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ABSTRACT

Let (2, X, 1) be an arbitrary measure space, £ a Banach ideal space (Kothe
function space) on {2, X a Banach space, and FE(X) the “vector-valued
Banach ideal space” composed of £ and X. By a general method based on
semi-embeddings, it is proved for certain properties P of Banach spaces that
if E and X have P then E(X) has P as well (). Examples for P are the
analytic Radon-Nikodym property and the property not to contain cg, thus
simplifying results of Bukhvalov. (%) is also true for the type II-A-Radon-
Nikodym property and the separable complementation property, and somewhat
weaker versions of () hold for the type I-A-Radon-Nikodym property, the
property (P) of Costé and Lust-Piquard, and for the near Radon-Nikodym

property.

1. Introduction and Preliminaries

1.1 Introduction

The purpose of this note is not so much to prove a definite theorem but to explain
a general procedure which sometimes enables one to obtain easy proofs of theorems
of the type

(%) E,X€e(P) = E(X)e(P).
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Here, P is a property of (isomorphism classes of) Banach spaces, X a Banach space,
E a Banach ideal space (K6the function space) over some measure space (2,%, 1),
and F(X) is the X-valued version of E (definitions see below). For the procedure
to work it is necessary that the theorem is already known for E = L(u), p =finite
measure, and one actually attempts a reduction of the general case to that special
case using an appropriate semi-embedding.

Two basic examples of properties P for which the procedure, formalized as The-
orem 2.2, yields exactly the Theorem (%), are the analytic Radon-Nikodym property
(ARNP) and the property not to contain (an isomorphic copy of) ¢g. In both cases
(*) has been established by Bukhvalov [11, Theorem 7], [10]. However, the proof
given here for ARNP is painless compared to that in [11] —being finished before
the “delicate questions concerning measurability” [11, p. 55] arise. Note that the
case E = L'(p), due independently to Dowling [20, Theorem 2] and this author
[31, Satz 3.1] is easy, using the Fubini theorem. (I have had no access to [10] but
was informed by Professor Bukhvalov that a proof of (%) is contained therein for
the property not to contain ¢y based on ideas of Bourgain [1], [2]. Here, the case
E = L'(p) is due to Kwapieri [35, Theorem], cf. also Bourgain [1, Theorem 2.
Independently of me, Dowling recently also reproved the ¢g result [23], the proof
following Bukhvalov’s arguments for the ARNP case.)

As a joint generalization of both these examples, (*) also holds for the type II-
A-Radon-Nikodym property if A is a Riesz subset of Z (2.6). For the type I-A-RNP
a slightly weaker result is obtained. These two A-RNPs have been introduced and
studied by Dowling [21-23] and Edgar [25]. T am grateful to Professor H. Jarchow
for directing my attention towards reference [22].

Another example is the property (P) of Costé and Lust-Piquard [16]: If E
and X have (P) and if X has the separable complementation property SCP, then
E(X) has (P) (and SCP) as well (2.8). In proving this, () is also established for
SCP (2.8 Remark 2). Finally, consider the near Radon-Nikodym property NRNP
of Kaufman, Petrakis, Riddle and Uhl [34]: If £ has NRNP and X has RNP then
E(X) has NRNP as well (2.9).

For more properties P, some of them isometric, fulfilling (%) or some variant,
see e.g. Day [17], Halperin [28], [29], [30], Bukhvalov [7], [9], Kamiriska and Turrett
[33]. More references on the spaces E(X) are given in [13, 5.3].

For the remainder of §1, no originality is claimed, although the presentation is
free from unnecessary restrictions often found in the literature.

