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ABsTrAaCT

In this paper we study the behavior of the constants appearing in weak type
(1,1) inequalities for the dyadic maximal operator associated Lo a convex body.
We show that for “sufficiently” rapidly increasing sequences these constants
are uniformly bounded, independently of dimension and the convex body.
From this result we casily recover a theorem of Stein and Stromberg. A
simple argument shows that in the case of radial functions, the constants for
the full maximal operator are indeed uniformly bounded.

Introduction and statement of results

Let B be an arbitrary open and symmetric convex body in R™, of unit Lebesgue
measure (|/3] = 1). Given r > 0 and z € R™, we denote by B,(x) the dilation by r
and the translation by 2 of 13,

If ¢ = {gk}rez is a lacunary sequence of positive numbers (say, gk .1/qs > g >
1, for every k), we define the maximal operator

| )
Mol () = My (@) = sup e [ il

kEL ((Ik )n )

for every Li-function f, where now By denotes dilation of I3 by qk.

! Partially supported by D.G.I.C.Y.T.

243



244 MUENARGUEZ AND SORIA

We also define the full maximal operator

1
M[f(z) = Mpf(z) - sup — |f(y)| dy.
r€R: T JB,(x)

In the last years, considerable attention has been given to the study of the
boundedness of these operators on Lorenz spaces, specially from the point of view of
Harmonic Analysis in R?, for “large n”. 'I'his simply means that the study has been
dirceted toward the analysis of the constants of the boundedness of them and their
possible growth as n tends to oo. The central point of this program would be the
making of a “reasonable” Harmonic Analysis for functions with infinite variables,
defined say in Banach space.

It was E. Stein 6] the first to realize that when 13 is the unit ball in R™ then
the operator M is bounded in each L?, 1 < p < oc. with a constant which is
independent of dimension. Later on, Bourgain [1| proved this result for arbitrary
symmetric convex bodies whenever p > 2. "T'he range of p's for which the result holds
has finally been extended to p > 3/2 independently by Carbery |3] and Bourgain
12].

Stein and Stromberg in 7] considered the problem of the constants appearing in
the weak type (1.1) estimates. If 13 is the ordinary cuclidean unit ball, an argument
involving the method of rotations shows that such constant grows no faster than
O(n). lor a general convex body they also showed that the constant grows no faster
than O(n log(n)).

The aim of this paper is to show that this theorem of Stein and Strdmberg is sim-
ply a reflection of the following principle: “There exist nlog(n) maximal operators,
cach one satisflying a uniform weak type (1,1) estimate independent of dimension
and which control the operator Al g”.

For radial functions it is possible to show that the constant for the full maximal
operator is indeed uniformly bounded.

We first state the following

Theorem 1

There exists a universal constant C; such that il q is a lacunary sequence as
above, then

L on . ag fla Ch logn
o e R s Mos@) > 2} < 22 (11 loga_q)nful,

for every funciion [ € LYR") and A > 0.



On the Maximal Operator associated to a Convex Body in R" 245

We also give the following technical result:

Theorem 2

There exist a universal constant Cy and n lacunary sequences ¢, j = 1,...,n,
with a,; = 2, such that

Mf(z) £ C; [pax M, f(z),

for every f € L'(R™).

Combining Theorems 1 and 2 we obtain

Corollary (Stein-Strémberg)
There cxists a constant Cy Independent of dimension such that

[{z e R": M1(@) > A} < S n(1 + togm) 11,
far every function f € L'(R™) and A > 0.

Finally, we present

Theorem 3

Let M be the maximal operator defined over centered balls, and ot f be a
radial function on R". Then

l{.’L‘G]R":Mf(m) > /\}l < '?\"/R“If(y)ldy.

