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ABSTRACT

In [4] Kothe and Toeplitz introduced the theory of sequence spaces and es-
tablished many of the basic properties of sequence spaces by using methods
of classical analysis. Later many of thesc same properties of sequence spaces
were reestablished by using “soft proofs” of functional analysis. In this note
we would like to point out that an improved version of a classical lemma of
Schur due to Hahn can be used to give very short proofs of two of the weak
sequential completeness results of Kothe and Toeplitz. One of our proofs
actually gives an improvement of one of the completeness results of Kothe
and Toeplitz which was obtained by Benett using functional analysis methods
and the method of proof is used in §3 to obtain a completeness result for
B-duals of vector-valued sequence spaces. One of our completeness results is
employed to obtain a more general form of a Hellinger-Toeplitz type theorem
for sequence spaces due to Kothe and the second completeness result is em-
ployed to obtain another Hellinger-Toeplitz type theorem for sequence spaces
which covers additional cases not covered by Kothe’s result.

1. Sequential completeness

Throughout this note A and pu will denote vector spaces of real-valued sequences
each containing the vector space ¢ consisting of all real-valued sequeces which are
eventually 0. If z € X, z; will denote the k** coordinate of z so z = {zk} The
a-dual (B-dual) of A, A* (A?), consists of all real-valued sequences y such that the
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series > 7 1 |yk k| (X hey ¥k Tk) converges for all z € A. If y € A* or y € A and
z € A, we write y-z = Y 77, Yk Tx. Since A contains ¢, the pairs (A, A*) and (A, AP)
are in duality with respect to the bilinear pairing y -z, z € A, ¥y € A* or AP. We
denote the weak topologies on A (A? or A%) induced by these dualities by o (), A%),
a(AA8) (a(AP,A), a(A%,X)).

The sequence space A is said to be monotone if moA = A, where mg is the
space of all sequences with finite range and the product mgA is understood to be
coordinatewise ([3]). If A is monotone, z € A and y € AP, then the series Y7o, yx T
is subseries convergent and, hence, absolutely convergent so A* = AP. We prove our
first sequential completeness result for monotone sequence spaces. In what follows
e; will denote the sequence which has a 1 in the j'! coordinate and 0 in the other
coordinates.

Theorem 1

If X is monotone, then o(\*, ) is sequentially complete.

Proof. Let {yi} be a()\“,/\) Cauchy. Set lim; yi-ej = y;foreach jand y = {yj}. For
z € Aand o C N, we have from the monotonicity of A that lim; E]—EU yj r; exists. By
the Schur Lemma ([2] 8.2), {y;2;} € €' and lim; 332, yiz; = 272, y; ¢;. Hence,
y € A% and lim; y* -z =y-zforz e A\. O

This result was originally established by K6the and Toeplitz for normal sequence
spaces by using a gliding hump argument ([4]) (\ is normal or solid if y € A and |y;| >
Ixj! for all j implies z = {zj} € A; normal spaces are obviously monotone). The
result for monotone spaces was established by Bennett using several deep theorems
of functional analysis due to Grothendieck ([3] Proposition 3). The simple proof
above using the Schur Lemma is an interesting contrast to Bennett’s proof.

The monotonicity condition in Theorem 1 cannot be completely eliminated. For
example, cr(c",c) = o (!, c) is not sequentially complete (see the remarks following
Lemma 7).

A sequence space A is perfect if A** = A. For perfect spaces we have the
following sequential completeness property.

Theorem 2

If X is perfect, then a(/\, /\a) is sequentially complete.

Proof. Let {z'} be o(X,A*) Cauchy. Set z; = lim; e;-z* and ¢ = {z;}. For y € A*
and o C N, since A* is normal, lim; } ., y; z; exists. By the Schur Lemma ([2]
8.2), {y;jz;} € € and lim; 3072, y; 2t = 3072, y; 2. Since A is perfect, z € A and
lim;y-2* =y-z for y € A\*. O
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This result was established by K&the and Toeplitz by using a gliding hump
argument ([4]). A functional analysis proof was given by Kothe in [5], 30.5(3).
The proof above gives an interesting contrast to K6the’s methods. The converse of
Theorem 2 holds and gives a characterization of perfect sequence spaces ([5]); see
the proof of Theorem 3 below.

The proof of Theorem 2 using Schur’s Lemma can also be used to treat a
similar result for the normal topology of a sequence space. The normal topology
of A, 7, is the locally convex topology on A generated by the family of semi-norms
py(z) = Yooy |ziwil, vy € A* ([5] 30.2). For the normal topology, we have the
following result.

Theorem 3

A is perfect if and only if 1) is sequentially complete.

Proof. Let {z'} be n-Cauchy in A. Set z; = lim;e; - ¢ and = = {z;}. If y € A*,
lim; ; 02 |yk (e} — 27)| = 0 so by Schur’s Lemma ([2] 8.2), {z; -y;} € ¢! and
T € A% = ) with p, (z' — z) — 0.

