*-value functions and total subrings in *-fields

ISMAIL M. IDRIS

Math. Dept., Faculty of Science, Ain-Shams University, Cairo, Egypt

Received September 28, 1992. Revised March 17, 1993

ABSTRACT

The notion of value functions and a necessary and sufficient condition for a total subring to be a valuation ring are studied in the case of a *-field.

1. Definitions and basic facts

Let D be a *-field; that is, a skew field with an involution * (an anti-automorphism of order 2). For general valuation theory on skew fields one can refer to [5]. For *-fields, we need our valuations to also be compatible with the involution *. Following [2], we define a *-valuation on D to be a valuation ω onto an additively written ordered group with the additional property that $\omega(x^*) - \omega(x)$ for all x in D^{\bullet} (the multiplicative group of non-zero elements of D). A subring V of D is said to be a total subring if it contains x or x^{-1} for all x in D. A total subring is called a *-valuation ring if it contains x^*x^{-1} for every x in D^{\bullet} . In [6], a necessary and sufficient condition is given for a total subring to be a valuation ring for a division ring. This is done by associating value functions to primes in the division ring. In this paper, we carry over these results to the case of a *-field, were valuations are replaced with *-valuations. We now recall some basic facts about *-valuations in *-fields.

Lemma 1

- (i) If ω is a *-valuation, then the subring $V = \{x \in D \mid \omega(x) \ge 0\}$ is a *-valuation ring and $P = \{x \in D \mid \omega(x) > 0\}$ is a *-closed maximal ideal of V.
- (ii) Given a *-valuation subring V of D then there exists a *-valuation ω such that V coincides with the *-valuation ring of ω .

198 Idris

Lemma 2

(i) If V is a subring of D which contains x^*x^{-1} for every x in D^{\bullet} , then V is *-closed and preserved under conjugation.

(ii) If V is a *-closed total subring which is preserved under conjugation, then V is a *-valuation ring.

A couple (P, R) is said to be a *-prime in D if the following conditions are satisfied:

- (1) R is a *-closed subring of D.
- (2) P is a *-closed prime ideal in R.
- (3) If $x R y \subset P$ with $x, y \in D$ then $x \in P$ or $y \in P$.

A *-prime (P,R) is called semi-restricted if and only if for all $x \in D \setminus R$ there are $a,b \in R \setminus \{0\}$ with a or $b \in P$ such that $axb \in R \setminus P$. From [6], it is known that when R is a total subring of D and P its maximal ideal, then (P,R) is semi-restricted. For any *-closed ideal P, define $D^P = \{x \in D \mid xP \subset P \text{ and } Px \subset P\}$.

Proposition 3 (|3|)

A *-prime (P, D^P) such that D^P is preserved under conjugation, yields a *-valuation of D with *-valuation ring D^P and maximal ideal P.

2. *-Value Functions

Let (P, D^P) be a *-prime in D. Consider the sets

$$P_x = \{(b,c) \in D \times D / bxc + (bxc)^* \in P\},\$$

for every $x \in D$. Define an equivalence relation on D as follows: $x \sim y \Leftrightarrow P_x = P_y$. The equivalence class of x will be denoted by \overline{x} .

Lemma 4

The quotient set D/\sim is a partially ordered group, with respect to the multiplication induced by multiplication of D, the ordering being defined by

$$\overline{x} \leq \overline{y} \iff P_y \subset P_x$$
.

Proof. Let $x, x', y, y' \in D$ such that $x \sim x'$ and $y \sim y'$, if $(b, c) \in D \times D$ for which, $bxyc + (bxyc)^* \in P$ then $(b, yc) \in P_x - P_{x'}$. So $bx'yc + (bx'yc)^* \in P$ and therefore $(bx', c) \in P_y - P_{y'}$ which implies $bx'y'c + (bx'y'c)^* \in P$, this proves $P_{xy} \subset P_{x'y'}$. Hence the equivalence relation is compatible with the multiplication of D.

Clearly $P_y \subset P_x$ defines a partial order relation on D/\sim . Also, it can be shown that $\overline{x} \leq \overline{y}$ implies $\overline{xz} \leq \overline{yz}$. \square

Corollary 5

The map $\phi: D^{\bullet} \to \Gamma$ ($\neg D/\sim$); $x \to \overline{x} \to \phi(x)$; defines a value function, from D into a partially ordered group, with the following properties:

- (i) $\phi(xy) = \phi(x)\phi(y)$ for any $x, y \in D^{\bullet}$.
- (ii) If $\phi(x) \leq \phi(z)$ and $\phi(y) \leq \phi(z)$; $x, y, z \in D^{\bullet}$, then $\phi(x+y) \leq \phi(z)$.

