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ABSTRACT

In this paper we study the problem of embedding sums @;X of Banach
spaces into large products X7 of the same or different Banach spaces. The
first result in this direction corresponds to Saxon [12], who solved it for X
finite-dimensional and I countable. For X a Hilbert space it was solved in
[2].

In the first part we give solutions to this problem for general Banach
spaces, completing in this way [12], [2] and [3]. Then we apply those results
to subfactorizations of “diagonal” operators acting between vector valued se-
quence spaces. As a by-product, a criteria for a Banach space to contain non-
separable [,,-spaces is given. In the second part we introduce tensor products
in order to replace subfactorization arguments by tensor product statements
and show how the preceding tools can serve to explain some pathologies
occurring in tensor products of locally convex spaces.

Finally, we give examples and counterexamples showing that most of
the classical Banach spaces satisfy the countable embedding (I = N).

Introduction

We start from the following observation: for certain locally convex spaces (in short
lcs) E the sum space @y E is isomorphic to a subspace of some product E! (obviously
I uncountable), while for others such an embedding is not possible.
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16 CASTILLO

Examples of the first kind are £ = s(R), the space of all rapidly decreasing
infinitely differentiable functions on the real line: E is nuclear, then @nFE is also
nuclear and, via Komura-Komura’s theorem, it is a subspace of some product of
copies of s(R); or, for similar reasons, the universal Schwartz space [loo,,u(loo,ll)]
(see [6, p. 206]). Examples of the second kind are those lcs carrying the weak
topology, since a sum space @y FE never carries the weak topology.

This suggest the following problem:

Problem S1. Characterize those lcs E such that @y E is (isomorphic to) a subspace
of some product EI.

This problem admits two meaningful extensions:
Problem S2. Let E be an lcs. For which spaces F is @y E a subspace of F1?

Problem S3. Handle problems 1 and 2 for uncountable sums.

This paper deals with those problems when E = X is a Banach space and it
is therefore a continuation of [2], where problems (S1) and (S3) were treated for
X = H a Hilbert space.

The organization of the paper is as follows: Firstly, there is a study of the
embedding (S1) for finite-dimensional spaces. This corresponds to what we have
called Saxon’s theorem. The study of projective representations of the space ¢ leads
us to introduce “new” topologies on the sum space. All of them are equivalent in ¢
but not in uncountable sum spaces 4. This is done in §1.

In §2, the preceding definitions are extended to general Banach spaces and the
subfactorization techniques are presented. It is shown (Subfactorization theorem)
that an embedding ®yX — X is equivalent to a subfactorization, through finite
powers of X, of the diagonal operators acting between certain vector valued sequence
spaces (those corresponding to the topology under consideration). In the case of
uncountable sums (Subspace theorem) this is equivalent to admit those vector valued
sequence spaces as subspaces.

In §3 examples and applications are given.

In Part IT (§4) we replace subfactorization arguments by tensor products. We
re-define the topologies introduced in Part I via tensor products and show how
they provide an explanation to some pathologies. Finally, §5 displays some open
problems, examples and counterexamples.
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Preliminaries

In this section we recollect the basic definitions we will use throughout the paper.
Other pertinent definitions will be stated at the appropriate place in the text.

Let T be a nonempty index set, and let {Xi}ieF be a collection of Banach
spaces. Let 0 < p < 4o00. We denote by (¥ ;e X,-)p the Banach (p-Banach if
0 < p < 1) space formed by all families (z;), z; € X;, such that (||z;]|) € ,(T) or
co(T') (p = 400). The norm (p-norm, if 0 < p < 1) in this space is

1/p
”(zi)Hl;(X,I) = (Z”%“;)

1€l

When T is countable we simply write Zp X,. When X,, = X, Vn, variants of
those definitions are obtained as follows: Let X be a Banach space. Let I be an
index set and let 0 < p < +o0o. We denote [;(X,I) to the Banach space formed by
all the absolutely-p-summable families (sequences if I is countable) of X; that is,
the families (z;) € X such that the norm (p-norm if 0 < p < 1):

» 1/p
15(X,1) = (Z”%HA')

el

| (z:)

is finite.

For p = 400 we shall consider the space ¢j(X,I) of norm-null families of X
instead of [ (X, I), the space of all bounded families of X. This space is endowed
with the sup-norm.

We denote [;’(X,I) th the Banach space formed by all the weakly-p-summable
families (sequences, if I is countable) of X; that is, the families (z;) € X! such that

the norm (p-norm if 0 < p < 1):
xS 1}
is finite.

1/p
@l 5. = supd (Sltreal) 1
iel

For p = 400 we shall consider the space c¢’(X,I) of weak-null families of X
instead of lo(X,I), the space of all bounded families of X. Again, this space is
endowed with the sup-norm.

