plz) =
llll, i.e., every positive ¢ € S is norm attainable.

Theorem 5

Let f € S, then for any disjoint subscts N', N" of G, we have || f|nyun|| =
|£Inll + IfIn~]l, where for any subset A of G, © € Ly, flalx) = f(z|a), and
where z|4(t) = z(t), whent € A and = 0, when t € G \ A.

Proof. For any £ > 0, since f is singular, we can find z,y in Ly, with their supports
in N" and N" respectively such that plx) < 3, py) < 1 and such that

f(x) = fin@) 2 If vl =& F) = FIne () > || flwo ] —e.
Let u =z +y, then p(u) = p(x) + p(y) <1 and hence,

11w W+ N F el 2 U f e + Ll = 1 Flwvonel) > F(u)
= flv (@) + flne @) 2 IfIwell + | f Il - 2¢. O

Theorem 6

For any f € S, if there exists « € Ly, |jz|| = 1, such that f(z) = ||fll, then for
any subset A of G, we have f(z|4) = 1fall-

Proof. Let B = G\ A, then by Theorem 5,
WAl = 11F1all + 1 £18]l = fla(z) + FlB(z) = ||f].
Hence, we must have f(z|4) = fla(z) = ||f|a]| and f(z]p) = I/l O

Theorem 7

f € S is norm attainable iff there exists a subset A of G such that Jt="fla
and f~ = —f|p, where B = G\ A.
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Proof. Sufficiency. According to Lemma 4, there exist z,y € Ly such that p(z) <
1 p(y) < & and fla(z) = f*(z) = llzl, —fls(y) = f~(¥) = |If~[|. Obviously, we
may assume z = z|4 and y = y|p, hence, if we define u = z —y, then p(u) <1 and
thus,

£ = IFF+ 171 = fla(z) — fla(y) = flu).

Necessity. Choose z € Lps with p(z) < 1 such that f(z) = ||f]| and let A =
{t € G:z(t) > 0}, B=G\ A. It follows from the definition of ft and Thcorem 6
that || f*]all > f*|a(z) 2 fla(z) = [|f|all- Hence, by Lemma 3

1F50 = 17 Lall + 151l = I 1Al + 1 Tl

Similarly, we have ||f~!| > ||flzll + |f~|all. Therefore

1A =0+ 102 Ul + s+ D sl + 1 all.
It follows from Theorem 5 that f+|s = f~|a = 0. Thus, for any u € L,
Fr(u) = fH(yla) = £ (ula) = f(ula) = fla(u).
In the same way, we have f~(u) = —f]p(x). O

Theorem 8

The set of all norm attainable singular functionals is dense in S.

Proof. Given any ¢ € S and € > 0, by the Bishop-Phelps Theorem, we can find a
norm attainable functional f € L%, such that ||f —¢|| <e. By Lemma 1, f = v+
for some v € Ly and ¢ € S. Choose x € Ly with ||z|| = 1 such that

vl + Il = Il = (v, 2) + (¥, 2)
then (v,z) = ||v|| and (¥, z) = ||¢||, hence, ¢ is norm attainable and

o — ¥l = Il = Il = llvll <e. O

Lemma 9

Suppose that f € S, z,y € Lar with ||z)| <1, |ly|| £ 1 and A is a subset of G,
then z(t)y(t) >0, t€ A implies f(y|a) > f(x) — || fll; =(t)y(t) <0, t€ A implics
flyla) < IfIl = f(=)-
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Proof. If z(t)y(t) > 0, t € A, then

p(z —yla) < p(z) + p(y) < oo.

Since f is singular, we have f(z — y|4) < ||f||. By the same way, if z(t)y(t) < 0 on
t € A, we have f(y|a) — f(z) < ||f]. O

Theorem 10

Let f € S and ||f|| = 1. Then f is an extreme point of the unit ball B(L3y) of
L3y iff for any subset A of G, ||f|all - || fla\all = 0.

Proof. The “only if " part. If therc exists a subset A of G such that |l flall > 0 and
If16ll > 0, where B = G\ 4, then ¢ := f|4/|f|all, ¥ := f|5/||f|z]l € B(L},), and
f = \flalle + | f|5ll%, which contradicts the condition that f is an extreme point
since || flall + 11 f]&ll = | £l = 1.

The “f ” part. We first point out that ||f*| - ||f~|| = 0. To show this, by
Theorem 8, we may assume that f is norm attainable. It follows from Theorem 7
that ||f*i| - [|f~|| = 0. Thus, without loss of generality, we may assume that f is
positive (otherwise, we consider the positive functional — f=Ff7). It follows from
Lemma 4 that there exists = € L}, such that f(z) = ||f]| = |zl = 1.

Suppose f1, fa € B(L},) satislying fi + fo = 2f, we have to show that fi = fo.
First, by Lemma 1, we can easily deduce that fi, fo € S. For each y € Ly satisfying
f(y) =0, define A = {t € G:z(t)y(t) > 0} and B = G \ 4, then, without loss of
gencrality, we may assume that f|4 = 0. Hence,

fi(z|B) + fa(z|p) = 2f(x) =2

and therefore, f;(x|p) = {|fill = 1, i = 1,2, which indicates fila=fola=0 It
follows from Lemma 9 that

filyls) < Mfill - filz) =0, i=1,2.
Hence, fi(y) = fi(y|s) <0, i=1,2. Sincey € ker(f) is arbitrary, we have f;(y) = 0,
i.e., ker(f;) contains ker(f), which shows that f = a; i for some o; € X, and so, we
must have f = f;, i=1,2.0

For each z € Ly, let 6(z) = inf{o > 0:p(£) < oc}, then
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Lemma 11 ([1])
6(z) =dist (z, Ep) and for each f € S,
f(x)

1£1l = sup {mx € Lu \EM}.