Let £ € A\*® and let 2* = (ml,...,zi,(),...) be the #*" section of z. Since
)Iyal a:,;yil < oo for each y € A%, {11} is n-Cauchy in A and must converge to an
element in A which is just . Hence, A is perfect. O

Kothe showed that A is perfect if and only if 7 is complete so Theorem 3 gives
a nice complement to this result ([5] 30.5.7).

2. Hellinger-Toeplitz results

We use the sequential completeness to obtain a form of the classical Hellinger-
Toeplitz Theorem for sequence spaces which is due to Kothe and Toeplitz ([4]).
Our result gives a generalization of the Hellinger-Toeplitz type result of Kéthe and
Toeplitz to monotone sequence spaces; the proof also corrects the proof of Kothe
given in [6] 34.7(7).

Let A be an infinite (scalar) matrix such that A maps A into p, i.e., for each
z € A, the formal matrix product Az = {Zjozl aijz;} € p. The classical Hellinger-
Toeplitz Theorem asserts that if the matrix A maps £? into £2, then A is (norm)
continuous. We are interested in theorems which assert that A is either continuous
or bounded with respect to the weak topologies of A and p; if this is done for
A = p = €%, it will imply that a matrix A mapping £? into ¢? is bounded and,
therefore, norm continous thus giving the classical Hellinger-Toeplitz theorem.
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We first establish a result which asserts that A: X — p is o (A, AP) — o (, pu”)
continuous.

Theorem 4

If o(MP, \) is sequentially complete, then A is o(), M) — o(u, u?) continuous.

Proof. Let a’ be the i*h row of A so a' € A by hypothesis. For any matrix 4 = [a;j]
mapping A into p, for y € pf write yA = {32 aij yi}j, provided the series
converge (y A = ATy with the obvious definition of the transpose of A, AT). Define,
Ap:d — pby Apz =37 (a*-z)e;soif y € pP, then y A, = {31, aij y,'}j € A8,
Ifz e\ y€pP, theny-Az = lim,y- Apz = lim, y A, - z. Hence, {yAn} is
a(/\ﬂ, )\) Cauchy and by sequential completeness must converge to an element of A%
say, z, and we have y- Az = z-z. Therefore, if {:7:"} is a net in A which is U(/\,/\ﬂ)
convergent to 0, then {A zp} is o(p,pP) convergent to 0, and the weak continuity
follows. O

Remark 5. If X is monotone, then A* = M and o(A?, /\) is sequentially complete
by Theorem 1 so Theorem 4 is applicable when A is monotone. In particular, if
A = myg, then )\ is monotone and not normal so Theorem 4 gives an improvement
of 34.7(7) of Kothe ([6]) where it is assumed that A is normal and p has the weaker
topology o (i, 1) instead of o(u,p”). Moreover, the proof of 34.7(7) in [6] cites
the use of Theorem 2 (30.5(3) in [5]) whereas it is the sequential completeness of
o(A*, ) not the sequential completeness of o (A%, \*®) that is required.

It also follows from Theorem 4 that A is continuous with respect to the Mackey
(strong) topologies of both A and 4 in the dualities between (A, A?) and (u, u?) ([6]
32.2). When X and p are some of the classical sequence spaces, e.g. £2, this gives
the continuity of A with respect to the norm topologies; in particular, this gives the
classical Hellinger-Toeplitz Theorem for £2.

We next establish a result concerning the boundedness of A with respect to weak
topologies; our result covers the case when A = ¢ which is not included in Theorem
4. For this we require the general uniform boundedness principle of [7] or [2]. If
(E,7)is a topological vector space, a sequence {zj} in E is 7-K convergent if every
subsequence of {zy} has a further subsequence {2, } such that the series }_ zp,
is T-convergent in E. A 7-K convergent sequence converges to 0, but the converse
in general does not hold ([2] §3). A subset B C E is 7-K bounded if whenever
{zx} C B and t; — 0, then the sequence {tx zx} is 7-K convergent ([1], [2] §3). A
7-K bounded set is bounded, but in general a bounded set needn’t be 7 bounded
([2] §3). A space (E,7) in which every 7 bounded set is 7-K bounded is called an
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A-space ([7]). For A-spaces we have the following form of the uniform boundedness
principle. If F is a topological vector space and I' is a family of continuous linear
operators from F into F which is pointwise bounded on E and if F is an A-space,
then T' is uniformly bounded on bounded subsets of E ([7] Corollary 4).

Theorem 6
If (/\,a(/\,/\ﬁ)) is an A-space, then A is (A, A\?) — o(p,pu”) bounded.

