On the Maximal Operator associated to a Convex Body in \mathbb{R}^n # M. TRINIDAD MENÁRGUEZ AND FERNANDO SORIA¹ Depto. de Matemáticas, Universidad Autónoma de Madrid, 28049 Madrid, Spain Received June 30, 1993 ### ABSTRACT In this paper we study the behavior of the constants appearing in weak type (1,1) inequalities for the dyadic maximal operator associated to a convex body. We show that for "sufficiently" rapidly increasing sequences these constants are uniformly bounded, independently of dimension and the convex body. From this result we easily recover a theorem of Stein and Strömberg. A simple argument shows that in the case of radial functions, the constants for the full maximal operator are indeed uniformly bounded. ## Introduction and statement of results Let B be an arbitrary open and symmetric convex body in \mathbb{R}^n , of unit Lebesgue measure (|B| = 1). Given r > 0 and $x \in \mathbb{R}^n$, we denote by $B_r(x)$ the dilation by r and the translation by x of B. If $q = \{q_k\}_{k \in \mathbb{Z}}$ is a lacunary sequence of positive numbers (say, $q_{k+1}/q_k \ge a_q > 1$, for every k), we define the maximal operator $$M_q f(x) = M_{q,B} f(x) = \sup_{k \in \mathbb{Z}} \frac{1}{(q_k)^n} \int_{B_k(x)} \left| f(y) \right| dy$$ for every L^1 -function f, where now B_k denotes dilation of B by q_k . ¹ Partially supported by D.G.I.C.Y.T. We also define the full maximal operator $$Mf(x) = M_B f(x) + \sup_{r \in \mathbb{R}_+} \frac{1}{r^n} \int_{B_r(x)} |f(y)| \, dy.$$ In the last years, considerable attention has been given to the study of the boundedness of these operators on Lorenz spaces, specially from the point of view of Harmonic Analysis in \mathbb{R}^n , for "large n". This simply means that the study has been directed toward the analysis of the constants of the boundedness of them and their possible growth as n tends to ∞ . The central point of this program would be the making of a "reasonable" Harmonic Analysis for functions with infinite variables, defined say in Banach space. It was E. Stein [6] the first to realize that when B is the unit ball in \mathbb{R}^n then the operator M is bounded in each L^p , $1 , with a constant which is independent of dimension. Later on, Bourgain [1] proved this result for arbitrary symmetric convex bodies whenever <math>p \ge 2$. The range of p's for which the result holds has finally been extended to p > 3/2 independently by Carbery [3] and Bourgain [2]. Stein and Strömberg in [7] considered the problem of the constants appearing in the weak type (1,1) estimates. If B is the ordinary euclidean unit ball, an argument involving the method of rotations shows that such constant grows no faster than O(n). For a general convex body they also showed that the constant grows no faster than $O(n \log(n))$. The aim of this paper is to show that this theorem of Stein and Strömberg is simply a reflection of the following principle: "There exist $n \log(n)$ maximal operators, each one satisfying a uniform weak type (1,1) estimate independent of dimension and which control the operator M_B ". For radial functions it is possible to show that the constant for the full maximal operator is indeed uniformly bounded. We first state the following # Theorem 1 There exists a universal constant C_1 such that if q is a lacunary sequence as above, then $$\left|\left\{x \in \mathbb{R}^n : M_q f(x) > \lambda\right\}\right| \le \frac{C_1}{\lambda} \left(1 + \frac{\log n}{\log a_q}\right) \|f\|_1,$$ for every function $f \in L^1(\mathbb{R}^n)$ and $\lambda > 0$. We also give the following technical result: ## Theorem 2 There exist a universal constant C_2 and n lacunary sequences q^j , j = 1, ..., n, with $a_{q^j} = 2$, such that $$Mf(x) \leq C_2 \max_{1 \leq j \leq n} M_{q^j} f(x),$$ for every $f \in L^1(\mathbb{R}^n)$. Combining Theorems 1 and 2 we obtain # Corollary (Stein-Strömberg) There exists a constant C₃ independent of dimension such that $$\left|\left\{x \in \mathbb{R}^n : Mf(x) > \lambda\right\}\right| \leq \frac{C_3}{\lambda} n(1 + \log n) \|f\|_1,$$ for every function $f \in L^1(\mathbb{R}^n)$ and $\lambda > 0$. Finally, we present ### Theorem 3 Let M be the maximal operator defined over centered balls, and let f be a radial function on \mathbb{R}^n . Then $$\left|\left\{x\in\mathbb{R}^n:Mf(x)>\lambda\right\}\right|\leq \frac{4}{\lambda}\int_{\mathbb{R}^n}\left|f(y)\right|dy.$$ # Proof of results We first show Theorem 2. For j = 1, 2, ..., n we define $$q^j = \left\{2^k + \frac{j2^k}{n}\right\}_{k \in \mathbb{Z}}$$ Thus q^j is a lacunary sequence with $a_{q^j} = 2$. Now, given r > 0, we consider the unique $k \in \mathbb{Z}$ and $j \in \{1, 2, ..., n\}$ such that $$2^k + (j-1)\frac{2^k}{n} < r \le 2^k + j\frac{2^k}{n}$$. 246 Then, $$\frac{1}{r^n} \int_{B_r(x)} \left| f(y) \right| dy \le \left(\frac{q_{k,j}}{r} \right)^n \frac{1}{(q_{k,j})^n} \int_{B_{k,j}(x)} \left| f(y) \right| dy$$ $$\le \left(\frac{q_{k,j}}{r} \right)^n M_{q^j} f(x),$$ where $q_{k,j} = 2^k + j2^k/n$ and $B_{k,j}$ denotes dilation by $q_{k,j}$. On the other hand, $$\left(\frac{q_{k,j}}{r}\right)^n \le \left(\frac{q_{k,j}}{q_{k,j-1}}\right)^n \quad \left(1 + \frac{1}{n+j-1}\right)^n \le \left(1 + \frac{1}{n}\right)^n$$ and Theorem 2 follows with $C_2 = e$. \square In order to prove Theorem 1, we will state the following particular case which is interesting by itself: # Lemma 4 If $q = \{q_k\}_{k \in \mathbb{Z}}$ is a sequence of positive numbers satisfying $q_k \geq nq_{k-1}$ (i.e., $a_q \geq n$), then $$\left|\left\{x \in \mathbb{R}^n : M_q f(x) > \lambda\right\}\right| \le \frac{C_0}{\lambda} \|f\|_1,$$ with C_0 independent of dimension, $f \in L^1(\mathbb{R}^n)$ and $\lambda > 0$. From this Lemma, Theorem 1 easily follows, for if $q = \{q_k\}_{k \in \mathbb{Z}}$ is a general lacunary sequence and m is a natural number so that $$(a_q)^m \ge n$$ (e.g., $m = [\log n / \log a_q] + 1$), then each of the sequences $$\left\{q_{km+j}\right\}_{k\in\mathbb{Z}}, \qquad j=1,\ldots,m$$ satisfies the conditions of the Lemma and the corresponding maximal operators (the supremum of them) majorize M_q . \square We prove now Lemma 4. We recall that $B_k(x)$ denotes dilation by q_k of B(x). We will denote by $B'_k(x)$, $\hat{B}_k(x)$ and $B^*_k(x)$ the dilations of B(x) by q_k/n , $q_k(1+1/n)$ and $q_k(1+2/n)$, respectively. Setting $$E_{\lambda} = \{x \in \mathbb{R}^n : M_q f(x) > \lambda\},\$$ we may observe then $$E_{\lambda} \subset \bigcup \left\{ B' : \frac{1}{|B|} \int_{B} |f| > \lambda \right\} =: \bigcup_{\alpha \in A} B'_{\alpha},$$ for some set of indices A. By a standard limiting argument, it suffices to show $$\left|\bigcup_{\alpha\in A_0} B'_{\alpha}\right| \leq \frac{C_0}{\lambda} \|f\|_1,$$ for every finite subset A_0 of A. Let $\{B_j\}_{j\in A_0}$ be an ordering of that family such that, if i < j, we have $|B_i| \ge |B_j|$, and define $$D_1 = B'_1, \quad \dots \quad D_j = B'_j \setminus \bigcup_{k < j} B'_k.$$ Let us set $$g_j(x) = \frac{|D_j|}{|B_j|} \chi_{B_j}(x)$$ and $$G_{q_k}(x) = \sum_{\{j:|B_j|=(q_k)^n\}} g_j(x).$$ We may observe that for every x, $G_{q_k}(x) \leq e$, for if $x \in B_j$, then $B'_j \subset x + q_k(1+1/n)B + \hat{B}_{q_k}(x)$. Hence, $$G_{q_k}(x) \le \frac{1}{(q_k)^n} \sum_{\{j: B'_j \subset \hat{B}_{q_k}(x)\}} |D_j|$$ $$\le \frac{1}{(q_k)^n} |\hat{B}_{q_k}(x)| = (1 + 1/n)^n \le e.