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ABRSTRACT

In this paper the author proves that for any compact metrizable space (),

K (e, C(Q)) is proximinal in L(c,C(Q)).

1. Introduction

If X and Y are two normed linear spaces, then L(X,Y) denotes the Banach space
of all bounded linear opcrators from X to Y, and K(X,Y) denotes the space of all
compact operators in L(X,Y). If A is a closed subset of the normed linear space X,
then A is said to be “proximinal” in X if for each z € X therc is yo € A such that

lz - wo|| = d(z, 4) = inf{||:c -yl;ve A}-

In this case yo is said Lo be “a best approximation” for z from A. If Q is a compact
Hausdorlf space then C(Q) denotes the Banach space of all continuous real valued
functions defined on Q.

The proximinality of K(X,Y) in L(X,Y) was studied by several authors, for
example Halmos [5], Mach and Ward [9], Mach [8], Lau [7], and Cho [2]. In their
paper, Mach and Ward [9] showed that K(€,,£,) is proximinal in L(£,,£,) for each
1 < p < oo. At the end of their paper they asked about the proximinality of
K(C(5),C(S5)) in L(C(S),C(S)) when S is a compact Hausdorfl space. Lau [7]
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142 KAMAL

showed that il X~ is uniformly convex, then for any compact llausdorff space Q,
K(X,C(Q)) is proximinal in L(X,C(Q)). In this important paper the author asked
again about the proximinality of K(C(S),C(Q)) in L(C(S5),C(Q)). In trying to
solve this problem, I'eder [4] proved that if X = C[0,1], £y or Loo[0, 1] then (X, X)
is not proximinal in L(X,X). Benyamini [1] showed that if ¢ is the space of all
convergent sequences of real numbers, then for any compact Hausdorfl space Q,
K(C(Q),c) is proximinal in L(C(Q),c). He also showed that if [1,w?] is the set of
all ordinal numbers less than or equal to w?, and S is a compact Hausdorff space
salislying that C*(S), “the dual space of C(S)”, contains a copy of L,[0,1], then
K(C(8),C[1,w?)) is not proximinal in L(C(S),C[1,w?]). Using a version of Tietze’s
extension theorem, like the one in Kamal [6], one can generalize the last result to
obtain

Theorem 1.1

Let @) and § be two compact HausdorfF spaces. If C=(S) contains a copy of
L,[0,1], and @ has a subset homeomorphic to [1,w?], then K(C(S),C(Q)) is not
proximinal in L(C(S5),C(Q)).

In this paper the author proves that if @ is a compact metrizable space, then
K(e,C(Q)) is proximinal in L(c,C(Q)). This result in addition to the known results,
may help in finding the general solution of the problem of the proximinality of
K(C($),C(Q)) in L(C(S),C(Q)).

The rest of this introduction will cover some definitions and known thcorems. If
X is a normed linear space and @ is a compact Hausdor(l space, then C(Q, {X*,w*})
denotes the space of all bounded functions f:() — X* such that f is continuous with
respect to the w™ topology on X™, and C(Q, X) denotes the space of all functions
J:@ — X, continuous with respect to the norm defined on X.

Theorem 1.2 (Dunford and Schwartz [3, page 490])
Let @ be a compact Hausdor(F space, and let X be a normed lincar space. The
mapping
o L(X,C(Q)) — C(Q, {X",w"})
defined by o(T)(g)(z) = T(z)(q), for T € L(X,C(Q)), ¢ € Q and z € X, is

an isometric isomorphism from L(X,C(Q)) onto C(Q,{X™,w*}). Furthermore
o(K(X,C(Q))) = C(Q, X).
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From Thecorem 1.2 one can obtain the following well known result.

Lemma 1.3

If X is a normed linear space, and @ is a compact Ilausdorff space, then
K(X,C(Q)) is proximinal in L(X,C(Q)) if and only if C(Q,X) is proximinal in
c(Q,{X*,w*}).

