Complemented copies of c_0 in vector-valued Köthe-Dieudonné function spaces

Santiago Díaz Antonio Fernández Miguel Florencio Pedro J. Paúl

E. S. Ingenieros Industriales, Avda. Reina Mercedes s/n, 41012 Sevilla (Spain)

Received September 30, 1992

ABSTRACT

Let Λ be a barrelled perfect (in the sense of J. Dieudonné) Köthe space of measurable functions defined on an atomless finite Radon measure space. Let X be a Banach space containing a copy of c_0 , then the space $\Lambda(X)$ of Λ -Bochner integrable functions contains a complemented copy of c_0 .

G. Emmanuele [5] proved that if a Banach space X contains a copy of c_0 , then the spaces $L^p(\mu, X)$ $(1 \leq p < \infty)$ of p-Bochner integrable functions contain a complemented copy of c_0 when μ is any atomless finite measure space. Here, we want to show that the same phenomenon occurs in the space $\Lambda(X)$ of Λ -Bochner integrable functions, where Λ is a barrelled perfect (in the sense of J. Dieudonné [3]) Köthe space of measurable functions defined on an atomless finite Radon measure space. We shall give the proof in the case of the Lebesgue measure on the unit interval; it can be modified easily to cover the general case.

Although we refer the reader to [2], [3] and [8] for the terminology used in this paper, we will start by recalling the main definitions.

This research has been supported by La Consejería de Educación y Ciencia de la Junta de Andalucía

In what follows, μ stands for the Lebesgue measure defined on the unit interval [0,1]. For a subset $\Lambda \subset L^1(\mu)$ its Köthe-dual is the set Λ^{\times} of all $f \in L^1(\mu)$ such that $f \cdot g$ is integrable for each $g \in \Lambda$. Note that $L^{\infty}(\mu) \subset \Lambda^{\times}$. We have $\Lambda \subset \Lambda^{\times \times} := (\Lambda^{\times})^{\times}$ and Λ is said to be a perfect Köthe space if $\Lambda = \Lambda^{\times \times}$ [3]. If Λ is perfect, then Λ and Λ^{\times} are put into duality by the canonical bilinear form:

$$(f,g) \in \Lambda \times \Lambda^{\times} \longrightarrow \langle f,g \rangle := \int_{[0,1]} f(t) \cdot g(t) \, d\mu(t).$$

The strong topology $\beta(\Lambda, \Lambda^{\times})$ equals the polar topology generated by the family \mathcal{B} of all solid (or normal) and $\sigma(\Lambda^{\times}, \Lambda)$ -bounded subsets of Λ^{\times} , and it is given by the seminorms

$$p_M: f \in \Lambda \longrightarrow p_M(f) := \sup \left\{ \int_{[0,1]} \left| f(t) \cdot g(t) \right| d\mu(t) : g \in M \right\} \qquad (M \in \mathcal{B}).$$

In what follows, Λ remains a perfect Köthe space endowed with its strong topology $\beta(\Lambda, \Lambda^{\times})$. Let X be a Banach space with dual X'. We define $\Lambda(X)$ as the space of (classes of) strongly measurable functions $f:[0,1] \to X$ such that the composition $||f(\cdot)||$ is a function in Λ ; such functions are called Λ -Bochner integrable. From the strong topology $\beta(\Lambda, \Lambda^{\times})$ on Λ and the norm on X, we can generate in $\Lambda(X)$ a natural topology defined by the seminorms

$$q_{M}(f) := p_{M}(\|f(\cdot)\|) = \sup \left\{ \int_{[0,1]} \|f(t)\| \cdot |g(t)| d\mu(t) : g \in M \right\} \qquad (M \in \mathcal{B}).$$

We will refer to this topology as the natural topology of $\Lambda(X)$. When $\Lambda = L^p(\mu)$ with $1 \leq p \leq +\infty$, we obtain the space $L^p(\mu, X)$ of p-Bochner integrable functions [2, (p. 97)]. In particular, $L^{\infty}(\mu, X)$ is the space of strongly measurable, essentially bounded functions from [0,1] into X with the ess-sup norm.