$$ We select now a subfamily $\{A_j\}$ of $\{B_j\}_{j\in A_0}$ as follows: We first take $A_1=B_1$. Having selected A_1,\ldots,A_t , we inductively select A_{t+1} so that $|A_{t+1}|$ is maximal among those B_{α} satisfying $$\sum_{j=1}^{t} g_j(x) + g_{\alpha}(x) \le 1 + e$$ for every x. Let us assume that this selection process ends with A_m . Then we have $$\sum_{j=1}^{m} g_j(x) \le 1 + e$$ whereas, if B_{α} has not been choosen, then $$G(x) = \sum_{\{j: |A_j| \ge |B_\alpha|\}} g_j(x) + g_\alpha(x) > 1 + e$$ for some x of B_{α} . Now, $$G(x) = \sum_{\{j:|A_j|>|B_{\alpha}|\}} g_j(x) + \left[\sum_{\{j:|A_j|-|B_{\alpha}|\}} g_j(x) + g_{\alpha}(x)\right]$$ $$G_1(x) + G_2(x).$$ But, $G_2(x) \leq e$ and, therefore, $G_1(x) > 1$, for some x of B_{α} . The final observation is that if $B_{\alpha'} \cap B_{\alpha} \neq \emptyset$ and $|B_{\alpha'}| > |B_{\alpha}|$, then $B_{\alpha} \subset B_{\alpha'}^*$. Thus, $$\bigcup_{B_{\alpha} \notin \{A_i\}} B_{\alpha} \subset \left\{ x : \sum_{j=1}^{m} \frac{|D_j|}{|A_j|} \chi_{A_j^*}(x) > 1 \right\} - S,$$ and one has $$|S| \le \left(1 + \frac{2}{n}\right)^n \sum_{j=1}^m |D_j| \le e^2 \sum_{j=1}^m |D_j|.$$ Finally, we get $$\left| \bigcup_{\alpha \in A_0} B'_{\alpha}(x) \right| \le (1 + e^2) \sum_{j=1}^m |D_j|$$ $$\le \frac{1 + e^2}{\lambda} \sum_{1 \le j \le m} \frac{|D_j|}{|A_j|} \int |f(x)| \chi_{A_j}(x) dx$$ $$= \frac{1 + e^2}{\lambda} \int |f(x)| \sum_{j=1}^m g_j(x) dx$$ $$\le (1 + e)(1 + e^2) \frac{1}{\lambda} \int |f(x)| dx,$$ and the lemma follows with $C_0 = (1 + e^2)(1 + e)$. \square We shall now prove Theorem 3. In order to do so, we will need certain properties of the maximal operator M_{ω} associated to a positive weight ω . To be more precise, let us define for $f \in L^1_{loc}(\mathbb{R}, \omega dt)$ $$M_{\omega}f(t) = \sup_{t \in I} \frac{1}{\omega(I)} \int_{I} |f(s)| \, \omega(s) \, ds,$$ where $\omega(I) + \int_I \omega(t) dt$, and the supremum is taken over all intervals I. Then M_{ω} is of weak type (1.1) with respect to ω and indeed one has $$\omega\Big(\big\{t\in\mathbb{R}:M_{\omega}f(t)>\lambda\big\}\Big)\leq \frac{2}{\lambda}\int_{\mathbb{R}}\big|f(t)\big|\,\omega(t)\,dt.$$ (See [4] and [5] for a simple proof of this fact.) We will also need the following geometric ## Lemma 5 For every ball B of \mathbb{R}^n , there is a set Σ_B of the unit sphere S^{n-1} , $\Sigma_B \subset S^{n-1}$, and there are two functions $\varepsilon_1, \varepsilon_2 \colon \Sigma_B \to \mathbb{R}_1$, such that $\varepsilon_1(\alpha) \le |x| \le \varepsilon_2(\alpha)$ for every $\alpha \in \Sigma_B$, where x denotes the center of B. Moreover, $$B \subset \left\{ r\alpha : \alpha \in \Sigma_B, \ \varepsilon_1(\alpha) \le r \le \varepsilon_2(\alpha) \right\} =: D,$$ with $|D| \leq 2B$. We postpone the proof of Lemma 5 and continue with the proof of Theorem 3. Given a fixed ball $B \subset \mathbb{R}^n$, centered at the point x, according to Lemma 5, there exist $\Sigma_B \subset S^{n-1}$ and $\varepsilon_1, \varepsilon_2 \colon \Sigma_B \to \mathbb{R}_+$ with the stated properties. We define D as above. We observe that $$|D| = \int_{\Sigma_B} \left(\int_{\varepsilon_1(\alpha)}^{\varepsilon_2(\alpha)} t^{n-1} dt \right) d\sigma(\alpha) = \int_{\Sigma_B} \omega(I_\alpha) d\sigma(\alpha),$$ where $\omega(t) = t^{n-1}$, $I_{\alpha} = [\varepsilon_1(\alpha), \varepsilon_2(\alpha)]$, and $d\sigma$ is the standard Lebesgue measure in S^{n-1} , normalized to have total mass $\sigma(S^{n-1}) = 1$. The important fact here is that $\varepsilon_1(\alpha) \leq |x| \leq \varepsilon_2(\alpha)$ for every $\alpha \in \Sigma_B$ and, therefore, $|x| \in I_{\alpha}$. If f is a radial function, we may define $f_0(|x|) = f(x)$, and we have $$\frac{1}{|B|} \int_{B} \left| f(y) \right| dy \le \frac{2}{|D|} \int_{D} \left| f(y) \right| dy.