Lemma 12
For any z € Ly and a partition {Ni}k<m of G,

max {0(z|n,) } = O(x).

Proof. It is clear that 8(z|n,) < 0(z) for all k < m. If a := max {6(z|n,)} < O(z),
then for any 8 € (o, 6(z))

o(Z) = (%) <o

k<m
which shows 6(z) < 8 < 6(z), a contradiction. O
Let {z,} be a sequence in Ly and F a subset of L},. We say x, — = € Ly
F-weakly as n — oc, provided that f(z, —z) — 0 for all f € F.
Theorem 13

The nccessary and suflicient condition for x, — 0 S-weakly is that for any
subsequence {yr} of {z,}

lim 6( min [yl) =0 (1)

i t) = mi t)], t .

where ,{_rélglykl( ) = min lyx(®)l, t€ G
Proof. If the condition is not sufficient, then by Rainwater's Theorem (see [3],
p. 155), therc cxist € > 0, an extreme point f € S of B(L},;) and a subsequence
{yk} of {x,} such that f(yx) > € for all k£ € N. It follows from Theorem 10 that we

may assumc that f is positive. From condition (1), we can find some m € N such
that O(ming<nm, |yx|) < €. Let

Ne={teGlu(®)l=minlpl®}, k=1,2...,m

then by Theorem 10, there exists k' < m such that f|n,, = f. Hence

f(|yk'||Nk,) > f(yrIng) = flye) > €.
On the other hand, by Lemina 11

£lluwlly,,) < Oyl A1 < 0 min o) < &

a contradiction.
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If the condition is not necessary, then there exist € > 0 and a subsequence {y;}
of {z,} such that
0( mi , N.
(,1;%111111|yk|) >eg mE€

Let Ni(1) = {t € G:y1(¢) > 0}, N1(2) = G\ Ny(1). If Ni(s) has been found
fors=1,2,...,2k k= 1,2,...,m, then let

Npp1(2s—1)={te Non(8): ym1(t) > 0},

N (s)
Npr1(28) = ——
.- 1( S) Arm+1(2-9 _ 1) ’
s = 1,2,...,2™* By induction, for any k € N, we find a partition
{Ni(s):s < 2¥} of G satisfying for any m > k, yx(t) is nonnegative or nonpos-
itive on Np(s), s = 1,2,...,2™. By Lemma 12, there is some Sm < 2™ such

that
0((,{{;!},;kal)lwm<am>) = 6(min [y]) > .

Hence,by Lemma 11 and the Hahn-Banach Theorem, we can find frm € S with
| frn!| = 1 such that

o ( (i 1) ) = (0 44 o) > &, €N
(Observe fn, = fi — fi., it is clear by Lemma 2 and Lemma 11 that fm =0, ie.

fm is positive.) Since B(L3},) is w* compact, the scquence {fm} has a cluster point
f € S. It follows that for cach k € N, there exists some m > k such that

|F(y) = frm (i) <

N ™

In view of

”fﬂlllvm("-'m)” 2 .
0((m1nk5m lykl)INm(sm))

=1={fml
we find || fim|G\Nm (s,)|| = 0 according to Theorem 5. Therefore
If(yk)l > |fm,(yk)| - |f(?/k) - fm(yk)l 2> |fm(yk|1\’m(sm))| - 5
. € _ €
> ’fm((irélg kal)le(.qm))’ ~3>3
contradicting the hypothesis that z,, — 0 S-weakly. O
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Lemma 14 ([5])
z, — 0 Ly-weakly iff
i) [gxn(t)du — 0 asn — oc for each E € ¥ and
ii) }\m}) sup A" par(Azn) = 0.
-V n

Lemma 15 ([2])
A subset E of Ly is Ly-weakly compact iff

lim sup A~ p(Az) = 0.
A= 0gecR

By Theorem 13 and Lemma 14, we obtain.

Theorem 16

A sequence {z,} in Ly converges to 0 weakly iff
a) lim [ z,(t)dp =0 for all E € %;
" E

b) llﬁ}) sup A tp(Az,) =0 and

¢) for any subsequence {yx} of {zn}, we have lim 9()13211 lye]) = 0.
m <m

Theorem 17
A subset K of Ly is weakly compact if and only if

1) lim sup A~lp(Az) =0 and
A-0zcE

2) lim @(min |z,, — z|) = 0 for all sequence {z,} in K satisfying
m n<m

lim | [z.(t) — z(t)]dp =0 for each E€X. ()

n E
Proof. Necessity. The first condition follows from Theorem 15. Now, we check the
second one. Let K be a weakly compact subset of Ly, then for sequence {z,} in K

satisfying (*), we can pick a subsequence {z,,} of {z,} weakly convergent to some
point ' in Lps. It follows from Theorem 16 that

=1 i 4 .—", > i i 4 - ,’ > .
0 11;{19(?51%]1:”, 1,|)_117¥ln0(71%111r11|zn 7)) >0

Since (%) implies that =, — = E-weakly by [1], we have z’ = z.
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Sufficiency. For any scquence {x,} in K, by Theorem 15 and [1], it contains a
subsequence, again denoted by {z,}, Ly-weakly convergent to some x € Lys. For
any subsequence {y;} of {z,}, by the second condition and [1],

lim 6( min|y; —af) =0

it follows from Theorem 13 that z, — 2 weakly. O
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