Proof of results

We first show Theorem 2. For j = 1,2,..,,n we define

o j k
qJ = {2k + lg—-}
n Jrez
Thus ¢’ is a lacunary sequence with agi =2,

Now, given r > 0, we consider the unique k € Z and j € {1,2,...,n} such that

k

-1k <r<otygi
n - n’
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Then,

I . Gk.j n 1 /
— dy < (—= 4]
rn ./]’Zr(:r,) |f(y)| v= ( r ) (qk,.'i)" J B,y () Ij(y)| w
(l o n
< (%) Mg [(x),

where gy ; — 2% 4 j2%/n and Bi,; denotes dilation by gy ;.
On the other hand,

(ﬂ_J)" < (—(1""' )" (1 | )"< (1 | l)"’
7 T \Qkj—1 nlj—1 - n

and Theorem 2 folows with Cy  e. O

In order to prove Theorem 1, we will state the following particular case which
is interesting by itself:

Lemma 4

If q — {q}rcs Js a sequence of positive numbers satisfying g > ngr— (i.e.,
aq > m), then
(/()

£l

with Cy independent of dimension, f € LY(R™) and A > 0.

{2 e R s Mof(2) > 2} <

Irom this Lemma, Theorem 1 casily follows, for if ¢ = {qr}rer is a wmma]
lacunary scquence and m is a natural number so that,

(ag)" =n

(c.g., m = [log n/log u,,] +4- 1), then each of the sequences

{qk‘nl{-j}kcl-:, J = _I_, —

satisfies the conditions of the Lemma and the corresponding maximal operators (the
supremum of them) majorize Mg, O

We prove now Temma 4.

We recall that B3(x) denotes dilation by gr of 3(2). We will denote by B, (z),
Bi(z) and B (x) the dilations of B3(x) by qx/n, ge(1 1 1/n) and qe(1 | 2/n), re-
spectively.

Sctling

By = {x € R": Myf(x) > A},
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we may observe then
1
E\ C {B':—/|f >A}=: Bl,
U 157 J, U &
for some set of indices A. By a standard limiting argument, it suffices to show

U &

C
< fhh,
o€ Ag

for every finite subset Ay of A. Lot {Bj};ea, be an ordering of that family such
that, if i < j, we have |B;| > |B;|, and define

Dy =B, ... D;=Bj\|] B
k<j
l.et us sot, D,|
gi(z) = =& x,(x)
! |B;| ™7

and
Gal@ = Y g
{3:1B;l=(qe)"}
We may obscrve that for every z, G, (z) < e, for if x € Bj, then Bj C
z Fqe(1+1/n)B - By, (x).
Hence,

v 1
Ga(x) < AR Z | Dy
{5:B;CBq, ()}

< o Bala)l = L+ 1m0 < e,

We select now a subfamily {A;} of {B;};ea, as follows: We first take A; = B;.
Having selected Ay,..., Ay, we inductively select A;;; so that |A;y,| is maximal
among those B, satisfying

Y 9i(x) +galz) S 14e

i=1

for every x.
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Let us assume that this sclection process ends with A,,. Then we have

qu y<l+e

whereas, if B, has not been choosen, then

G)= ),  gi@)+gala)>11e

{3:1A;121Bal}

for some x of B,.
Now,

(1'('1‘) z (]](’l?) ! [ Z (IJ( ) | Ju( )]

{5:14,[>|Bal} {3:|A;1--1Bal}
Gi(x) + Ga(x).

But, Go(x) < e and. therefore, G (x) > 1, for some z of B,,.
"The final observation is that if By N B, # 0 and | By | > |Bal, then B,

Thus,
U /;,,,c{ Zlmj:x" «(z) >1} S,

Ba&{A;)

2 n m m
S| < (1 -) Dl <e2S 1Dl
|S] < +n ;I Jl—f’ f:l Jl

and one has

Finally, we get

m

U ]3('1(:1:)I <1+ 62)Z|Dj|

aCAn

1+ ¢? |D;
ST lAl/lf’)lXA

1<j<m

m

_l—I(’ /Ij |E’JJ
< (1 1e)(! I(zz)x/|f(:1:)|dn:,

and the lemma follows with Co = (1 +¢2)(1 | ¢). O

C 13,
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We shall now prove ‘I'heorem 3.
In order to do so, we will need certain properties of the maximal operator

M., associated Lo a positive weight w. To be more precise, let us define for f €
IIIC)C(RT"U(II')

M, [(2) =sup /lf(s ) w(s)ds,

where w(l) - [,w ; w(t) dt, and the supremum is taken over all intervals /. Then M,
is of woak l ype (1. I) with respect to w and indeed one has

d({lFR M., J(t >A} /lf(l L) dt.