$$ Now, using polar coordinates, this is equal to $$\frac{2}{|D|} \int_{\Sigma_B} \omega(I_\alpha) \left[\frac{1}{\omega(I_\alpha)} \int_{I_\alpha} |f_0(t)| \, \omega(t) \, dt \right] d\sigma$$ $$\leq 2 \sup_{|x| \in I} \frac{1}{\omega(I)} \int_{I} |f_0(t)| \, \omega(t) \, dt$$ $$2 M_\omega f_0(|x|),$$ where we have used the previous observation. Hence, $$\left| \left\{ x \in \mathbb{R}^n : Mf(x) > \lambda \right\} \right| \le 2 \int_{S^{n-1}} d\sigma \int_{\{r>0: M_{\omega}f_0(r) > \lambda\}} r^{n-1} dr$$ $$+ 2\omega \left(\left\{ r > 0: M_{\omega}f_0(r) > \lambda \right\} \right).$$ Using the stimate for the maximal operator M_{ω} mentioned above, we finally have $$\left|\left\{x \in \mathbb{R}^n : Mf(x) > \lambda\right\}\right| \leq \frac{4}{\lambda} \int_{S^{n-1}} d\sigma \int_{\mathbb{R}} \left|f_0(t)\right| \omega(t) dt - \frac{4}{\lambda} \|f\|_1. \square$$ It remains to show then Lemma 5. By a slight abuse of notation, let $B_R(x)$ denote the ball of radius R centered at the point x. Let us assume that $B = B_{R_0}(x_0)$. We shall consider two cases: If $0 \in B$ (i.e., $|x_0| < R_0$), we may take $\Sigma_B = S^{n-1}$ and $D = B_{R_0}(x_0) \cup B_{|x_0|}(0)$. Also, for each direction α , we consider $\varepsilon_1(\alpha) = 0$, and $\varepsilon_2(\alpha)$ as the distance between the origin and the intersection of the ray in direction α with the boundary of D. It is obvious here that $|D| \le 2|B|$. If $0 \notin B$ (i.e., $|x_0| \ge R_0$) and Γ is the region interior to the cone circumscribed to B with its center in the origin, we take first $\Sigma_B = \Gamma \cap S^{n-1}$. For each $\alpha \in \Sigma_B$, we define $\varepsilon_1(\alpha)$ as the distance to the origin of the first point of intersection of the "ray" α with the closure of B. We consider then $$D = D_1 \cup D_2$$ where $$D_1 = \{r\alpha : \alpha \in \Sigma_B, \ \varepsilon_1(\alpha) \le r \le |x_0|\} \quad \text{and} \quad D_2 = B \setminus B_{|x_0|}(0).$$ We can now define $\varepsilon_2(\alpha)$ as the distance between the origin and the "upper" point of intersection of the ray α with the closure of D. Clearly $D_2 \subset B$. Therefore, in order to show that $|D| \leq 2|B|$, we only need to prove that D_1 is also contained in another ball of radius R_0 . To see that, let z be the point on the segment $\overline{0x_0}$ with |z| equal to the distance from the set $\partial \Gamma \cap B$ to the origin. Then, it is not hard to see that $D_1 \subset B_{R_0}(z)$, as we wanted. In fact, due to the symmetric properties with respect to the ray passing through x_0 of the sets considered, we can assume that we are in dimension 2, and then the computations become a simple exercise in trigonometry. \square ### References - 1. J. Bourgain, On high dimensional maximal functions associated to convex bodies, Am. J. of Math. 108 (1986), 1467-1476. - 2. J. Bourgain, On the L^p -bounds for the maximal functions associated to convex bodies in \mathbb{R}^n , Israel J. of Math. 54, 3 (1986), 257–265. - 3. A. Carbery, An almost-orthogonality principle associate to convex bodies, *Bull. Am. Math. Soc.* 14, 2 (1984), 269–273. - M.T. Menárguez, Técnicas de discretización en Análisis Armónico para el estudio de acotaciones débiles de operadores maximales e integrales singulares, Ph. D., Universidad Complutense, Madrid, 1990. - 5. B. Muckenhoupt and E. Stein, Classical expansions and their relation to conjugate harmonic functions, *Trans. Am. Math. Soc.* **118** (1965), 17–92. - 6. E. Stein, The development of the theory of square functions in the work of A. Zygmund, Bull. Am. Math. Soc. (1982). - 7. E. Stein and J. Strömberg, Behavior of maximal functions in \mathbb{R}^n for large n, Arkiv Math. 21 (1983), 259-269.