Proof. (i) is clear. (ii) Let $(b,c) \in P_z$ then $(b,c) \in P_x$ and $(b,c) \in P_y$; so $bxc \cdot | (bxc)^*$, $byc + (byc)^* \in P$. Hence $b(x+y)c + (b(x+y)c)^* \in P$. \square

DEFINITION 6. We call the value function ϕ a *-value function if it satisfies the additional property that $\phi(x^*) + \phi(x)$.

From the definition it follows that the value group Γ of a *-value function is abelian. For, $\phi(x)\phi(y) = \phi(xy) = \phi((xy)^*) = \phi(y^*x^*) = \phi(y^*)\phi(x^*) = \phi(y)\phi(x)$.

Let (P, D^P) be a semi-restricted *-prime in D. Consider $\overline{D} + \{x \in D \mid \phi(x) \le 1\}$, where ϕ is the value function associated with (P, D^P) and where 1 is the unit element in Γ . Clearly \overline{D} is a ring which is *-closed when ϕ is a *-value function.

Lemma 7

$$\overline{D} = \bigcap_{z \in D} z D^P z^{-1}$$

Proof. Let $\phi(x) \leq 1$, then for $(b,c) \in P_1$ we have $bc + (bc)^* \in P$. Also $(bz,z^{-1}c) \in P_1 \subset P_x$ so that $bzxz^{-1}c + (bzxz^{-1}c)^* \in P$, for all z in D. Assume now that $zxz^{-1} \notin D^P$ for some $z \in D$. Since (P,D^P) is semi-restricted there would be elements $b,c \in D^P$ with $bc \in P$ such that $bzxz^{-1}c \notin P$. But then $bc + (bc)^* \in P$ and $bzxz^{-1}c + (bzxz^{-1}c)^* \notin P$ which is a contradiction, thus $x \in z^{-1}D^Pz$ for all z in D. \square

Lemma 8

The value function $\phi: D^{\bullet} \to \Gamma$; defines a homomorphism and its kernel is the group of units \overline{U} of \overline{D} , i.e., $\ker(\phi) = \{x \mid \phi(x) = 1\} := \overline{U}$.

Proof. ϕ is a homomorphism by Corollary 5, and as in [6] we can show that x is a unit in \overline{D} if and only if $\phi(x) = 1$. \square

200 ldris

Assume now that ϕ is a *-value function. From $\phi(x^*) = \phi(x)$, $\phi(x^*x^{-1}) = 1$ follows, i.e., $x^*x^{-1} \in \overline{D}$ for every x in D. For every $x, y \in D$ we have

$$xyx^{-1}y^{-1}$$
 $[(x^*)^*(x^*)^{-1}][(y^*x)^*(y^*x)^{-1}][y^*y^{-1}].$

Hence \overline{D} contains the commutator subgroup [D,D] of D^{\bullet} . Thus we have shown the

Lemma 9

If ϕ is a *-value function, then the ring \overline{D} is preserved under conjugation.

Lemma 10

If ϕ is a *-value function, then D^P is a *-valuation ring in D.

Proof. Since ϕ is a *-value function then $\Gamma \cong D^{\bullet}/\overline{U}$ is abelian. Hence \overline{U} contains the commutator subgroup [D,D] of D. But, then $D^{P}\supset \overline{U}\supset [D,D]$ (by Lemma 7), and D^{P} is preserved under conjugation. In view of Proposition 3, D^{P} is a *-valuation ring in D. \square

Next consider the following subgroup of I:

$$U_0 = \{ \phi(x) \in \Gamma / x \in D^P \text{ and } x^{-1} \in D^P \},$$

i.e., the image of the group of units of D^P in Γ . As in [6] one can show that U_0 is normal in Γ if and only if it is trivial.

Let V be a total subring of D. One can show that the left ideals of V are totally ordered by inclusion. This can be extended to the set $G = \{xV \mid x \in D\}$ of V-submodules of D. Define $\omega \colon D^{\bullet} \to G$ to be the canonical mapping, and write $\omega(w) \geq \omega(y)$ if and only if $xV \subseteq yV$. From [2, Theorem 4.4], ω has the following properties:

- (1) $\omega(x) \ge \omega(y) \Rightarrow \omega(zx) \ge \omega(zy)$ for all z in D^{\bullet} ;
- (2) $\omega(x+y) \geq \min(\omega(x),\omega(y)) (x+y \neq 0);$
- (3) ω maps onto G; and
- (4) $\omega(x) > \omega(1) \Rightarrow \omega(x^*) > \omega(1)$.

If ω satisfies $\omega(x^*) = \omega(x)$ for all x, then the set G becomes a commutative ordered group and ω also satisfies $\omega(xy) + \omega(x) + \omega(y)$; thus ω is a *-valuation (see [2, Theorem 4.6]).

Theorem 11

Let V be a *-closed total subring of D, P its maximal ideal. If Γ is the value group associated with (P, V), define

$$\psi \colon \Gamma \longrightarrow G$$

$$\phi(x) \longrightarrow \omega(x)$$

then ψ is a well defined map and the following are equivalent

- (i) ϕ is a *-value function;
- (ii) ω is a *-valuation;
- (iii) U_0 is trivial; and
- (iv) ψ is injective.

