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ABSTRACT
In this paper we introduce the concept of (p,2)-variation which generalizes the
Riesz p-variation. The following result is proved: A function f:[a,b] — R
is of bounded (p,2)-variation (1 < p < 00) if and only if f’ is absolutely
continuous on [a,b] and f" € Ly[a,b]. Moreover it is shown that the
(p,2)-variation of a function f on {a, b] is given by

VE(filat) = |12 oy

Introduction

In the past century, about 1880, C. Jordan ([2]) introduced the notion of a func-
tion of bounded variation and established the relation between these functions and
monotonic ones. Later on the concept of bounded variation was gencralized in var-
ious directions. In 1910, F. Riesz ([3]) dcfined the concept of bounded p-variation
(1 £ p < oc) and proved that, for 1 < p < oo, this class coincides with the class
of functions f, absolutely continuous with derivative f' € Lpla,b). Morcover, the
p-variation of a function f on [a,b] is given by ”fI”Z,,[a.,b]v that is:

Vo£ila,8D) = | £1f7, o
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In the year 1908, de la Vallée Poussin ([5]), obtained a generalization of bounded
variation, introducing the concept of bounded second variation. It is known that, if
a function f is of bounded second variation on [a,b], then f is absolutely continuous
on [a,b] and can be expressed as the difference of two convex functions (sce, e.g. [4,
Theorem 1.1)).

In the present paper we introduce the concept of bounded (p,2)-variation (1 <
p < oo) and prove a characterization of the class AZla,b] (1 < p < o) in terms of
this concept. Af,[a,b] is the class of functions f:[a,b] — R for which f’ is absolutely
continuous on [a,b] and f” € Ly[a,b]. Moreover the (p,2)-variation of a function f
on [a,b] is given by ”f””,l,l,,[a,b]’ that is

2¢ p, _ "ni|pP
Ve (£ila,8)) = [ 7117, oy
The obtained characterization can be considered as a “natural” genecralization

of that given by F. Riesz for the class Apy[a,b]. This result provides an alternative
characterization for the Sobolev space Wg [a,b].

1. Preliminary results

In this section we introduce some definitions and known results concerning the Riesz
p-variation (1 < p < o) and de la Vallée Poussin second-variation.
Let f:[a,b] — R. For a given partition of the form:
rmta=t <t <...<tym=0b
of [a,b], let:

op(f;7) :=Z 'f(tj)_f(tj—lﬂ (1 <p< o).

] p—1
Jj=1 tj— tj—ll

The number
Vo(f; [a,b]) = sup o,(f; ),

where the supremum is taken over all partitions 7 of [a,b], is called the Riesz p-
variation of the function f on [a,b].

If Vo(f;la,b]) < oo, the function f is said to have bounded (or finite) Riesz p-
variation. By BV ,[a, b] we shall denote the Banach space of all functions f:[a,b] — R
for which V;,(f;[a,b]) < oo and the norm is given by

11l := 1 7(@)| + (V3 (£ [a,8]) .

F. Riesz ([3]) introduced the so-called Riesz class 4,[a,b] (1 < p < ) in the
following way: f € A[a,b] if and only if f is absolutely continuous on [a,b] and
f' € Lyla,b]. In the same paper, the following characterization of the class Ala,b]
was also proved:
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Lemma 1.1 (Riesz ([3]))

A real function f defined on the interval [a,b] belongs to the class Ay[a,b]
(1 < p < ) if and only if Vp(f;[e,b]) < co. Moreover:

Vol£5[a,8) = |[/'[1} oy

In 1908, de la Vallée Poussin ([5]) introduced the class of functions of bounded
second-variation, in the following form: let f:[a,b] — R, for a given partition = of
the form

ma=a < <di<bh=a<..<bp1=an<cn<dp<b,=0b, (1.1)

let

m

ol (fim) = Z

i=1

f(b;) — f(dj)  Sf(ej) — flay) ,

bj—dj Cj—(l.j

and

VE(f:la, ) = sup o?(f; ),

where the supremum is taken over all partitions 7 of the form (1.1).

The number V2(f;[a,b]) is called de la Vallée Poussin second-variation of the
function f on [a,d].

If V2(f;[a,b]) < oo, the function f is said to have bounded (or finite) second-
variation and the set of such functions is denoted by BV?[a, b}.

The following results are also known (sce, e.g. [3, Theorem 1.1] or [5]).

Lemma 1.2

If V*(f;[a,b]) < oo, then there exists a non-negative constant L such that

|f(x)_f(y)| Sle_yl (waye [(l,b]),
and the function f can be expressed as a diflerence of two convex functions.

Remark 1.1. If V%(f;[a,b]) < oo, then from the standard properties of convex
[unctions (see e.g. [1, p. 271-300]), we have the existence of the right-hand derivative
J4(z0) and left-hand derivative f’ (z0) for all zo € (a, b).
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2. Main result

In this section we introduce the notion of Riesz (p,2)-variation and we give a result
similar to Riesz Lemma 1.1, for the class A%[a, b].