In this paper, £, ¢, and ¢ are the classical Banach sequence spaces, and unless
it is mentioned otherwise, the w*-topology on ¢; is the w"-topology induced by e.
In this topology each = = (21, 22,...) in #; corresponds to the lincar functional & in
¢* defined by

o0
i(y) = (x, ';].i..rgoai) + Z;ziai—]a for y = (on,a,...) € e
=
For each i = 1,2,..., il i = (yi,93,...) in €1, y! = (¥4, 94,...), and the sequence
{yi} converges to yo in the w*-topology, on 1, then it is obvious that the sequence

{y}} converges to y§ = (32,93, ...) with respect to the w=-topology induced on ¢; by
Co.

Proposition 1.4 (Mach [8])

Let {y:} be a bounded scquence in ¢4, that converges to zero with respect to the
w*-topology induced by ¢y, and let z € ¢, then l.im,-_,oo(”y,- —:c“ - ”y,” - ||:c||) =0.

Let @ be a compact metrizable space, and let f € C(Q,{¢;,w*}). For cach

q € @, f(g) € &1, so one may assume that f(q) = (f1(q), f2(g),...) where fi(q) is a
bounded real valued function on ). For each ¢o € Q, and z € ¢;, define,

(fo0,2) = Jim sup{| (@) ~ 2| d(a 1) <

where d(q, o) is the distance between g and go. The asymptotic radius of f at g is
defined by:

ar(f#]o) = inf{T(f,qo,z); TE El }’

and r(f) = sup{ar(f,q); ¢ € Q}.
If ar(f, o) is attained then the asymptotic center of f at qq is defined by:

ac(f, qO) = {IL‘ € {y; T(f7 (Io,:l:) = ar(f, (10)}’
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and
I(fi90) = {z € &; r(f,q0.,2) < 7(f)}.

The proof of the following lemma can be obtained from the basic definition of
the asymptotic center, and lemma 1.2 i and ii of Benyamini [1].

Lemma 1.5

Let Q be a compact metrizable space, and let [ € C(Q, {€,w*}).

i) If g € Q and {q:} is any sequence in Q that converges to q, then lim ar(f,q:) <
ar(f, q)'

ii) If therc is g € C(Q,€,) such that g(q) € I'(f,q) for cach q € @, then g is a best
approximation for f from C(Q,¢,).

2. The proximinality of K(c,C(Q)) in L(c,C(Q))

In order to show that K(e,C(Q)) is proximinal in L(c,C(Q)), it is enough, by
Lemma 1.3, to show that for cach f € C(Q, {€1,w*}), there is g € C(Q,¢6) such

that d(f,C(Q,4)) = ||f - gl.

The following Lemma will be used in the proof of the main theorem.

Lemma 2.1

Let Q be a compact metrizable space, f € C(Q,{t1,w}), and let ¢ € Q. Then,
there exists a real number 8 such that (83, f2(q), f3(q), .. ) € ac(f,q).

Proof. Let z = (21,22,...) € {1, and let z = (z, » J2(9), fa(q),. . .); it will be shown
that r(f,q,z) > v(f,q,2).

Let {¢;} be a sequence in @ that converges to ¢ such that: r(f.q,2)
limi— o] f(qi) — z||. Then

r(G:2) 2 T 1(a0) = o) = T ) = ma] + 3| o) - ).
k=2

For each p € @, let f'(p) = (fz(p),f3(p),...), z' = (332,.’173,...) and let w =
2' — f'(¢g). Then

Z'fk(‘li) - fﬂkl = ”f’(']i) - 1"” = ”f’(qi) - f(q) - w”
k=2
= 17G@s) = L@l + o + 1) = a) = w] = ]| - | (a0) — P
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Since f € C(Q,{€1,w*}), then {f'(g;)} converges to f'(q) with respect to the w*-
topology induced on £, by ¢o, thus by Proposition 1.4,

Jim (17°(@) = £a) = wll = flwll = || 7(2) - £@)]) = o.
Therefore
w(f,0,2) 2 T (| falas) = 2| + [1£'00) = £ + o]
= T | as) ~ 2l + o] = 7(f,0.2).
Thus ar(f,q) = inf{r(f,0,2)i 2 = (o fo(q), fo(q),...) and a € R}. So by a sim-

ple compactness argument one can show that there is a real number 8 such that

(ﬂ, f2((I),f3(q)"") € ac(fa'])' a

Lemma 2.2

Let Q, f and q be as in Lemma 2.1, a and € be two positive numbers. If
ar(f,q) = a, and v(f,q,0) = a + ¢, then there is z € ac(f,q) such that ||z|| < 2.

