Applications of sequential shifts to an interpolation problem

ZBIGNIEW BINDERMAN

Academy of Agriculture, Nowoursynowska 166, 02-766 Warszawa, Poland

ABSTRACT

In the present paper initial operators for a right invertible operator, which are induced by sequential shifts and have the property c(R) (cf. [23]) are constructed. An application to the Lagrange type interpolation problem is given. Moreover, an example with the Pommiez operator is studied.

§ 0. Let X be a linear space over the field $\mathbb C$ of the complex numbers. Denote by L(X) the set of all linear operators with domains and ranges in X and by $L_0(X)$ the set of those operators from L(X) which are defined on the whole space X. We denote by R(X) the set of all right invertible operators belonging to L(X), by \mathcal{R}_D – the set of all right inverses of a $D \in R(X)$ and by \mathcal{F}_D – the set of all initial operators for D, i.e.

$$\mathcal{R}_D := \{ R \in L_0(X) : DR = I \},$$

 $\mathcal{F}_D := \{ F \in L_0(X) : F^2 = F, FX = \ker D \text{ and } \exists R \in \mathcal{R}_D : FR = 0 \}.$

In the sequel, we shall assume that dim ker D > 0, i.e. D is right invertible but not invertible. The theory of right invertible operators and its applications can be found in the book of D. Przeworska-Rolewicz [17].

Here and in the sequel we admit that $0^0 := 1$. We also write: \mathbb{N} for the set of all positive integers and $\mathbb{N}_0 := \{0\} \cup \mathbb{N}$.

¹⁹⁹¹ Mathematics Subject Classification: 47B99, 47E05, 47G99.

Keywords and phrases: right invertible operators, sequential shifts, Lagrange interpolation problem, Pommiez operator.

For a given operator $D \in R(X)$ we shall write (cf. [17]):

$$S := \bigcup_{i=1}^{\infty} \ker D^i. \tag{0.1}$$

If $R \in \mathcal{R}_D$ then the set S is equal to the linear span P(R) of all D-monomials, i.e.

$$S = P(R) := \lim \{ R^k z : z \in \ker D, k \in \mathbb{N}_0 \}. \tag{0.2}$$

Evidently, the set P(R) is independent of the choice of the right inverse R.

§1. Suppose that Y = (s) is the set of all sequences $a = \{a_n\}$, where $a_n \in \mathbb{C}$ $(n \in \mathbb{N}_0)$.

In the sequel, a non-empty set $\Omega \subseteq \mathbb{C}$ containing a number different from zero and a sequence $a = \{a_n\} \in Y$ are arbitrarily fixed.

DEFINITION 1.1. Suppose that $D \in R(X)$ and dim ker D > 0. We say that $T_{a,\Omega} = \{T_{a,h}\}_{h \in \Omega} \subset L_0(X)$ is a family of sequential shifts for the operator D induced by the sequence a if the following conditions are satisfies:

$$T_{a,h} = \sum_{n=0}^{\infty} a_n h^n D^n$$
 on the set S ,

for all $h \in \Omega$; $k \in \mathbb{N}_0$, where S is defined by Formula (0.2).

We should point out that by definition of the set S, the last sum has only a finite number of members different from zero.

The listed properties and other information about shifts for right invertible operators can be found in the author's papers [1]-[11] (cf. also works of D. Przeworska-Rolewicz [16]-[20], [22]).

Theorem 1.1 (cf. [5])

Suppose that $D \in R(X)$ and dim ker D > 0, F is an initial operator for D corresponding to an $R \in \mathcal{R}_D$ and a family $T_{\Omega} = \{T_h\}_{h \in \Omega} \subset L_0(X)$. Then the following two conditions are equivalent:

- a) T_{Ω} is a family of sequential shifts for the operator D induced by the sequence $a = \{a_n\},\$
- b) $T_h R^k F = \sum_{j=0}^k a_j h^j R^{k-j} F$ for all $h \in \Omega$; $k \in \mathbb{N}_0$.