When X is finite-dimensional one simply obtains (in both cases) the classical
I,(I), I uncountable, and I,, I countable, spaces.
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Let T: X — Y be an operator acting between Banach spaces. Let Z be a Banach
space. By a subfactorization of T through Z we mean two operators B: X — Z and
A:Tm Z — Y such that T = AB. Note that A need not be definied on all of Z, but
only in the closure of the range of B in Z. When A can be defined on the whole Z
then we have a factorization of T through Z.

For a general background on locally convex spaces we suggest [8], and also [6].
We follow the notation of [8] concerning projective descriptions of locally convex
spaces. If E is a locally convex space, U(F) denotes a fundamental system of ab-
solutely convex closed neighbourhoods of zero; if U € U(FE), the completion of the
normed space Ey = (E/kerpy,|| - |lv), where py is the seminorm associated to U
and ||¢U(m)”U = py(z) and ¢y is the quotient map, shall be termed the Banach
space associated to U. If V € U(E) and V C U then the canonical linking map
TVU is the extension to the completions of the operator Tyy: Ev — Ey defined by
Tvudv(z) = du(z).

The space F admits a representation as (a dense subspace of, when it is not
complete) the projective limit of the Banach spaces associated to the neighbourhoods
corresponding to some U(F) and their respective linking maps. This we write as:

E=1limTyy(Ey) U,V ecU(E)

Given a family {E;};cr of locally convex spaces, the sum space @F; is the
subspace of [];c; E; consisting of only those elements z = (z;), z; € E;, which have
finitely many non-zero z;. We denote by I;: E; — ®F; the mapping sending z; € E;
to the element of @ F; whose i-th coordinate is equal to z;, and all of whose other
coordinates vanish. The inductive p-topology is the finest locally p-convex topology
on @1 F; making all the embeddings I; continuous. A base of zero-neighbourhoods for
the inductive p-topology is formed by the sets [PIi(Ui,j), where [p means “absolutely
p-convex cover”, and {U; ;} is a base of zero-neighbourhoods in E;.

Given two locally convex spaces E and F' we can consider two natural topologies
on the tensor product space £ ® F:

The e-topology, defined by the system of seminorms:

vy (z =Y z® yi) = Sup{|<<,-9 ® ¢,2)| : puo(p) < 1, pro(¢) < 1}
where U and V are 0-neighbourhoods in E and F respectively.

The associated Banach space to U® V in F ®, F is E’(U®V) = EV®EEU (see
(6]).
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The 7-topology, defined by the system of seminorms:

LYIAY (Z = Z T ® :‘h’) = illf{ZPU(ﬂ?i)Pv(yi)}

1

(the infimum is taken over all representations of z) where U and V are 0-neighbour-
hoods in E and F respectively.

The associated Banach space to U@ V in E®, F' is Eygyv) = Ev®@.Ly (see
[6]).

We recall that an lcs E is said to be nuclear if £®, X = E®, X for all Banach
spaces X (see [6]).

Part |. Subfactorizations
§1. Finite dimensional Banach spaces

When X = K, the scalar field, the sum space @&yK is usually noted ¢. In Theorem
1.4 of [12], Saxon proves, among other things, that:

If F is any lcs not carrying the weak topology, then ¢ is a subspace of any
product ET when card I > 2%

which we shall refer to as Saxon’s theorem. With this we can consider solved prob-
lems 1 and 2 for X a finite-dimensional locally convex space.

Let us look at problem 3. When card I = d, the sum space $;K shall be denoted
@4. Does there exist an analogue of Saxon’s result for ¢4? The answer is no, and
in a quite strong sense: for instance, @, is not a Schwartz space, and thus cannot
be embedded into any product of Schwartz spaces [3]. See Corollary 1 for deeper
information.

The proof Saxon gives of his result relies upon the locally convex structure of
the space E. We focus here our attention on the locally convex structure of . We
see that ¢ = liin D,(ly), o € If,, that is, it is the (reduced) projective limit of

diagonal operators D,:l; — l; with ¢ running through [}, = {1 €Elew 2, >0 Vn}.
The natural ordering for sequences is: (z,) < (yn) if and only if, for some constant
¢ >0, y, < cx,. With this ordering l;' and cg are cofinal in [}; therefore, by

factorization of suitable D, through [, or ¢y one obtains (see [8, p. 231]):
¢ =lim D, (l,) = lim D, (cp), cell, 0<p<+4oo

(which incidentally gives another proof of Saxon’s theorem: by using the Dvoretzky-
Rogers theorem, diagonal operators D,:ly — [, 0 € cg, subfactorize through any
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infinite-dimensional Banach space X (see [1]), which gives the embedding ¢ — X
for Banach spaces. When F is an lcs, the result follows by considering the map
[1 ¢u: E! — [] Ev and the fact that if f: A — B is surjective and B contains ¢
then also A contains ¢).