Proof. Define A,:A — p by Ayz = Y ) _,(a* - z)e, as in Theorem 4. Each row,
a®, belongs to A by hypothesis and since the coordinate functionals are weakly
continuous, each A, is weakly continuous. For each z € A, {A,z} is o(p,uP)
convergent to Az so {An} is pointwise bounded on A. Since (/\,O’(/\,/\ﬁ)) is an
A-space, by the uniform boundedness theorem for .A-spaces described above, {A T:
Tz € B} is bounded when B C X is 0(), A\?) bounded. O

Any sequentially complete locally convex space is an A-space ([7] Prop. 5) so
if A is sequentially cr(/\,/\ﬁ) complete, then Theorem 6 is applicable; this occurs
exactly when A is perfect ([5]).

We show that Theorem 6 is applicable to the case when A = ¢. In this case
A = X = ¢! and (c,a(c,(fl)) is an A-space (under the pairing between ¢ and
¢® = ). This follows from the following observation.

Lemma 7

Let o and T be two vector topologies on the vector space X with T 2 o. Suppose
(X,7) is an A-space and o and T have the same bounded sets. Then (X,0) is an
A-space.

Proof. If B C X is o-bounded, then B is T-bounded and, hence, 7-K bounded and
0-K bounded since o D 1.

If (A, 7) is sequentially complete (e.g., an F-space), then (A, o) is an .A-space for
any vector topology o C 7 such that ¢ and 7 have the same bounded sets (Lemma
7 and [7], Proposition 5). In particular, since ¢ is a B-space under the sup-norm,
(c,a(c,ﬁl)) is an A-space so Theorem 6 is applicable when A = ¢. Note that in this
case ¢ is not monotone and, moreover, (c,a(c,él)) is not sequentially complete so
Theorem 4 is also not applicable (if Y = Zle ej/k € c” then limy yx - £ = limy =4
for each ¢ € ¢ so {yx} is o(c?,c) Cauchy but limz, ¢ ¢’ ([9] Example 7.2.11)). In
the case of A = ¢, the matrix map A is norm-o(u,p”) continuous, and if there is a
vector topology 7 on p such that p? = (g, 7)" (e.g., if (1, 7) is a barrelled K-space
([9] 10.5.1)), then A is norm-7 continuous. O
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3. Vector sequence spaces

In this section we show that the method of proof of Theorem 1 using the Schur
Lemma can be employed to treat vector sequence spaces by employing a vector form
of the Schur Lemma. Let X and Y be Hausdorff topological vector spaces, and let
L(X,Y) be the space of all continuous linear operators from X into Y. Let E be
a vector space consisting of X-valued sequences, where the operations of addition
and scalar multiplication are coordinatewise. If z € E, we write, as before, z, for
the k! coordinate of z. If 2z € X, e; ® = will denote the sequence with z in the 4th
coordinate and 0 in the other coordinates. We assume that F contains the span of
all such vectors, i.e., E contains the vector space of all X-valued sequences which
are eventually 0. Following Maddox we define the 3-dual of £ (with respect to Y)
to be EAY = {{T;} C L(X,Y): E;; T;z; converges for every z € E} ([8]) (here
we require T; € £(X,Y) whereas Maddox only requires linearity). If T € EPY and
z€E,wewriteT -z =377, Tk k.

The space F is said to be monotone if mgF = FE, where the product moF
is coordinatewise. We say the pair (X,Y) has the Banach-Steinhaus property if
{T;} CL(X,Y)and limT; z = T « exists for each z € X implies that T € L(X,Y),
i.e., if the conclusion of the classical Banach-Steinhaus Theorem holds. For example,
if X is an F-space or if X is barrelled and Y is locally convex, (X,Y ) has the Banach-
Steinhaus property.

For monotone spaces we have the following generalization of Theorem 1.

Theorem 8

Let E be monotone and let (X,Y) have the Banach-Steinhaus property. If
{T*} C EPY is such that limy T* - z exists for each z € E and if

T]-a::liinTk-(ejégm):liElez forz € X,

then T = {T;} € EPY andlimyT* -2 = T -z (note T; € L(X,Y) by the Banach-
Steinhaus property).

Proof. Let z € E. By the monotonicity of E, limy Zj@, Tf z; exists for each 0 C N.
Since T z; = limyg T}“ z;, the vector form of the Schur Lemma given in Theorem 8.1
of [2] implies that 377, T; z; converges and limy 3332, TFz; = 3322, T; x;. Thus,
T = {Tj} € EPY and lim; T* -z = T -z for every z € E. O
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Ifa(Eﬁ Y, E) denotes the weakest topology on E#Y such that the map z — Tz
is continuous for each z € F, then Theorem 8 asserts that O'(Eﬂ Y, E) is sequentially
complete. Theorem 1 shows that this occurs in the scalar case when E is monotone.

Note that the duality methods of Bennett ([3]) cannot be used to obtain The-
orem 8 whereas the general vector form of the Schur Lemma yields the result very
easily.
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