On functions of bounded (p,2)-variation

NELSON MERENTES

Central University of Venezuela, Caracas, Venezuela

Received March 24, 1992. Revised November 4, 1992

DEDICATED TO PROF. M. COTLAR ON HIS 80TH BIRTHDAY.

ABSTRACT

In this paper we introduce the concept of (p,2)-variation which generalizes the Riesz p-variation. The following result is proved: A function $f:[a,b]\to\mathbb{R}$ is of bounded (p,2)-variation (1 if and only if <math>f' is absolutely continuous on [a,b] and $f''\in L_p[a,b]$. Moreover it is shown that the (p,2)-variation of a function f on [a,b] is given by

$$V_p^2(f;[a,b]) = ||f''||_{L_p[a,b]}^p.$$

Introduction

In the past century, about 1880, C. Jordan ([2]) introduced the notion of a function of bounded variation and established the relation between these functions and monotonic ones. Later on the concept of bounded variation was generalized in various directions. In 1910, F. Riesz ([3]) defined the concept of bounded p-variation $(1 \le p < \infty)$ and proved that, for 1 , this class coincides with the class of functions <math>f, absolutely continuous with derivative $f' \in L_p[a,b]$. Moreover, the p-variation of a function f on [a,b] is given by $||f'||_{L_p[a,b]}^p$, that is:

$$V_p(f;[a,b]) = ||f'||_{L_p[a,b]}^p.$$

In the year 1908, de la Vallée Poussin ([5]), obtained a generalization of bounded variation, introducing the concept of bounded second variation. It is known that, if a function f is of bounded second variation on [a,b], then f is absolutely continuous on [a,b] and can be expressed as the difference of two convex functions (see, e.g. [4, Theorem 1.1]).

In the present paper we introduce the concept of bounded (p,2)-variation $(1 \le p < \infty)$ and prove a characterization of the class $A_p^2[a,b]$ $(1 in terms of this concept. <math>A_p^2[a,b]$ is the class of functions $f:[a,b] \to \mathbb{R}$ for which f' is absolutely continuous on [a,b] and $f'' \in L_p[a,b]$. Moreover the (p,2)-variation of a function f on [a,b] is given by $\|f''\|_{L_p[a,b]}^p$, that is

$$V_p^2(f;[a,b]) = ||f''||_{L_p[a,b]}^p.$$

The obtained characterization can be considered as a "natural" generalization of that given by F. Riesz for the class $A_p[a,b]$. This result provides an alternative characterization for the Sobolev space $W_p^2[a,b]$.

1. Preliminary results

In this section we introduce some definitions and known results concerning the Riesz p-variation (1 and de la Vallée Poussin second-variation.

Let $f:[a,b] \to \mathbb{R}$. For a given partition of the form:

$$\pi$$
: $a = t_0 < t_1 < \ldots < t_m = b$

of [a,b], let:

$$\sigma_p(f;\pi) := \sum_{j=1}^m \frac{\left| f(t_j) - f(t_{j-1}) \right|^p}{\left| t_j - t_{j-1} \right|^{p-1}} \qquad (1$$

The number

$$V_p(f;[a,b]) := \sup_{\pi} \sigma_p(f;\pi),$$

where the supremum is taken over all partitions π of [a,b], is called the Riesz p-variation of the function f on [a,b].

If $V_p(f;[a,b]) < \infty$, the function f is said to have bounded (or finite) Riesz p-variation. By $\mathrm{BV}_p[a,b]$ we shall denote the Banach space of all functions $f:[a,b] \to \mathbb{R}$ for which $V_p(f;[a,b]) < \infty$ and the norm is given by

$$||f||_p := |f(a)| + (V_p(f; [a, b]))^{1/p}.$$

F. Riesz ([3]) introduced the so-called Riesz class $A_p[a,b]$ $(1 in the following way: <math>f \in A_p[a,b]$ if and only if f is absolutely continuous on [a,b] and $f' \in L_p[a,b]$. In the same paper, the following characterization of the class $A_p[a,b]$ was also proved:

Lemma 1.1 (Riesz ([3]))

A real function f defined on the interval [a,b] belongs to the class $A_p[a,b]$ $(1 if and only if <math>V_p(f;[a,b]) < \infty$. Moreover:

$$V_p(f; [a, b]) = ||f'||_{L_p[a, b]}^p.$$

In 1908, de la Vallée Poussin ([5]) introduced the class of functions of bounded second-variation, in the following form: let $f:[a,b] \to \mathbb{R}$, for a given partition π of the form

$$\pi: a = a_1 < c_1 \le d_1 < b_1 = a_2 < \dots < b_{m-1} = a_m < c_m \le d_m < b_m = b, \quad (1.1)$$

let

$$\sigma^{2}(f;\pi) := \sum_{i=1}^{m} \left| \frac{f(b_{j}) - f(d_{j})}{b_{j} - d_{j}} - \frac{f(c_{j}) - f(a_{j})}{c_{j} - a_{j}} \right|,$$

and

$$V^2(f;[a,b]) := \sup_{\pi} \sigma^2(f;\pi),$$

where the supremum is taken over all partitions π of the form (1.1).