We now pass to ¢4. It is well-known that there are other topologies which can
be considered in a sum space besides the inductive one: the so-called box-topology
(see [6]) or topological direct sum, in the terminology of [8], the inductive p-topology,
0 < p < 1 (the strongest locally-p-convex topology), etc. It is also well-known that
all of them agree on ¢ and are different on ¢4, d uncountable (see [6]).

This, and the above representation formulae for ¢ suggest that a topology 7,

could be definied on ¢, for each 0 < p < 400 as follows (convention: when p = +o0,
I,(I) means co(1)):

[pary] =Im D, (L,(D)), o € I5(D),
for which an explicit system of seminorms (p-seminorms if 0 < p < 1) is given by:
trol) = o ell 0 € LD
It is easy to see that 7y is the inductive topology, 7o, is the box-topology, and
for 0 < p < 1, 7, is the strongest locally-p-convex topology on (4. All of them
coincide on ¢. All of them are different on ¢4: one has that for ¢ < p, 7, < 7 as
clearly follows from the expressions of their seminorms. To see they are different,

assume ¢ < p and notice that 7, is the kernel topology corresponding to the family
of diagonal maps:

Dyiipa — b(I) o €IL(D).

Therefore the equality 7, = 7, on ¢4 would imply by a density argument the
continuity of some map:

Dy-rily(I) — I,(I) o €lL(])

which is impossible since I in uncountable (see also [6]).
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§2. Infinite-dimensional Banach spaces

If we pass to locally convex sums of general Banach spaces, let us firstly ver-
ify that the Banach spaces associated to the natural fundamental system of 0-
neighbourhoods of @nX for the inductive p-topology are isomorphic with [;(X)
and that under this isomorphism the linking maps are “diagonal” operators

Dy-1:1(X) — 1{(X), D,((zn)) = (dnzn).

To show this, let & be the basis of zero neighbourhoods in ®yxX for the finest
locally p-convex topology formed by all the sets W = [p(UneN I.(0,Bx)), where
o = (0,) ranges over [} and By is the closed unit ball of X. Let us denote by gw the
p-norm gauge of W, and by B, the closed unit ball of the p-norm || - ||, of I,(X). For
the “diagonal” injection D,-1: [GBNX,qW] — I5(X) defined by D,-1(z) = (0, 2n)
we clearly have D,-:(W) C B,N®nX. Conversely, if n = (1,) € B,N®yX, then all
but finitely many 7,, are zero and Enlnn|p < 1. It follows that (n,0,) € W, because
W is absolutely p-convex, and, furthermore D,-i1(no) = 5. Thus D,-(W) =
B, N ®nX and D,-1 is a topological isomorphism onto a dense subspace of I7(X).
This gives that the completion of [@NX,qW] is ). V= [p(UneN In(nan)) is
another neighbourhood in ®yX with 7, < o, for all n € N, then the linking map
ff’vw: [EBNX,qv] — [GBNX, qw] is equivalent to the “diagonal” D,-1, on l;(X).

Therefore, via the factorization argument we used before, the associated Banach
spaces can also be chosen isomorphic with [5(X), 0 < p < +o0, or ¢3(X) with
diagonal linking maps:

onX =lim D, (I3(X)), oelk, 0<p<+oo

We consider now uncountable sums of Banach spaces. Let X be a Banach space.
In the same spirit as above we can consider on @;X the topologies:

[©:1X,7;] :=1im D, (I3(X,1)) o € lL(I)

for which an explicit system of seminorms is given by the formulae:

» 1/p
0@ = (Sloral?) " =l
I

(when p = +o00 it has to be understood ¢§(X, ) with the sup norm).
But we can moreover consider the topologies obtained replacing l; by [}

[®:X,7,’] :=1lim D, (I(X,1)) o €lL(I)

for which an explicit system of seminorms is given by the formulae:

1/p
ps(T) = sup (Zl(a»gflxiﬂp) = ||‘7_1x||1;'(x,1)
I

llalj<1

15(X,1)

(when p = 400 it has to be understood ¢ (X, ) with the sup norm).
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Relationships among 7, and 7, topologies

When I = N the factorization argument gives 7, = 77 = 7, = 7./ for all values of
p and ¢. In general 7;” < r7; when p > ¢, one also has the relations 7, < 7% and
7, < 7;. When I is uncountable and p # ¢, it is clear again that 7," # 7, 75 # 7/
and that 7" # 77, since they induce different topologies on ¢4. To see that 7, # 7,
we use a

Lemma

Let I be an uncountable set, and Dy: 1% (X, 1) — I3(X,I), 0 € IL(I),a diagon&l
map. Then Im D, C [;(X, N), where N denotes some countable subset of I.