Proof. We show first that E:lzlfk(‘l)l < €. Tor each number a, let y(a) =
(@, f2(9), f1(q), .. .), and let {q;} be a scquence in Q that converges to ¢, such that
lim,-_.w”f(q,-)—y(O)“ = r(f,q,9(0)). Asin Lemma 2.1,let f'(p) = (f2(p), fs(p), .- .
Then {/'(q:)} converges to f'(q) with respect to the w*-topology induced on £; by
¢o. Thus by Proposition 1.4,

lim (I1(£'9) - F'@) + @] - 1£ @1 - 1£@) - 7 @) = 0.
Therefore

Zlfk(’l)'

k=2

7@l = Jim (117 - £/ = (@)

Jim (Zm(q,-)l = [1fua)] + 3| fulas) - fk(q)l])
k=1 k=2
< Im ) |fu(@)| - r(f,9,3(0)).
k=1
But T(f,qu(o)) 2 a'r(f’Q) = a, and im Zzo=1lfk((1i)| < T(f,q,O) =a+E¢,so

dfel@ <@a+e)-a=e
k=2
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On the other hand since lim,-_.oo”f(q,-) — 9(0)|| = (£, q,y(0)), then

(0,900 = Jim (19| + Yol - futo])
k=2
= lim [(Ul(fli)l + Zlfk(‘h‘)l - Z|fk(q)l)
k=2 k=2
- (Zlfk(q,-)l =Y 1@ = D | elas) - fk(q)l)]
k=2 k=2 k=2

But
Jim (S 1fead] = l5e] - 3o svlan - o))
k=2 k=2 k=2

= Jim (1£'(@) = £'0) + F'@| - |1 F @I - 17'@) - 7@l = o.
SO o0 [ e}
(o 0) = Jim ||l + lseta] | - DLt
k=2 k=2

<r(£,0.0) = Y@ =a+e -3 |fila) = ate’
k=2

k=2
where 0 < &' <e. If ¢’ = 0 then one can choose z = y(0), otherwise one may assume
that ¢’ > 0.

Secondly we show that therc exists a real number 8 such that |8| < ¢ and
y(B) € ac(f,q). If this is true, then z = y(B) is the required element. If there arc
two real numbers By, 8, such that 3,8, < 0 and y(81) € ac(f,q) and y(B2) € ac(f,q),
then for & = |3,{/(|41] + |B2]) one has a8y + (1 — @)B; = 0.

So if {¢;} is any sequence in @ that converges to g then

Tim (|f1(q,-)| + Z|fk((1i) - fk(fl)|)
k=2
= lim <|f,(q,-) — (2B + (L —a)B2)| + D | fla:) - fk(Q)l)
k=2
< o lim [lfl(qi) -8+ Zlfk(‘]i) - fk(‘l)|]
k=2

+(1-a)lim [|f1('1i) - B| + Zlfk((]i) - fk(‘I)I] <a.
k=2
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Thus 7(f,¢,y(0)) = a which contradicts the fact that r(f,q,y(0)) = a+¢', and that
g’ > 0. So without loss of generality one may assume that if y(8) € ac(f,q), then
3 > 0. Tt will be shown that there exists 8 < ¢ such that y(8) € ac(f,q). Assume
not, then for cach 8 such that y(3) € ac(f,q), one has f = €' + " > ¢. Thus
r([,4,y(e")) > a. Let {g;} be a sequence in @ converging to q and satisfying that
Emioo | f(2:) — w(")|| > a. If lim f(g:) > ¢’ then:

a< ,-“_120(|f1('h') -¢'| + Zlfk(qi) - fk(‘])l)
k=2

Tim (|f1(q,-)| + ) | ela) - fk(‘l)l) —é
k=2

r(f,q.9(0))—' =a+e' —&' =a,

IA

and if {¢;} has a subsequence {s;} for which f(s;) — &' < 0 for cach i, then for any
B=c"+" ife" >0then

a8 2 T (|ls) = (& + ]+ 3 (o0 - fk(q)l)

k=2

T (I(s0) &'+ 3| suGon) - fulo)]) +&"
k=2

>a+e". O

Lemma 2.3

Let Q be a compact metrizable space, and let [ € C(Q.{€1,w*}). The set
valued function T': Q — 2% defined by T'(q) = I'(f,q) is lower semicontinuous.