Proof. To show that ψ is well defined we assume that $\phi(x) = \phi(y)$ and so $\phi(xy^{-1})$. Suppose that $y^{-1}x \in V$ but $x^{-1}y \notin V$. Then $y^{-1}x \in P$ which yields $x^{-1}xy^{-1}x + (x^{-1}xy^{-1}x)^* \in P$. From $\phi(xy^{-1}) = 1$, it follows that $(x^{-1}x) + (x^{-1}x)^* \in P$, that is, $2 \in P$ a contradiction. Thus $y^{-1}x \in V$ and $x^{-1}y \in V$ so that $x \in yV$ and $y \in xV$; and xV = yV follows.

- (i) \Rightarrow (ii) If $\phi(x^*) = \phi(x)$ then from above $\omega(x^*) = \omega(x)$ follows and ω is a *-valuation.
- (ii) \Leftrightarrow (iii) If ω is a *-valuation, then V is a *-valuation ring and so U_0 is normal. Hence U_0 is trivial. Assume now that U_0 is trivial, so the units of V are invariant under conjugation in D. If $p \in V$ is not a unit, then p+1 is a unit and so, for $d \in D$, $d(p+1)d^{-1} \in V$. From $dpd^{-1}+1 \in V$, it follows that $dpd^{-1} \in V$ and V is closed under conjugation. Hence V is a *-valuation ring.
- (ii) \Rightarrow (iv) If xV = yV then x = yz and y = xz' for $z, z' \in V$. Therefore y = yzz' which implies zz' = 1 and z is a unit in V. Now, if $\phi(x) \neq \phi(y)$, then we may assume that there is an element $(b,c) \in D \times D$ such that $bxc + (bxc)^* \in P$ but $byc + (byc)^* \notin P$. So $byc \notin P$ which yields $c^{-1}y^{-1}b^{-1} \in V$ (where V is total). Next we show that $a = bxc \in P$. Indeed, from the identity

$$a(1+a^{-1}a^*) - a + a^*$$

we get $a=(a+a^*)\left(1+a^{-1}a^*\right)^{-1}\in P$ (where $\left(1+a^{-1}a^*\right)^{-1}\in V$ and V is a *-valuation ring). Now, we have $\left(c^{-1}y^{-1}b^{-1}\right)\left(bxc\right)\in P$, that is $c^{-1}zc\in P$. Similarly, from z^{-1} is a unit in V we deduce that $c^{-1}z^{-1}c\in P$, and so $1=\left(c^{-1}z^{-1}c\right)\left(c^{-1}zc\right)\in P$ which is a contradiction.

- (iv) \Rightarrow (iii) Let $\phi(x) \in U_0$, then x and $x^{-1} \in D^P$ and x is a unit in V. Hence $\omega(x) = 0$. Thus $\phi(x) = 1$ (where ψ is injective), and U_0 is trivial.
- $(iv) \Rightarrow (i)$ If ψ is injective then U_0 is trivial and ω is a *-valuation. Thus from $\omega(x^*) \omega(x)$ it follows that $\phi(x^*) \phi(x)$ for every x in D^{\bullet} . Hence ϕ is a *-value function. \square

202 IDRIS

Corollary 12

 Λ *-closed total subring V of a *-field D is a *-valuation ring if and only if ψ is injective.

It was known from Theorem 1.8 in [6] that for skew fields which are finite dimensional over their center, all total subrings are valuation rings. This is false as J. Gräter [1] has given an explicit counter example to that theorem. Also the *-field version of that theorem; which asserts that for all *-fields which are finite dimensional over their center, all *-closed total subrings are *-valuation rings (Theorem 9 of [3]); is false, where counter examples have been provided by P.J. Morandi and A.R. Wadsworth. In [4], they construct Bacr orderings on finite dimensional *-fields, of every possible finite dimension, such that every corresponding order subring fails to be a *-valuation ring. As the order subring of a Bacr ordering is known to be *-closed and total, these examples are counter examples to Theorem 9 of [3].

References

- 1. J. Gräter, Über Bewertungen endlich dimensionaler Divisionalgebren, *Results in Math.* 7 (1984), 54-57.
- 2. S.S. Holland, Jr., *-valuations and ordered *-fields, Trans. Amer. Math. Soc. 262, 1 (1980), 219-243.
- 3. I.M. Idris, On *-primes and *-valuations, to appear.
- 4. P.J. Morandi and A.R. Wadsworth, Bacr Orderings with Non-invariant valuation ring, *Israel J. Math* 68 (1989), 241–255.
- 5. O.G.S. Schilling, The theory of valuations, Mathematical Surveys 4 (1950).
- 6. J. van Geel, Places and valuations in non-commutative ring theory, *Dekker lecture notes* **71** (1981).