Proposition 1.1 (cf. [5])

Suppose that $D \in R(X)$, dim ker D > 0 and $T_{a,\Omega} = \{T_{a,h}\}_{h \in \Omega}$ is a family of sequential shifts for the operator D induced by the sequence $a = \{a_n\}$. Let F be an initial operator for D corresponding to an $R \in \mathcal{R}_D$. Then

(i) For all $h \in \Omega$: $z \in \ker D$; $k \in \mathbb{N}_0$

$$T_{a,h}R^kz = \sum_{j=0}^k a_j h^j R^{k-j}z.$$
 (1.1)

- (ii) The operators $T_{a,h}$ $(h \in \Omega)$ are uniquely determined on the set S.
- (iii) If X is a complete linear metric space, $\overline{S} = X$ and $T_{a,h}$ are continuous for $h \in \Omega$ then $T_{a,h}$ are uniquely determined on the whole space.
- (iv) For all $h \in \Omega$ the operator $T_{a,h}$ commute on the set S with the operator D.

Proposition 1.2

Suppose that all assumptions of Proposition 1.1 are satisfied and $a_m \neq 0$ for a number $m \in \mathbb{N}$. For an arbitrary fixed $h \in \Omega \setminus \{0\}$ we define the operator

$$F_{m,h} := \alpha(h)FT_{a,h}R^m, \tag{1.2}$$

where

$$\alpha(h) := h^{-m} a_m^{-1}. \tag{1.3}$$

Let an operator $A \in L_0(X)$ be arbitrary fixed. Then

(i) The operator $F_{m,h}$ is an initial operator for D corresponding to the right inverse

$$R_{m,h} := R - F_{m,h} R. (1.4)$$

(ii) The operator

$$D_{m,h} := D + AF_{m,h} \tag{1.5}$$

is right invertible and $R_{m,h} \in \mathcal{R}_{D_{m,h}}$.

Proof. (i) Theorem 1.1. and the equality FR = 0 together imply

$$\begin{split} F_{m,h}^2 &= [\alpha_m(h)FT_{a,h}R^m][\alpha_m(h)FT_{a,h}R^m] \\ &= \alpha_m^2(h)FT_{a,h}R^mF[T_{a,h}R^m] = \alpha_m^2(h)F\sum_{j=0}^m a_{m-j}h^{m-j}R^jF[T_{a,h}R^m] \\ &= \alpha_m^2(h)a_mh^mF^2T_{a,h}R^m = \alpha_m(h)FT_{a,h}R^m = F_{m,h} \,. \end{split}$$

Moreover, the operator $F_{m,h}$ is a projection onto ker D. Indeed, for all $z \in \ker D$ by Formula (1.1) we have

$$F_{m,h}z = \alpha_m(h)FT_{a,h}R^mz = \alpha_m(h)F\sum_{j=0}^m a_{m-j}h^{m-j}R^jz$$
$$= \alpha_m(h)a_mh^mFz = Fz = z.$$

The operator $F_{m,h}$ is an initial operator for D corresponding to the right inverse determined by Formula (1.4) (cf. [17]).

(ii) Consider the operator $D_{m,h} := D + AF_{m,h}$. Point (i) and the definition together implies

$$F_{m,h}R_{m,h}=0, DF_{m,h}=0.$$

This yields that on X

$$D_{m,h}R_{m,h} = [D + AF_{m,h}]R_{m,h} = DR_{m,h} + AF_{m,h}R_{m,h}$$

= $DR_{m,h} = I$,

i.e.

$$R_{m,h} \in \mathcal{R}_D \cap \mathcal{R}_{D_{m,h}}$$
. \square

Following [23], an initial operator F_0 for D has the property c(R) for an $R \in \mathcal{R}_D$ if there exist scalars c_k such that

$$F_0 R^k z = \frac{c_k}{k!} z$$
 for all $z \in \ker D$; $k \in \mathbb{N}$ (1.6)

and $c_k = 0$ for all $k \in \mathbb{N}$ if $F_0 = F$. We shall write: $F_0 \in c(R)$. A set $\mathcal{F}_D^0 \subseteq \mathcal{F}_D$ has the property (c) if for every $F_0 \in \mathcal{F}_D^0$ there exists an $R \in \mathcal{R}_D$ such that $F_0 \in c(R)$.

The set \mathcal{F}_D of all initial operators has the property (c) if and only if dim ker D = 1 (cf. [23]).