Proof. Let I be a closed subset of {1, and let G = {q € Q:1(g) C F}. 1t will be
shown that G is closed. Let qp € G and let us show that qo € G, thatis, if g € [(qo)
then 29 € I'. Let {¢;} be asequence in GG converging to qo. If {¢;} has a subsequence
{t:} satisfying that lim;_. ar(f,{;) < 7(f), then without loss of gencrality one may
assume that there is a positive number gy > 0, such that ar(f.t;) + o < v(f) for
cach i. Let g; = 1/, then for cach ¢ there is a neighbourliood U; of g in Q, such
that for cach q € Ui, ||f(gq) — @o|| < #(f) + 1/i. Choose a subsequence {s;} of {1;}
satisfying that U; is a ncighbourhood of s;. For each fixed i > 1, let y; € ac(f,s;),
and let z; = (on_"l/i)mo+(60¥li/i)y,;. Let us see that z; € I'(s;). Let € > 0 be
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given. Then there is a neighbourhood U of s; in U;, such that for each g € U,
1f(q) — uill < ar(f,s:)+ 5(%‘_&) But then for cach g € U;

0=l < (=2 )Ilf(q)—wo||+( =) 150 - wl

< () e+ + (i) (r(f, )+ () <)

< () 0D+ () -+
=’(f)+c.

Thus z; € T'(s;) C F. But now it is obvious that {z;} converges to zg, and since ¥
is closed, it follows thal z¢ € F.

If lim ar(f,q;) = #(f), then lim;_ e ar(f,q;) = r(f), thus by Lemma L.5i,
ar(f,q0) = 7(f). Let €; = 1/i and let U; be a neighbourhood of ¢o in Q satisfying
that for each ¢ € U; one has, ||f(q) - 1‘0” < r(f) + 1/i. Choose a subsequence {1;}
of {q;} such that for each ¢ = 1,2,..., U; is a ncighbourhood for ¢;. By the fact that
limioar(f,t;) = r(f) and Lemma 1.5 there is a sequence {6;} of non-negative
numbers for which lim;_,, §; = 0, and for each i = 1,2,..., one has ar(f,t;) + 6; =
r(f). Let g be a function defined on Q by g(q) = f(g)—2¢. Then g € C(Q, {f1,w"})
and for cach 1 = 1,2,...,

r(.‘lstiv()) = T(fvtiazO) < ’I‘(f) + % = a'r(f,ti) + (61 + !{)

Also ar(g, t;) = ar(f,t;), thus by Lemma 2.2 taking ¢ = 1;, a = r(f,t;), € = 6; + 1/i,
and f = g there is y; € ac(g,1;) such that ||y;|| < 2(6; + 1/ )- For each ¢ = 1,2,.

let z; = zg 4 y;, then it is obvious that z; € ac(/,¢;); that is, z; € I'(¢;) C F, and
since {z;} converges to zo, it follows that zo € F. Thus T is lower semicontinuous.

O

Theorem 2.4
If @) is a compact metrizable space, then K(c,C(Q)) is proximinal in L(c, C(Q)).

Proof. Let f € C(Q,{¢1,w"}). By Lemma 1.3, it is cnough to show that there
is g € C(Q,1) such that, ||f — g|| = d(f,C(Q,£;)). The sct valued function I'(q)
defined in Lemma 2.3 is lower semicontinuous, thus as in Michael [10] onc can show
that there is g € C'(Q, €1) such that g(q) € T'(q) for cach ¢ € Q. But then by Lemma
L5ii, ||f — gll = d(f,C(Q,61)). Thus K(¢,C(Q)) is proximinal in L(e, C(Q)). O
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Corollary 2.5

Let Q be a compact metrizable space and S be a compact Hausdorff space.

If § is the union of finitely many convergent sequences, then K(C($),C(Q)) is
proximinal in L(C(S5),C(Q)).
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