(Sce [4] and [3] for a simple proof of this fact.)

We will also need the following geometric
Lemma 5

For every ball B of R™, there is a set g of the unit, sphere S*=1, ¥, ¢ 7~
and there are two functions g1:€2:2p — Ry, such that () < |1| < z9(a) for
every a € Xig, where x denotes the center of 3. Morcover,

I3 c {rcy 0 €Xy, gi(a)<r< 52(01)} =: D,
with |D| < 213

We postpone the proof of Lemma 5 and continue with the proof of Theorem 3.
Given a fixed l)all B C R", centered at the point z, according to Lemma 2,

there exist X3 € S™' and ¢1.22: 35 — R, with the stdl,od propertics. We define
D as above.

We observe that

- £y () -
| D] / (/ gt dl,) do(a) = / w(Ia)do(a),
Jyg Me \ 1

1 () I

where w(t) = ("', 1, = [z (), e2(a)], and do is the standard Lebesgue measure
in $™~!, normalized to have total mass a(S™!) = 1. The important fact here is
that, vj((y) < |2] < e2(a) for every a € Xp and, therefore, |z| € 1,,.

Il [ is a racial function, we may define f()(l.rl) f(x), and we have

| 2
ol < g [ 1l
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Now, using polar coordinales, this is cqual to

i1 L o [ ol a] do

1
<2 su ——/ t)|w(t) dt
I_-,;'ep[ w(]) . _l|f()( )| ( )

2M., fo (12]),

where we have used the previous observation.
[lence,

I{w eR": M [f(x) > ,\}‘ <2 / do / =L gy
Jgn | J{r>0: M, fo(r)> A}
: Qw({r > 0: M, fo(r) > A})

Using the stimate for the maximal operator M, mentioned above, we finally
have

[z em: 317(@) > 2} < ; - (laL|j()(t)|w(t) dt — —i—l]f”l. O

It remains to show then Lemma 5.

By a slight abuse of notation, let 3p(z) denote the ball of radius R centered at
the point z. Let us assume that B Bp,(x0).

Wo shall consider two casces:

110 € B (ic., vl < Ry), we may take X == SV and D == B, (20) U Bjy,(0).
Also, for cach direction a. we consider £ (@) == 0, and e2(«) as the distance between
the origin and the intersection of the ray in direction « with the boundary of D. It
is obvious here thal [D] < 2|B|.

110 & 3 (ie., |xo] = Ry) and T is the region interior to the cone circumseribed
to BB with its center in the origin, we take first Xp — TN S,

For cach o € X3, we define £, (a) as the distance to the origin of the first point
of intersection of the “ray” a with the closure of B.

We consider then

D - DU D,,

where

Dy ={ro:a€Xp, e(a) <r< lzol} and D, B\ Bl (0).
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We can now define z3(a) as the distance between the origin and the “upper”

point. of intersection of the ray « with the closure of D.

Clearly Iz C 3. Therefore, in order to show that | D} < 2|13], we only need to

prove that Dy is also contained in another ball of radius Ry. 'To see that, let z be
the point on the segment 0z with |z equal to the distance from the set 90N B to
the origin. Then, it is not hard to sce that D) C Bp,(z), as we wanted. In fact, due
to the symmetric properties with respect to the ray passing through x4 of the sets
considered, we can assume that we are in dimension 2, and then the computations
become a simple exercise in trigonometry. O

6.
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