Proposition 1.3

Suppose that all assumptions of Proposition 1.1 are satisfied. Let the operator $F_{m,h}$ be defined by Formula (1.2), where $0 \neq h \in \Omega$ is arbitrarily fixed. Then $F_{m,h} \in c(R)$ and the coefficients c_k have the form

$$c_k = \beta_k h^k \quad (k \in \mathbb{N}), \tag{1.7}$$

were $\beta_k = k! a_{m+k} a_m^{-1}$.

Proof. Let $z \in \ker D$; $k \in \mathbb{N}$ be arbitrary fixed. Then by Formula (1.1) we have

$$\begin{split} F_{m,h}R^kz &= [\alpha_m(h)FT_{a,h}R^m]R^kz = \alpha_m(h)FT_{a,h}R^{m+k}z \\ &= \alpha_m(h)F\sum_{j=0}^{m+k} a_{m+k-j}h^{m+k-j}R^jz = \alpha_m(h)a_{m+k}h^{m+k}Fz \\ &= \frac{a_{m+k}}{a_m}h^kz. \end{split}$$

By Proposition 1.2, $F_{m,h} \in \mathcal{F}_D$. \square

Proposition 1.3 implies

Proposition 1.4

Suppose that $D \in R(X)$ and dim $\ker D > 0$, F is an initial operator for D corresponding to an $R \in \mathcal{R}_D$ and let $0 \neq h \in \mathbb{C}$ be arbitrarily fixed. Then there exists $F_h \in L_0(X)$, which is an initial operator for D corresponding to a right inverse $R_h := R - F_h R$ such that

$$F_h R^n z = h^n z$$
 for all $z \in \ker D \ (n \in \mathbb{N}).$ (1.8)

The operator F_h is defined by the formula

$$F_h := F\widetilde{T}_h,\tag{1.9}$$

where \widetilde{T}_h is an extension of the operator $T_h \in L_0(S)$:

$$T_h := \sum_{n=0}^{\infty} h^n D^n. \tag{1.10}$$

Proof. Consider the operator F_h determined by Formula (1.9), where \widetilde{T}_h is an extension of the operator T_h defined by Formula (1.10). By Proposition 1.2, F_h is an initial operator for D corresponding R_h determined by Formula (1.4). Proposition 1.3 implies that $F_h \in c(R)$ and Formula (1.8) holds. \square

We have also (cf. Proposition 2.3.-[23], Theorem 5.25.-[17]):

Proposition 1.5

Suppose that all assumptions of Proposition 1.4 are satisfied. Then there exists $F_h \in L_0(X)$, which is an initial operator for D corresponding to $R_h = R - F_h R$, such that

$$F_h R^n z = \frac{h^n}{n!} z$$
 for all $z \in \ker D$ $(n \in \mathbb{N})$.

The operator F_h is defined by the formula

$$F_h := F\widetilde{T}_h$$

where \widetilde{T}_h is an extension of the operator $T_h \in L_0(S)$:

$$T_h := \sum_{n=0}^{\infty} \frac{h^n}{n!} D^n.$$

§ 2. Let $D \in R(X)$ and dim ker > 0. We consider the following Lagrange type interpolation problem (cf. Przeworska-Rolewicz [23], [17], also Nguyen Van Mau [14], Tasche [24]):

Find a *D*-polynomial of degree N-1 (N>1), i.e. an element $u=\sum_{k=0}^{N-1}R^kz_k$, where $R\in\mathcal{R}_D;\ z_0,z_1,\ldots,z_{N-1}\in\ker D$ which admits, for given N different initial operators $F_0,F_1,\ldots,F_{N-1}\in\mathcal{F}_D$, the given values

$$F_j u = u_j, \quad j = 0, 1, \dots, N - 1,$$
 (2.1)

where $u_j \in \ker D$.

Theorem 2.1 (cf. [23], Theorem 3.1)

Suppose that $D \in R(X), R \in \mathcal{R}_D$ and $F_0, F_1, \ldots, F_{N-1} \in c(R)$ such that

$$F_j R^k z = \frac{d_{jk}}{k!} z$$
 for $j = 0, 1, \dots, N-1, k \in \mathbb{N}$.