The locally convex structure of these spaces has been studied by A. L. Macdonald [9], N. Phuong-Các [10] and two of the present authors in collaboration with C. Sáez [6], [7], among others. In particular, we know that $\Lambda(X)$ is complete [10, Prop. 2] and that it is barrelled if so is Λ [7, Thm. 3]. We shall make use of these two facts in the proof below.

Theorem

Let X be a Banach space containing a copy of c_0 . Let Λ be a perfect Köthe function space such that $\Lambda(\beta(\Lambda, \Lambda^{\times}))$ is barrelled. Then $\Lambda(X)$ contains a complemented copy of c_0 .

Proof. Let (x_n) be a sequence in X equivalent to the standard basis of c_0 , i.e. there are positive constants α and β such that for all finite sequences a_1, a_2, \ldots, a_n of real numbers we have

$$\alpha \max\{|a_i|: 1 \le i \le n\} \le \left\| \sum_{i=1}^n a_i x_i \right\| \le \beta \max\{|a_i|: 1 \le i \le n\}.$$

Consider the sequence (r_n) of Rademacher functions and define a sequence of simple functions by $f_n := r_n x_n$ $(n \in \mathbb{N})$. Since $|r_n(t)| = 1$ for all $t \in [0,1]$ and $n \in \mathbb{N}$, we have

$$\alpha \max\{|a_i|: 1 \le i \le n\} \le \left\| \sum_{i=1}^n a_i r_i(t) x_i \right\|$$
 for all $t \in [0, 1]$,
$$\le \beta \max\{|a_i|: 1 \le i \le n\}$$

whenever a_1, a_2, \ldots, a_n are real numbers. Now let $M \in \mathcal{B}$. Multiplication by functions in M, integration over [0,1], and taking supremum over M yield

$$\alpha \max\{|a_i| : 1 \le i \le n\} p_M(1) \le q_M \left(\sum_{i=1}^n a_i f_i\right)$$

$$\le \beta \max\{|a_i| : 1 \le i \le n\} p_M(1),$$

where $p_M(1)$ is the value of the seminorm p_M on the constant function 1. Since $\Lambda(X)$ is complete, this shows that the closed linear span E of the sequence (f_n) is isomorphic to c_0 .

Let us show that E is complemented in $\Lambda(X)$. Since (x_n) is equivalent to the unit basis on c_0 , there is a bounded sequence (x_n^*) in X' such that $\langle x_m^*, x_n \rangle = \delta_{mn}$ (Kronecker's delta, of course) for all $m, n \in \mathbb{N}$. For each $n \in \mathbb{N}$, consider the simple functions given by $f_n^* := r_n x_n^*$. For $f \in \Lambda(X)$, define

$$\langle f_n^*, f \rangle := \int_{[0,1]} r_n(t) \langle x_n^*, f(t) \rangle d\mu(t).$$

If M is any solid bounded subset of Λ^{\times} containing the constant function 1 (recall that $L^{\infty}(\mu) \subset \Lambda^{\times}$), then we have that $|\langle f_n^*, f \rangle| \leq ||x_n^*|| q_M(f)$, hence the formula

above defines an element in $\Lambda(X)'$, the topological dual of $\Lambda(X)$. Let us see that the sequence (f_n^*) converges to zero in the weak topology $\sigma(\Lambda(X)', \Lambda(X))$. Take $f \in \Lambda(X)$. The function f is Bochner integrable, and so is each $r_n f$, because $\Lambda(X) \subset L^1(\mu, X)$. Bearing this in mind, we have

$$\left|\left\langle f_n^*,f\right\rangle\right|:=\left|\int_{[0,1]}r_n(t)\left\langle x_n^*,f(t)\right\rangle\,d\mu(t)\right|\leq \|x_n^*\|\left\|\int_{[0,1]}r_n(t)f(t)\,d\mu(t)\right\|\cdot$$