Let f:[a,b] - R and 1 < p < co. For a given partition 7 of the form

mae=a1 < <di<bh=a6<...<bp1=0an <cp <dy <bn=b, (1.1)

let

m

op(fim) =Y

=1

fb) — f(d;) _ flej) = f(aj)|° 1

bj — d; ¢cj—aj (bj —a;)P1

and
VE(f;la,b]) := sup o3 (f;m),

where the supremum is taken over all partitions 7 of the form (1.1).

The number V2(f;[a,b]) is called Riesz (p,2)-variation of the function f on
[a,b]. If V2(f;[a,b]) < oo, the function is said to have bounded (or finite) Riesz
(p,2)-variation and the set of such functions is denoted by BV:[a,b].

Lemma 2.1

Let 1 < p < co. If V}(f;[a,b]) < oo, then f has bounded second-variation and

V2(£;[a,8]) < (V2(S:[a, b)) 16 — aft=17>.

Proof. Let 7:a = a3 <afdi<bh=a<...<bpoy=an <cm <dp <bp = b
be a partition of [a,b]. Then by Hélder’s inequality we obtain

f: F(b;) = F(ds)  f(e;) = f(a;)]| |b — a;]'~1/
=il b ci—a; | b= a1
1 1
S J) = S fle) = f@)P 1\ & 14
S(; 'J’J'—df oo Zi‘“i J ij—ajl”'1> -(;ij—ajl) '
Hence:

VZ(f; [a,b]) < (sz(f; [a,b]))1/p|b _ a|1-1/p. 0
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By Lemmas 1.2, 1.3 and 2.1 we obtain:

Corollary 2.1

Letl < p < oo. If Vp2(f; [a,b]) < oo, then f is absolutely continuous on [a,d]
and f can be expressed as a diflference of two convex functions.

Lemma 2.2

Let 1 < p < oo. If V2(f;[a,b]) < oo, then we have the existence of a derivative
f'(z0o) for all z¢ € (a,b).

Proof. By Corollary 2.1 and Remark 1.1 we have the existence of a right-hand

derivative fi (2o) for all zp € [a,b) and the lefi-hand derivative f’ (zq) for all z €
(a,b].
Suppose that there exists zy € (a,b) such that

Qgy = |f-1-(370) — f’_(xo)l > 0.

By the definition of (p, 2)-variation we have:

2/ . .| f(zo+h) = f(z0) fl=mo) = f(zo — k)| 1
Vo (file,8]) 2 lim h - h 2p—1[p[p-1

es|” I B
9p—1 ho [R[p—T T

Consequently, the function f has a derivative f'(zo) for all zo € (a,b). O

Lemma 2.3

Let 1 < p < oo. If V(f;[a,b]) < oo, then f' € BV,[a,b]. Moreover
Vo(f'; [a,0]) < V(£ [a,b)).
Thus f' is absolutely continuous on [a,b] and f" € L,[a,b], that is f € Alla,b].

Proof. Let m:a = a, <afdi<bh=a<..<bpy=an<cym <dpy <byp =b
be a partition of {a,5]. Let A > 0 be such that

. bJ—a] m
0 < h < min 5 .
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We have

m N - . —_ 1P

30|18 i(b, h) _ f(a; +h’2 f(aj) 5 -—}zj|p‘1 < V2(f;la, b))
i=1

Hence, letting h — 0, and by Lemma 2.2 we obtain:

SO =L@ o gy,
j=1

lbj — a;{P~1

Now, by Lemma 1.1 we have f' € BV,[a,b] and thus,
Vol [abD) = 1771110y < V2 [as0). O

Now we prove that if f € A2[a,b] then f € BV?,[a,,b]. Moreover,
Vo (file,8D) < | £)17 oy

Lemma 2.4
Let 1< p < oo. If f € AZ[a,b], then f € BVi[a,b]. Moreover,

Vi(f;la,b]) < ||f"||:,[a.b1'

Proof. Let m:a = a; < ¢ < d; <bi=a;<...<bp_1=@am <ty <dp <bp=0b
be a partition of [a,b]. Since we may assume that f' is continuous on [a,b) we have
that

f(6;) — f(d;)  f(e5) — f(aj)

bj—dj cj--aj

p

=|FEH - ) =

P

/7 oy

b
< [ 18 do - (b5 ~ asp,

t]
wher';}:';' and ;" are points in the intervals (d;,b;) and (a;,c;).
us

Vi (fila,b]) := sup o3 (£31a,8]) < || £ - O

By Lemmas 2.3 and 2.4 we obtain the main result:

Theorem

Let 1 < p < 0o. A real function f defined on the interval {a,b] belongs to the

class Al[a,b] if and only if f € BV:[a,b]. Moreover,

Vo (£312,8) =" 17 (-
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