If $V = \det(d_{jk})_{j,k=0,1,\ldots,N-1} \neq 0$ then the considered interpolation problem has a unique solution for every $u_0, u_1, \ldots, u_{N-1} \in \ker D$ of the form

$$u = \frac{1}{V} \sum_{j=0}^{N-1} \sum_{k=0}^{N-1} (-1)^{k+j} V_{jk} R^k u_j,$$
 (2.2)

where V_{jk} is the minor determinant obtained by canceling in V the k-th column and the j-th row; j, k = 0, 1, ..., N-1.

Proposition 1.4 implies that there exist initial operators $F_0, F_1, \ldots, F_{N-1} \in \mathcal{F}_D \cap c(R)$ such that

$$F_k R^n z = h_k^n z$$
 for all $z \in \ker D, n \in \mathbb{N},$
$$(k = 0, 1, \dots, N-1),$$

$$F_k := F_{h_k} = F\widetilde{T}_{h_k},$$

where $h_k \in \mathbb{C}$ are arbitrarily fixed $(0 \le k \le N-1)$, \widetilde{T}_h is an extension of the operator $T_h \in L_0(S)$ defined by Formula (1.10). Evidently, for different $h_k, k = 0, 1, \ldots, N-1$ the determinant

$$V = \det \left(k! h_k^j \right)_{j,k=0,1,...,N-1} \neq 0.$$

In particular we take $h_k = \varepsilon_k$, where $\varepsilon_k = \exp(2\pi i k/N), \ k = 0, 1, \dots, N-1$. Then

$$F_k = F_{\varepsilon_k} \tag{2.3}$$

and

$$F_k R^n z = \varepsilon_k^n z = \varepsilon^{nk} z,$$

where $\varepsilon := \varepsilon_1 = \exp(2\pi i/N)$. We define the vectors:

$$\mathbf{R} := [I, R, R^2, \dots, R^{N-1}], \ \mathbf{u}^T := [u_0, u_1, \dots, u_{N-1}],$$

(where as usually \mathbf{A}^T denotes the matrix transposed to \mathbf{A}).

Theorem 2.2

Suppose that $D \in R(X)$ and dim ker D > 0, F is an initial operator for D corresponding to an $R \in \mathcal{R}_D$. Then the interpolation problem with F_k (k = 0, 1, ..., N-1) defined by Formula (2.3) has a unique solution of the form

$$u = \mathbf{RBu},\tag{2.4}$$

where

$$\mathbf{B} = \frac{1}{N} \begin{bmatrix} 1 & 1 & 1 & \dots & 1 \\ 1 & \varepsilon^{-1} & \varepsilon^{-2} & \dots & \varepsilon^{-(N-1)} \\ 1 & \varepsilon^{-2} & \varepsilon^{-4} & \dots & \varepsilon^{-2(N-1)} \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 1 & \varepsilon^{-(N-1)} & \varepsilon^{-2(N-1)} & \dots & \varepsilon^{-(N-1)^2} \end{bmatrix}$$

Proof. We are looking for a solution of the interpolation problem of the form $u = \mathbf{Rz}$, satisfying the conditions (2.1), where the vector $\mathbf{z}^T := [z_0, z_1, \dots, z_{N-1}]$, $z_0, z_1, \dots, z_{N-1} \in \ker D$ is to be determined, we obtain the equation

$$\mathbf{B}^{-1}\mathbf{z}=\mathbf{u}.$$

where

$$\mathbf{B}^{-1} = \begin{bmatrix} 1 & 1 & 1 & \dots & 1 \\ 1 & \varepsilon^1 & \varepsilon^2 & \dots & \varepsilon^{(N-1)} \\ 1 & \varepsilon^2 & \varepsilon^4 & \dots & \varepsilon^{2(N-1)} \\ \vdots & \vdots & \ddots & \vdots & \ddots & \vdots \\ 1 & \varepsilon^{(N-1)} & \varepsilon^{2(N-1)} & \dots & \varepsilon^{(N-1)^2} \end{bmatrix}.$$

The determinant $|\mathbf{B}^{-1}| = i^{\frac{(N-1)(3N-2)}{2}} N^{\frac{N}{2}} \neq 0$ and $\mathbf{B}\mathbf{B}^{-1} = \mathbf{B}^{-1}\mathbf{B} = \mathbf{I}$. This implies that the problem has a unique solution determined by Formula (2.4).