This latter expression tends to zero as $n \to \infty$ because (x_n^*) is a bounded sequence and, as it is well-known, $\lim_n \left\| \int_{[0,1]} r_n(t) f(t) d\mu(t) \right\| = 0$ for every Bochner integrable function f. Since (f_n^*) converges to zero in the weak topology $\sigma(\Lambda(X)', \Lambda(X))$ and $|\langle f_m^*, f_n \rangle| = \delta_{mn}$ for all $m, n \in \mathbb{N}$, it follows that the mapping

$$P: f \in \Lambda(X) \longrightarrow P(f) := \sum_{n=1}^{\infty} \langle f_n^*, f \rangle f_n \in E$$

is a well-defined linear projection from $\Lambda(X)$ onto $E \cong c_0$. It is easy to see that P has closed graph. As $\Lambda(X)$ is barrelled and E is a Banach space, we can use the Closed Graph Theorem for barrelled spaces [8, §34.6.(9)] to deduce that P is continuous. And this tells us that $E = P(\Lambda(X))$ is complemented. \square

Corollary

Let X be a Banach space containing a copy of c_0 . Let Λ be a perfect Köthe function space such that $\Lambda(\beta(\Lambda, \Lambda^{\times}))$ is barrelled. Then $\Lambda(X)$ is neither injective nor a Grothendieck space.

Remarks. We know [1] that if $L^{\infty}(\mu, X)$ contains a complemented copy of c_0 then X must contain a copy of c_0 so that the statement "If Λ contains a copy of c_0 then $\Lambda(X)$ contains a complemented copy of c_0 ," does not hold in general.

In the case when Λ is also a Banach space, P. Dowling [4] has recently proved that $\Lambda(X)$ contains a subspace isomorphic to c_0 if and only if either Λ or X contains a copy of c_0 . This result and our theorem above suggest the following conjecture: "Let Λ be a barrelled perfect Köthe function space and X be a Banach space, if $\Lambda(X)$ contains a complemented copy of c_0 then either Λ or X contains a copy of c_0 ."

References

- 1. S. Díaz, Complemented copies of c_0 in $L^{\infty}(\mu, E)$, To appear in *Proc. Amer. Math. Soc.*
- 2. J. Diestel and J.J. Uhl Jr., *Vector Measures*, Mathematical Surveys and Monographs, vol. 15, American Mathematical Society, Providence, RI, 1977.
- 3. J. Dieudonné, Sur les espaces de Köthe, J. Analyse Math. 1 (1951), 81-115.
- 4. P.N. Dowling, A stability property of a class of Banach spaces not containing c_0 , Canad. Math. Bull. 35 (1992), 56-60.
- 5. G. Emmanuele, On complemented copies of c_0 in L_X^p , $1 \le p < \infty$, *Proc. Amer. Math. Soc.* 104 (1988), 785–786.
- 6. M. Florencio, P.J. Paúl and C. Sáez, A note on the Köthe dual of Banach-valued echelon spaces, *Collect. Math.* 39 (1988), 257-261.
- 7. M. Florencio, P.J. Paúl and C. Sáez, Duals of vector-valued Köthe function spaces, *Math. Proc. Cambridge Phil. Soc.* 112 (1992), 165-174.
- 8. G. Köthe, *Topological Vector Spaces* I, II, Springer-Verlag, Berlin, Heidelberg and New York, 1969, 1979.
- 9. A.L. Macdonald, Vector valued Köthe function spaces, I, *Illinois J. Math.* 17 (1973), 533-545; II, *Illinois J. Math.* 17 (1973), 546-557; III, *Illinois J. Math.* 18 (1974), 136-146.
- N. Phuong-Các, Generalized Köthe function spaces, I, Proc. Cambridge Phil. Soc. 65 (1969), 601-611.