Proof. Since o; > ¢ when i belongs to an uncountable set Iy, it is possible,
by the Dvoretzky-Rogers theorem, to choose a sequence (z;),. 5, in X weakly-p-
summable but not strongly-p-summable. In this form, D, ((z;)) cannot be strongly-
p-summable.

We finish the proof of 7 # 7,°: the equality 7, = 7, would imply the continuity
of some

Do-1:15(X, 1) — 13(X,I)
by a usual density argument. [

Let us denote by 7o the topology induced by the topological product X! on
@®rX and by 7 the inductive topology. We have:

Proposition

Let 1< p<+00. T0<Thox =Too = To, < Ty < Tp < T4 =T.

Proof. It is clear that 75 is the box-topology and also that 77 is the inductive
topology (for 0 < p < 1, 75 is the inductive-p-topology). The relation T, ST, s
inmediate and we have just seen they are different. That 70 < Thox = T2 = 75, is
inmediate as well (the equality 7% = 72, also follows, as we shall see in Part II of

the equality ¢§(X) = ¢oBX. O

It is worth to mention that since all those topologies are finer than 75 and
coarser than 7 they have a basis of neighbourhoods of 0 consisting of 7p-closed sets
([6, p. 81]). They are therefore complete ([6, p. 59]), and this gives us the correctness
of their definitions:

Lemma

For1 < p < +00, the topologies 7, and 1, are complete.
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We return to our original problems.

Subfactorization Theorem

Let X be a Banach space. Then ®yX is a subspace of Y if and only if for some
(all), 0 < p < 400, and all o belonging to some cofinal subset of I, the diagonal
morphisms D,:15(X) — I5(X), a = s or w, can be subfactorized through some finite
product Y ™.

Proof. The if part is clear. Note that it already implies card I > 2%°,
On the other hand, an embedding ®yX — Y implies, choosing suitable 0-
neighbourhoods  and V in ®xX, and W in X7, a diagram:

(@xX), = (%) — (@nX), = — LX)=(oxX),

Y” = (YI)W
where the upper arrow is a diagonal operator D, with o € [,. This gives a subfac-
torization of D, through X™. O

The subfactorization theorem admits an equivalent formulation for uncountable
sums.

Subfactorization Theorem for uncountable sums, case s
Let X be a Banach space and let 0 < p < +o00. Then [GBIX, T;] is a subspace
of X7 if and only if for all o belonging to some cofinal subset of IT, (I) the diagonal

morphisms D,:15(X,I) — I5(X,I) can be subfactorized through some finite product
Xn.

Subfactorization Theorem for uncountable sums, case w
Let X be a Banach space and let 0 < p < +00. Then [EBIX,T;;"] is a subspace
of X7 if and only if for all o belonging to some cofinal subset of I}, (I) the diagonal

morphisms Dy:1'(X,I) — I(X,I) can be subfactorized through some finite prod-
uct X™.

However, in the uncountable case something more can be said:

Subspace theorem

Let X,Y be Banach spaces and I an uncountable set with cofinality card I > No.

Then:

(1) [@IX,T;] is a subspace of Y7 if and only if I5(X,I) is a subspace of some
finite product Y™ and card J > 22141,

2) [@1X, 7';”] is a subspace of Y’ if and only if I(X,1I) is a subspace of some
finite product Y™ and card J > 22741,



24 CASTILLO

Proof. We shall write I2(X,I), a = w or s, to denote [;(X,I) and [3(X, ). Notice
an obvious fact: if card I = card Iy then, [;(X,I) = [5(X,lo). Next observe that if
we have a diagonal operator

D,: 3(X,I) — I3(X,I)  oelf(I)

then some ¢ > 0 exists such that o; > ¢ for all ¢ belonging to some set Iy with
card Iy = card I (by the cofinality condition imposed on card I). If j:I5(X, o) —
I5(X,I) denotes the canonical inclusion, the composition

a a DU
15X, L) - 1%(X,1)

== (X, I)
gives an isomorphism: Im D, 0 j = lg(X,Io) and
ellzll < || Do o 3| < llollco llz]l

Thus a subfactorization of D, through Y™ implies a factorization of the identity
of I7(X,Ip) through a certain subspace Z of ¥'". In this way, l;(X,Io) should be
isomorphic to some complemented subspace of Z, which is, in turn, a subspace of
Y.

The other implication follows easily from the definition:

[EBIX5T;)1] = li‘z_nDO’(l;(Xv‘[))s

implies that [EBIX, 5] embedds into some product (l;(X,I))J, which in turn, em-
bedds into Y. O

§3. Applications

It is an open problem to characterize those Banach spaces containing I, as a sub-
space. The following corollary gives, for many I uncountable, an equivalence for this
problem:

Corollary 1

Let 1 < p < 400. Let X be a stable (X x X = X) Banach space and I an
uncountable set with cofinality card I > Ro. [,(I) is a subspace of X if and only if
[cpd,‘rp] embedds into a large product X! with card I > 2¢.
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From the proof of the subspace theorem it follows:

Corollary 2

If a diagonal operator D,:1,(I) — [,(I), I uncountable and with cofinality
card I > Ng, is subfactorized through X, then X contains a copy of 1,(I).