EXAMPLE 2.1: Let X = H(K) be the class of all functions analytic in the disk $K = \{h \in \mathbb{C}: |h| < r, r > 0\}$. We define operators D, R as follows:

$$[Dx](t) := \frac{x(t) - x(0)}{t}; [Rx](t) := tx(t); x \in X, t \in K,$$

where

$$\frac{x(t) - x(0)}{t} \Big|_{t=0} := x'(0).$$

The operators D, R are uniquely determined on the whole space X, i.e. $D, R \in L_0(X)$, dim ker D = 1, codim RX = 1 (cf. [13]). The operator D is called a *Pommiez operator* (cf. Pommiez [15]). We can prove (cf. [3]) that $R \in \mathcal{R}_D$,

$$[Fx](t) = [(I - RD)x] = x(0),$$
 (2.5)

$$P(R) = \lim \{ R^k \mathbf{1} : k = 0, 1, 2, \dots \}.$$
 (2.6)

Evidently, $\mathcal{F}_D \subset c(R)$ and $\overline{S} = \overline{P(R)} = X$.

In order to construct the operators F_h defined in Proposition 1.4., we observe that

$$R^{k}\mathbf{1} = t^{k}, \quad R^{k}Fx = (Fx)R^{k}\mathbf{1} = x(0)t^{k}, \quad x \in X, t \in K, \ k \in \mathbb{N}_{0}.$$

We take

$$T_{f,h}x := \sum_{n=0}^{\infty} h^n D^n x \text{ for } x \in S; h \in K.$$
 (2.7)

Clearly, $T = \{T_h\}_{h \in K}$ is a family of sequential shifts for the operator D induced by the sequence $a = \{1, 1, \ldots, 1, \ldots\}$.

Proposition 1.1 and Formula (2.5) together imply:

$$T_{h}R^{k}Fx = \sum_{j=0}^{k} h^{j}R^{k-j}Fx = x(0)\sum_{j=0}^{k} h^{j}t^{k-j}$$

$$= \begin{cases} x(0)\frac{h^{k+1}-t^{k+1}}{h-t} & \text{for } t \neq h \\ x(0)(k+1)h^{k} & \text{for } t = h \end{cases}$$
(2.8)

Evidently, $T_h R^k F x \in X$.

Equality (2.6) implies that every element $x \in P(R)$ can be written in the form

$$x(t) = \sum_{k=0}^{m} b_k R^k \mathbf{1} \quad (m \in \mathbb{N}_0),$$

where b_k $(k=0,1,\ldots,m)$ are scalars, in one and only one manner. Let T_h be defined by Formula (2.7) for arbitrarily fixed $h \in K$ and let $x \in P(R)$. Then

$$T_{h}x = T_{h} \left[\sum_{k=0}^{m} b_{k} R^{k} \mathbf{1} \right] = \sum_{k=0}^{m} b_{k} T_{h} R^{k} \mathbf{1} = \sum_{k=0}^{m} b_{k} \sum_{j=0}^{k} h^{j} t^{k-j}$$

$$= \begin{cases} \frac{tx(t) - hx(h)}{t - h} & \text{for } t \neq h \\ \frac{d}{dt} [tx(t)] \Big|_{t=h} = x(h) + hx'(h) & \text{for } t = h \end{cases}$$

This follows from Formula (2.8). We take $\widetilde{T}_h \in L_0(X)$:

$$\left[\widetilde{T}_h x\right](t) := \begin{cases} \frac{tx(t) - hx(h)}{t - h} & \text{for } t \neq h \\ x(h) + hx'(h) & \text{for } t = h \end{cases}$$

for all $x \in X$, $h \in K$. Hence for $h \in K$, $x \in X$

$$[F_h x](t) = [F\widetilde{T}_h x](t) = x(h).$$

In this case the conditions (2.1) with $F_j = F_{h_j}$, where $h_j \neq h_m$ for $j \neq m = 0, 1, \ldots, N-1$, have the form

$$[F_j u](t) = [F_h, u](t) = u(h_j) = u_j \quad (j = 0, 1, ..., N-1),$$

where $u \in X$, u_j are scalars. The interpolation problem has a unique solution for every scalars $u_0, u_1, \ldots, u_{N-1}$ of the form (2.2), where $V = \det(k!h_i^k) \neq 0$.