The number $V^2(f;[a,b])$ is called de la Vallée Poussin second-variation of the function f on [a,b].

If $V^2(f;[a,b]) < \infty$, the function f is said to have bounded (or finite) second-variation and the set of such functions is denoted by $BV^2[a,b]$.

The following results are also known (see, e.g. [3, Theorem 1.1] or [5]).

Lemma 1.2

If $V^2(f;[a,b]) < \infty$, then there exists a non-negative constant L such that

$$|f(x)-f(y)| \leq L|x-y| \qquad (x,y \in [a,b]),$$

and the function f can be expressed as a difference of two convex functions.

Remark 1.1. If $V^2(f;[a,b]) < \infty$, then from the standard properties of convex functions (see e.g. [1, p. 271-300]), we have the existence of the right-hand derivative $f'_+(x_0)$ and left-hand derivative $f'_-(x_0)$ for all $x_0 \in (a,b)$.

2. Main result

In this section we introduce the notion of Riesz (p,2)-variation and we give a result similar to Riesz Lemma 1.1, for the class $A_p^2[a,b]$.

Let $f:[a,b] \to \mathbb{R}$ and $1 . For a given partition <math>\pi$ of the form

$$\pi: a = a_1 < c_1 \le d_1 < b_1 = a_2 < \ldots < b_{m-1} = a_m < c_m \le d_m < b_m = b,$$
 (1.1)

let

$$\sigma_p^2(f;\pi) := \sum_{j=1}^m \left| \frac{f(b_j) - f(d_j)}{b_j - d_j} - \frac{f(c_j) - f(a_j)}{c_j - a_j} \right|^p \frac{1}{(b_j - a_j)^{p-1}}$$

and

$$V_p^2(f;[a,b]) := \sup_{\pi} \sigma_p^2(f;\pi),$$

where the supremum is taken over all partitions π of the form (1.1).

The number $V_p^2(f;[a,b])$ is called Riesz (p,2)-variation of the function f on [a,b]. If $V_p^2(f;[a,b]) < \infty$, the function is said to have bounded (or finite) Riesz (p,2)-variation and the set of such functions is denoted by $\mathrm{BV}_p^2[a,b]$.

Lemma 2.1

Let $1 . If <math>V_p^2(f; [a, b]) < \infty$, then f has bounded second-variation and

$$V^{2}(f;[a,b]) \leq (V_{p}^{2}(f;[a,b]))^{1/p} |b-a|^{1-1/p}.$$

Proof. Let π : $a = a_1 < c_1 \le d_1 < b_1 = a_2 < \ldots < b_{m-1} = a_m < c_m \le d_m < b_m = b$ be a partition of [a,b]. Then by Hölder's inequality we obtain

$$\sum_{j=1}^{m} \left| \frac{f(b_j) - f(d_j)}{b_j - d_j} - \frac{f(c_j) - f(a_j)}{c_j - a_j} \right| \frac{|b_j - a_j|^{1 - 1/p}}{|b_j - a_j|^{1 - 1/p}} \\
\leq \left(\sum_{j=1}^{m} \left| \frac{f(b_j) - f(d_j)}{b_j - d_j} - \frac{f(c_j) - f(a_j)}{c_j - a_j} \right|^p \frac{1}{|b_j - a_j|^{p - 1}} \right)^{\frac{1}{p}} \cdot \left(\sum_{j=1}^{m} |b_j - a_j| \right)^{1 - \frac{1}{p}}.$$

Hence:

$$V^{2}(f;[a,b]) \leq (V_{p}^{2}(f;[a,b]))^{1/p} |b-a|^{1-1/p}. \square$$

By Lemmas 1.2, 1.3 and 2.1 we obtain:

Corollary 2.1

Let $1 . If <math>V_p^2(f; [a, b]) < \infty$, then f is absolutely continuous on [a, b] and f can be expressed as a difference of two convex functions.

Lemma 2.2

Let $1 . If <math>V_p^2(f; [a, b]) < \infty$, then we have the existence of a derivative $f'(x_0)$ for all $x_0 \in (a, b)$.

Proof. By Corollary 2.1 and Remark 1.1 we have the existence of a right-hand derivative $f'_{+}(x_0)$ for all $x_0 \in [a,b)$ and the left-hand derivative $f'_{-}(x_0)$ for all $x_0 \in (a,b]$.