Remarks 1. The case 0 < p < 1 of corollary 1 had to be ruled out for obvious reasons.
The above characterization has no counterpart for I, since ¢ embedds in X/ for any
infinite-dimensional Banach space X (Saxon’s theorem) as long as card J > 2%°.

2. The hypothesis on the cofinality of I is necessary in the subspace theorem as well
as in corollaries 1 and 2; the following counter example shown to me by P. Domanski
shows that:
Counter example. Let my < m; < ms < ... be an increasing sequence of cardinal
numbers and let m = sup{mn in € N}. Assume that I,, are pairwisely disjoint sets
with card I,, = m,,. Let finally I = UnEN I,.

Consider p # ¢, 1 < p,q < +00, and let X be the Banach space

X = (Z eazp(fn)) :
lq
Then
(a) [gom,rp] is a subspace of X” for some J
(b) X is isomorphic to X x X
(c) X does not contain a copy of [,(I)

Proof. (a) Let

S = {a: (a,-)iel Vi€l o;€ {27 :n €N} and

Vn eN card{i to; = 2_”} < m}

Let 0 € S; then D,:1,(I) — I,(I) factorizes through X, since, without loss of
generality (taking subsequences if necessary), we can assume that {i 1oy = 2‘“} =
1.

Indeed, if ¢ < p, X C I,(I), and D, acts from [,(I) into X: if p < ¢, [,(]) C X
and D, acts from X into [,(T).

By the subfactorization theorem, it is enough to show that S is cofinal in % (1),
something which is clear.

(b) is obvious.
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(c) Assume that I,(]) ¥ Z C X, and let P: X — (st“ EBlp(In)>l be the

standard projection. By a density argument, P"|Z cannot be an isomorphism. Con-
struct then a normalized sequence (:r,n)n C Z and an increasing sequence (rn) CN
such that ro = 0 and ” rass — Pro)(T2) —zn“ < 27", which means that (z,)
is a basic sequence equivalent to ((Pr,,, — Pr,.)(QJn))n, in turn equivalent to the
canonical basis of /;. Contradiction. O

Cordllary 3

A diagonal operator D,:1,(I) — I,,(I), I uncountable, cannot be subfactorized
through l,(I) whenever 1 < p # ¢ < 4.

To see this, recall that ,lpv and I, spaces are totally incomparable (see [10]); or else
(see [9, Th. 13, p. 129]) that any continuous operator from a subspace of [.(I) to
ls(J), r > s, is compact, while D, cannot.be compact. Note, however, that our
method also works for: p > 12> ¢; p< 1< qand p< ¢q<1. Probably Corollary 3
is true for all values of p and ¢ greater than zero (see also the example in [2]).

Remarks. If T:1,(I) — l(J) is a continuous operator, I and J uncountable sets,
and p > ¢, p > 1, then ImT C [,(NN), where N is a countable subset of J. There
are counterexamples for p = 1 > ¢ (see [2]). When T is a diagonal operator then
the hypothesis p > ¢ suffices. '

Clearly [¢g4,Tp] is a subspace of a large product of copies of I,(J), card J > d.
Corollaries 1 and 2 assert that this is esentially the only possible case.

When X = H is a Hilbert space we can complete [2]:

Corollary 4

Let H be a Hilbert space. Then:

1. [@H,T p] is a subspace of HY if and only.if we have one of the following
alternatives

(a) I =N, dim H = +00 and card J > 2%°
(b) p=2,dim H > d and card J > 2¢

2. [GBIH, 7';,”] is a subspace of HY if and oniy if
(a) I =N, dim H = +00 and card J > 2%°
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Proof. The reason for 1.(a) follows from the Subfactorization theorem and corollary
1 or 2 since 7, induces 7, in @q.

1.(b) is true since [EBIH,T;] has associated Banach spaces which are Hilbert
spaces.

For T;U we see that 2.(a) remains true since [@[H,T;”] is not a subspace of HI
when [ is uncountable. This is so due to the fact that [}’(H,TI) is not a Hilbert space
(see [6]). O

Remark. A similar result holds for /.(A) instead of l2(A) replacing p=2by p=r
in 1.(b). For L, spaces there is not such a pure result.

§4. Part Il. Tensor products

Our purpose in this section is two-fold: on one side, to replace factorization argu-
ments by tensor product statements in the results of Part I; on the other hand, to
show that the topologies introduced in Part I apperar as suitable topologies on tensor
products. It is in this way that 7% and 7° topologies could provide an explanation
to some pathologies in the theory of locally convex tensor products.