In particular, the interpolation problem with the knots $h_j = \varepsilon_j$, $\varepsilon_j = \exp(2\pi i j/N)$ $(0 \le j \le N-1)$ on the unit circle has a unique solution for every scalars $u_0, u_1, \ldots, u_{N-1}$ of the form (2.4).

References

- 1. Z. Binderman, Complex R-shifts for right invertible operators, *Demonstratio Math.* 23:4 (1990), 1043–1053.
- 2. Z. Binderman, On some properties of convex R-shifts, Demonstratio Math. 25:1-2 (1992), 207-217.
- 3. Z. Binderman, Some properties of operators of complex differentation and shifts, Zeszyty Naukowe Politechniki Lódzkiej, Matematyka 24 (1993), 5-18.
- 4. Z. Binderman, Cauchy integral formula induced by right invertible operators, *Demonstratio Math.* 25:3 (1992), 671-690.
- 5. Z. Binderman, Functional shifts induced by right invertible operators, *Math. Nachr.* 157 (1992), 211-214.
- 6. Z. Binderman, On periodic solutions of equations with right invertible operators induced by functional shifts, *Demonstratio Math.* 26:3-4 (1993), 535-543.
- 7. Z. Binderman, A unified approach to shifts induced by right invertible operators, *Math. Nachr.* **161** (1993), 239-252.
- 8. Z. Binderman, On summation formulas induced by functional shifts of right invertible operators, *Demonstratio Math.* 27 (1994), (to appear).
- 9. Z. Binderman, Periodic solutions of equations of higher order with a right invertible operator induced by functional shifts, Ann. Univ. M. Curie-Sklodowska 46 (1992), 9-22.
- 10. Z. Binderman, On some functional shifts induced by operators of complex differentation, *Opuscula Math.*, (to appear).
- 11. Z. Binderman, Some remarks on sequential shifts induced by right invertible operators, *Functiones et Approximatio*, (to appear).
- 12. Z. Binderman, On singular boundary value problems for generalized analytic functions, Zeszyty Naukowe Politechniki Lódzkiej, Matematyka, 23 (1993), 11-16.
- 13. M.K. Fage and N.I. Nagnibida, An equivalence problem of ordinary linear differential operators, (Russian), Nauka, Novosybirsk, 1987.
- 14. Nguyen van Mau, Boundary value problems and controllability of linear systems with right invertible operators, *Dissertations Mathematicae* 316, Warszawa, 1992.
- 15. M. Pommicz, Sur la suite differences divisées successives relatives a une finction analytique, C.R. Acad. Sci. 260:20 (1965), 5161-5164.
- 16. D. Przeworska-Rolewicz, Shift and periodicity for right invertible operators, *Research Notes in Mathematics* 43, Pitman Advanced Publish. Program, Boston-London-Melbourne, 1980.
- 17. D. Przeworska-Rolewicz, Algebraic Analysis, PWN Polish Scientific Publishers and D. Reidel Publish. Comp. Warszawa-Dordrecht, 1988.
- 18. D. Przeworska-Rolewicz, Spaces of *D*-paraanalytic elements, *Dissertationes Mathematicae* **302**, Warszawa, 1990.
- 19. D. Przeworska-Rolewicz, True Shifts, J. Math. Analysis Appl. 170 (1992), 27-48.
- D. Przeworska-Rolewicz, Generalized Bernoulli operator and Euler-Maclaurin formula, Lecture Notes in Economics and Math. Systems 382, Springer-Verlag, Berlin-Heidelberg-New York, (1992), 355-368.

- 21. D. Przeworska-Rolewicz, Advantages of one-dimensional kernels, *Math. Nachr.* 149 (1990), 133–147.
- 22. D. Przeworska-Rolewicz, The operator exp(hD) and its inverse formula, *Demonstratio Math.* **26** (1993), 545-552.
- 23. D. Przeworska-Rolewicz, Property (c) and interpolation formulae induced by right invertible operators, *Demonstratio Math.* 21 (1988), 1023–1044.
- 24. M. Tasche, A unified approach to interpolation methods, *Journ. of Integral Eqs.* 4 (1982), 55-75.
- 25. H. von Trotha, Structure properties of D-R spaces, Dissertationes Math. 180, 1981.