Suppose that there exists $x_0 \in (a,b)$ such that

$$\alpha_{x_0} := \left| f'_+(x_0) - f'_-(x_0) \right| > 0.$$

By the definition of (p, 2)-variation we have:

$$V_p^2(f;[a,b]) \ge \lim_{h \to 0} \left| \frac{f(x_0+h) - f(x_0)}{h} - \frac{f(x_0) - f(x_0-h)}{h} \right|^p \frac{1}{2^{p-1}|h|^{p-1}}$$

$$= \frac{\left|\alpha_{x_0}\right|^p}{2^{p-1}} \lim_{h \to 0} \frac{1}{|h|^{p-1}} = +\infty.$$

Consequently, the function f has a derivative $f'(x_0)$ for all $x_0 \in (a,b)$. \square

Lemma 2.3

Let $1 . If <math>V_p^2(f; [a, b]) < \infty$, then $f' \in BV_p[a, b]$. Moreover

$$V_p(f'; [a,b]) \leq V_p^2(f; [a,b]).$$

Thus f' is absolutely continuous on [a,b] and $f'' \in L_p[a,b]$, that is $f \in A_p^2[a,b]$.

Proof. Let π : $a = a_1 < c_1 \le d_1 < b_1 = a_2 < \ldots < b_{m-1} = a_m < c_m \le d_m < b_m = b$ be a partition of [a,b]. Let h > 0 be such that

$$0 < h \le \min \left\{ \frac{b_j - a_j}{2} \right\}_{j=1}^m.$$

We have

$$\sum_{j=1}^{m} \left| \frac{f(b_j) - f(b_j - h)}{h} - \frac{f(a_j + h) - f(a_j)}{h} \right|^p \frac{1}{|b_j - a_j|^{p-1}} \le V_p^2(f; [a, b]).$$

Hence, letting $h \to 0$, and by Lemma 2.2 we obtain:

$$\sum_{j=1}^{m} \frac{|f'(b_j) - f'(a_j)|^p}{|b_j - a_j|^{p-1}} \le V_p^2(f; [a, b]).$$

Now, by Lemma 1.1 we have $f' \in \mathrm{BV}_p[a,b]$ and thus,

$$V_p(f';[a,b]) = \|f''\|_{L_p[a,b]}^p \le V_p^2(f;[a,b]). \square$$

Now we prove that if $f \in A_p^2[a,b]$ then $f \in \mathrm{BV}_p^2[a,b]$. Moreover, $V_p^2(f;[a,b]) \leq \left\|f''\right\|_{L_p[a,b]}^p.$

Lemma 2.4

Let
$$1 . If $f \in A_p^2[a, b]$, then $f \in \mathrm{BV}_p^2[a, b]$. Moreover, $V_p^2(f; [a, b]) \le \|f''\|_{L_p[a, b]}^p$.$$

Proof. Let $\pi: a = a_1 < c_1 \le d_1 < b_1 = a_2 < \ldots < b_{m-1} = a_m < c_m \le d_m < b_m = b$ be a partition of [a, b]. Since we may assume that f' is continuous on [a, b] we have that

$$\left| \frac{f(b_j) - f(d_j)}{b_j - d_j} - \frac{f(c_j) - f(a_j)}{c_j - a_j} \right|^p = \left| f'(\tau_j^+) - f'(\tau_j^-) \right|^p = \left| \int_{\tau_j^-}^{\tau_j^+} f''(\sigma) \, d(\sigma) \right|^p$$

$$\leq \int_{a_j}^{b^j} |f''(\sigma)|^p \, d\sigma \cdot (b_j - a_j)^{p-1},$$

where τ_j^+ and τ_j^- are points in the intervals (d_j, b_j) and (a_j, c_j) .

$$V_p^2(f;[a,b]) := \sup_{a} \sigma_p^2(f;[a,b]) \le \|f''\|_{L_p[a,b]}^p$$
.

By Lemmas 2.3 and 2.4 we obtain the main result:

Theorem

Let 1 . A real function <math>f defined on the interval [a,b] belongs to the class $A_p^2[a,b]$ if and only if $f \in \mathrm{BV}_p^2[a,b]$. Moreover,

$$V_p^2(f;[a,b]) = ||f''||_{L_p[a,b]}^p$$

I am grateful to prof. F. Szigeti for calling my attention to the problem and helpful suggestions.

References

- 1. E. Hewitt and K. Stromberg, Real and Abstract Analysis, Springer, 1965.
- 2. C. Jordan, Sur la série de Fourier, C. R. Acad. Sci. Paris 92 (1881), 228-230.
- 3. F. Riesz, Untersuchungen über Systeme integrierbarer functionen, *Mathematische Annalen*. 69 (1910), 449-497.
- 4. A.M. Russel, Functions of bounded second variation and Stieljes-type integrals, J. London Math. Soc. 2, 2 (1970), 193-203.
- 5. Ch.J. de la Valée Poussin, Sur la convergence des formules d'interpolation entre ordennées equidistantes, Bull. Acad. Sci. Belg. (1908), 314-410.