We first recall some different topologies which can be considered in tensor prod-
ucts with an [,(I) space:

The e-topology in [,(I) ® X is that induced by I;’(X,I). Its adherence (com-
pletion) will be noted [,(/)®.X. When p = 1 this space is the space of summable
sequences of X (see [5]).

The p-topology in [,(I) ® X is that induced by I5(X, ). Its adherence (com-
pletion) will be noted [,(I)®,X. Since ¢§(X,I) is a subspace of c¢§'(X,I), both
induce the same topology on ¢o(/) ® X: the e-topology because of the formula
c§(X,I) = c,(I)® X (see [5]).

In the tensor product spaces X ® Y many crossnorms (i.e., norms satisfying
lz ® y|| = |l=||ly]]) can be defined. The strongest of such norms is denoted 7
(projective topology). We note X®,Y to its completion. The coarsest of such
norms is denoted ¢ (inductive topology). We note X®.Y to its completion.

A crossnorm 7 is called a tensornorm if ||T® $: X ®,Y — X @, Y || < ||IT|!]|S]|-

In the case of a tensor product with an [,(/) space, the ¢ norm induces the
e-topology. When p = 1 the 7 norm induces the 1-topology. The p-topologies are
crossnorms, and therefore intermediate between ¢ and ; for p # 1 the p-norms are
not tensornorms.

We give a new proof for the embedding of ®yH into H’ (see [2]) replacing
subfactorizations by tensors from where it follows a partial solution to problem 1.
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We shall say that a tensornorm 7 suitable to be defined in tensor products F ® F of
locally convex spaces is called “reasonable” when EQ,F = lim Ey®, Fv, whenever

7 can be defined in the spaces involved.

Proposition

Let X be a Banach space such that for some reasonable tensornorm 7, X®@, X =
X. Then ®nX is a subspace of X!, card I > 2%,

Proof. Since ¢ respects subspaces, ¢®. X embedds into X/®. X by Saxon’s theorem.
Since T is a tensornorm, the canonical inclusion

X =@, X — X'®, X

is continuous. Since ¢ < 7 on X’® X, the same happens with the induced topologies
on ¢ ® X. The former is €, and the latter is coarser than 7 = €. Therefore both are
equal. This proves that ®yX = ®X embedds into X'®.X.

Since 7 is a tensornorm, the topology 7 respects complemented subspaces.
Therefore X™ = X®,K" is a complemented subspace of X®,X = X. From this, it
follows that X2&,X is a (complemented) subspace of X®,X. Therefore, since 7 is

reasonable, X/®,X = lim X"®,X embedds into [X@TX]I =xI. O
When X is an L, space then 7 = p is allowed in that proof: ¢ ® X is still

a subspace of X/®,X essentially by the same argument (7 = p is intermediate

between ¢ and 7). It can be directly checked that X/®,X embedds into [X@TX] I.
This covers again the situation for X = I,(A) since then X®p‘ [ = X.

It is obvious that if /7(.X') or [’(X) embed into X", then ®nX embedds into
XT. We can combine global and local approach to obtain:

Proposition

Let X be a Banach space such that for some tensornorm 7 and for some 0 <
p < +o0 I, ®; X embedds into X" for some n. Then ®yX embedds into X1,
card [ > 2%,

Proof. We simply need to look at the diagram:

lp Qe X — lp R X — lp ®e X

| I |

lp ®7rX B lp ®7’X - lp ®e X

T
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limD, ® I(l, ® X) — limD, ® I(l, ®, X) — lim D, ® I(l, ®: X), celt,
(P®er — ll‘l'_Il Da ® I(lp r X) — (P®5X

which proves the equality ®yX = ¢®X =1lim D, ®I(l,®,X). The subfactorization
argument finishes the proof. O

We turn now to see what happens with uncountable sums to show how the
topologies appearing in Part I can be introduced via tensor products:

[®rX, 7] = lim D, (I§(X, 1)) o€ 1L (I)
=1lim D, ® I{,()®X) o€l (D)
= [‘PdsTl]®7rX
and
[®1X, 7] =lim D, (1{'(X, 1)) o el (D)
=1lim D, ® I(l;(1®:X) oelr(I)
= [‘Pd’ Tl] ®EX

To extend the above lines to other 7,-topologies we need to use the p-topologies
on the tensor product

[©1X,7;] =1lim D, (13(X, 1)) oelt()
=lim D, ® I(I(I)®pX) o el (I
= [pa: 7] ®r(n X
where the 7(p) topology is given by the seminorms:

N N
o (S weon) = |5 Dwe oz
k=1

=1

Eod

P

N
= Z o wkn ®$k
k=1

N
=[(Eertwenss)
k=1

and therefore intermediate between the € and the 7 topologies on ¢4 ® X.

P

n s (X)
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On the other hand:

[®1X,7°] = 1im D, (1y/(X, 1)) o el (I)
=1lm D, ® I(I,(I)®:X) o el ()
= [‘Pda Tp] ®54¥

Remarks. When I = N we obtain again the equality of the 7,-topologies, since ¢ is
a nuclear space and therefore ¢ and 7 coincide on ¢ ® X. When [ is uncountable
the subspace theorem is a crude manifestation of the nonnuclearity of ¢,.

In [6, p. 334] the equality (®7E;) @, X = EBI(Ei ® Y) is considered. But in
pag. 352-353 things appear to be not so clear for the e-topology.

The reason for such difficulties is that the inductive topology is 77, not 1{*,
and therefore it has a good behaviour against the 7-topology but not against the
e-topology. If we replace 77 by 7* we obtain the equivalent formula

(®1Fi ) @ X = [@1(B: 8. X), 77|

Since for uncountable embeddings (S3) can be considered solved with the sub-
space theorem, in the next section we shall concentrate in the seemingly most difficult
case: the embedding S1.

§5. Examples, counterexamples and open problems

1. Characterize those infinite dimensional Banach spaces X such that ®yxX cannot
be embedded into X1 ?

From part IT we know that if for some tensornorm 7, X®,X = X then §uX
embedds into X, There are however Banach spaces such that X®,X # X for all
crossnorms: Let P be Pisier’s space [11] whose main feature is that PQ. P = P®, P.
Should we have P = P®,P then PR.P®.P = P®,P®,P, and following [7], P
should be nuclear.

On the other hand, an embedding of ®xX into X would imply that for some
k € N, X™ is a subspace of X* for all n. This can be shown as follows: from the
proof of the subfactorization theorem, we have a diagram:

(enX), =65(X) — (EBNX) — (X)) = (&nX),,

WndrnX

X+ = (x7),,



Embedding sums into products of Banach spaces 31

If i,: X™ — [,(X) denotes the canonical inclusion of X™ into the first n positions,
and pn:l,(X) — X" the projection onto the first n coordinates, we see that, for all
n, we have a diagram

X" — l;()() — (GBNX)WnemX — l;(X) — X"

Xk

where the horizontal arrow is an isomorphism. Therefore one has that, for all n, X™
is isomorphic to a subspace of X*.

Now it is possible to show that James space J does not satisfy the countable
embedding (S1). A description of James space J can be seen in [10]. Here it is
enough to know that this space has the property that dim J*% J = 1. The following
proof is due to P. Domanski, who goes on to show that J¥ C J" if and only if k < n.

Proof. Let k > n and assume that J¥ C J%; then (J¥)™ C (J*)™" and
dim (J%)*g*% = k, and dim (J")*7J» = n.

An utilization of the Hahn-Banach theorem implies that (J*) **/Jk - (Jn)*7J",
which is a contradiction. O

Remark. Another obscrvation is that if X is tensorstable (i.e., if X®,X = X for
some reasonable crossnorm) then X™ is isomorphic to some complemented subspace
of X for all » € N. All this suggests that X should be stable. This seems to imply
that spaces satisfying (S1) are intermediate between the tensortable and the stable
Banach spaces.

Concerning stability properties, it is clear that finite products of Banach spaces
satisfying (S1) also satisfy (S1). This is equally true for the ¢ tensor product (choos-
ing 7)) or the m tensor product (choosing 7). Since finite-dimensional spaces are
always complemented, the property (S1) does not passes to complemented subspaces.

It is not difficult to see that p-sums of Banach spaces satisfying (S1) also satisfy
(S1):

Proposition

Let {Xn} be a sequence of Banach spaces satisfying the embedding (S1). Let
0 < p < t+oo. The quasi-Banach space ), X, satisfies the embedding (S1).
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Proof. The sum space Gy Ep X, has associated Banach spaces isometric with
l;(zp X,) = > 5 3(Xn). Under this new isomorphism the diagonal map D, is
transformed into the diagonal operator D4, ) = > D?, where D} is D, acting
on [;(X,). Using the subfactorization theorem we see that since D} subfactorizes
through Xy, >° D7 subfactorizes through 3 X, and this last space satisfies (S1).
a

Remark. With some extra work for the notations but no change in the proof, this
proposition is valid for the p-sum Ep X; of an uncountable quantity of Banach
spaces.

Examples of Banach (or quasi-Banach) spaces satisfying the embedding (S1)
are what we could call “extended sequence spaces”; that is: I,(1), [;(X,I), I;)(X,T)
and [,(I)®, X, for X any Banach space, I any index set, as well as {,(I)®.X and
I,(1®X. It is also clear that we could replace [, spaces for suitable general (even
nonlocally convex) sequence spaces A (provided some non-very-restrictive conditions:
At cofinal in I3, etc. (see [3]). Finally, and this is what suggests the name, ten-
sortable Banach spaces, that is, Banach spaces X such that X = X®,X for some
tensornorm 7.

Due to the well-known isomorphism [2(X) = L(l;,X) (p™' 4+ ¢! = 1) and
[7(X*) = L(X™,l,) we have that spaces such as L(H), the space of all bounded
operators on a Hilbert space satisfies the embedding (S1).

We can add to our list some usual function spaces such as L,(a,b), H}(U) or

C[0,1]. In the first two cases the proof can be performed writing those spaces as
I5(X) for some Banach space X:

Let m be a finite or infinite cardinal. It is not hard to check that L ([0, 1]™,C) =
15(Ly([0,1]™,C)) or that L,(R) = I5(L,[0,1]), (see [9, 14, Th. 9, Corollary, Th. 10
and Th. 14]).

The space H!(U) is isomorphic to [§(H(U)).

If we use general structure theorems we see that most of the classical Banach
spaces satisfy the embedding (S1). Recall that a Banach lattice is said to be an
abstract L, space if whenever 2 Ay = 0 ||l + y||P = ||z||” + ||y||’- We quote [9,
p. 136]:

Any abstract L, space X is linearly isometric to

[r 09 (@ 3 o)

a€A

for some index set I' and some set of cardinal m, > Rg.
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From this and the remark after the latter proposition we get that:
Any abstract L, space satisfies the embedding (S1).

Therefore, spaces such as L,(0,1)®, X, a = ¢, m, p, satisfy the embedding (S1).
This includes spaces of Bochner integrable functions Lp(u,X) = Lp(p)®,X.

For C(K')-spaces we prove slightly less: choosing 75, ®yC(K') has associated
Banach spaces isomorphic to ¢§(C(K)) = c§®.C(K ), which are therefore subspaces
of C(K)®.C(K) = C(K x K). This space, in turn, embedds into C(K) if K is
uncountable and metrizable (Milutin’s theorem, see [9, p. 85]). In this way:

®NC(K) embedds into C(K x K)T.

For K uncountable and metrizable C(K') satisfies (S1).

Therefore this covers the situation for vector-valued continuous function spaces
such as C([0,1],X) = C([0,1]) ®X.

2. An extension of the above theory for Fréchet locally convex spaces

Notice that the techniques developped in this paper do not usually work in
arbitrary locally convex spaces: the subfactorization technique encounters the fol-
lowing problem: if F is a locally convex space admitting a projective description
E = liln Ey, then @y F admits a projective description as:

GyE: - — l;(Ev) — l;(EU)

where the linking maps have the form D, ® Tyy.

To see where the difficulty lies, one could observe that even in a simple and
seemingly harmless case as E = A(P), a Kothe sequence space, where the spaces Ey
can be chosen isomorphic to /; and the linking mappings a tensor product D, ® D,
of diagonal operators, things can be complicated: if £ = (s), the space of rapidly
decreasing sequences, then E is isomorphic to s(R), and, as already mentioned in
the introduction, F satisfies the embedding (S1). We remark, however, that in [13]
a Aj(a)-space is constructed for which the embedding ®yA;(a@) — Aj(a)’ is not
possible. Following [13], it is possible to choose a certain A;(a) space in such a
form that, for a certain sequence space A, the space Aj(a) is A-nuclear but the sum
space ®yAj(a) is not A-nuclear. The space A can be choosen regular enough so
that the class of A-nuclear spaces is a variety, i.e., is closed under the formation
of isomorphic images, quotients, subspaces and arbitrary products. Especially, it
follows that @yA;(a) cannot be embedded as a subspace of a product A;(e)?.

Concerning the tensor product approach, notice that the equality ¢ ® E = &y FE
does not necessarily hold for non gDF spaces (in the terminology of [6]).
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Final remarks. It could be of some interest to say a word about the problem of
Tp-topologies and duality. If @ E; is endowed with the box topology then the dual
space can be shown to be isomorphic to the subspace of [[;.; EF having a countable
number of non-vanishing coordinates. We quote from [6, p. 173]: “No systematic
discussion of this duality seems to exist in the literature”. It is not difficult to see that
if we denote by l,(cI) = {€ : o€ € [,(I)} then [®[X, 7';]* = Usert,(n l3- (X7, 01),
where 1/p + 1/p* = 1. When p = +00, [@IX,Tbox]* = Uaelgg(n I5(X*,0l), and
when p = 1 then [@/X,7f]" = Usert (1 loc(X ™, 0I). Moreover, it seems that the
natural topologies to be considered in those dual spaces are those induced by the

seminorms d, - (€) = (Zluaiéillp*>l/p.'
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