The scalar field is always K € {R,C}, unless indicated otherwise. X denotes
a Banach space, X' its dual, (z,2') := z'(z) the dual pairing (z € X, z' € X'),
Bx the closed unit ball of X. The term “operator” includes “bounded linear”,
“isomorphism” includes surjectivity, whereas “isometry” does not. Terminology in
Banach lattices follows [37, II], [42].
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1.2 Vector-valued measurability

Let (2,%,) be a measure space. Since no restriction such as o-finiteness is
imposed on p, precise definitions as regards measurability seem in order.
Let

St(%;X) = {ZXA.-%‘ :n €N, A; € X disjoint, z; € X}
i=1
be the vector space of X-valued step functions. A function f:Q — X is called
(strongly, Bochner) p-measurable (the prefix p- will be suppressed) if the following
equivalent conditions are satisfied:
i) Af, € SU(Z; X), fn — f p-ae.
ii) f is a.e. Borel measurable and a.e. separably valued
i) 3/ € SUTX), [fa()llx < IFOllxs fo — f ae.
(See [41,Lemma V-2-4] in which the definition of f, must be slightly modified,
however, in order to really achieve the inequality in iii).)
As a corollary, if f,, f:Q — X, the f, are measurable, and f, — f a.e., then f
is measurable.
Let S(p; X) be the vector space of X-valued p-measurable functions modulo
functions vanishing p-a.e. In case X = K, this letter is omitted from notation.

1.3 Vector-valued Banach ideal spaces

A Banach ideal space (Banach function space, Kéthe function space) is a vector
subspace £ C S(u), equipped with a complete norm || - ||g, such that f € S(p),
g € E, |f| <|g| a.e. implies f € E and ||f||e < ||g]|e- In other words, E is an ideal
of the vector lattice S(p), endowed with a compiete lattice norm. Obviously, F is
then a o-order complete Banach lattice.

Now let X be a Banach space. The “vector-valued ideal space” E(X) is defined
as {f € S(i;X) : |If()llx € E} and carries the norm || f|lgx) = ||[If()llx|| -
Sometimes the notation E(u; X) for E(X) is used.

As the name indicates, E(X) is a Banach space. The proof is a routine exercise,
using the observation that if f, < foy1 — f in (E;||-||g), then f, — f a.e.; this
follows from the triviality [42, Lemma II.5.8].

Lemma

If E is o-order continuous, then the space
n
Ste(X; X): = {ZXAI.:EZ' :n €N, A; € ¥ disjoint, x4, € E, z; € X}
i=1
= St(Z; X)n E(X)
is dense in E(X).
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Proof. Let f € E(X). By 1.2, f can be assumed Borel measurable, and there exist
frn € St(%; X) such that f, — f a.e. and || fn(")|lx < ||f(:)||x. Define ¢; := f; and

1 (w) = {fn+1(w)v if || fag1(@) = F(@)]| < lga(w) = F(@)I]

gn(w), otherwise.
Then g, € Stg(¥;X) and ||gn — f||g(x) — 0, by o-order continuity of || - ||z. O

Remarks. (1°) o-order continuity is in this case the same as order continuity [37,
IL. 1.a. 8], E being o-order complete.

(2°) The lemma implies in particular that £ ® X (where Y i, f; ® z; is identified
with 37, fi(-)z;) is dense in E(X) if E is order continuous.

(3°) Conversely, if E ®@ X is dense in E(X) for one infinite-dimensional Banach

space X then, under mild assumptions on the measure space, F is order continuous
(Bukhvalov [8, Theorem 1}).

(4°) E, X separable implies E(X) separable. This follows from (2°) in an obvious
way, E being order continuous [37, IL. p.7].

1.4 The tensor product EQX

Let E be an arbitrary Banach lattice and X be a Banach space. Following
Chaney [15] and Lotz [38], the norm || -||” on £ ® X is defined as

n n
Z”zi”Xfi'. : fiZOau=Zfi®-Ti}-
i=1 E i=1
Following Levin [36], the norm || - || on £ ® X is defined as
Sl su=Y fe o).
=1 E i=1

It is easy to see that ||u||™ > ||ul|. > ||u||”, where || -||” denotes the injective
tensor norm, so that || -||” and || - || are actually norms.

llul|” == inf{

|||~ := inf{

Remarks. (1°) ||u||” coincides with Schaefer’s I-norm ||ul|; [42, IV.7]. One way to
see this: It is straightforward and well-known [15, p. 2], [38, p. 89] that the dual of
(E®X,]||-]7)is (LY(E,X"),]|| - |l:), the space of cone absolutely summing operators
from E into X' as defined in [42, IV.3]. On the other hand, this is also the dual of
(E® X,||-1l:) [42, Theorem IV.7.4].
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(2°) Levin [36] considers also, for u = Y}, f; ® z; € E® X, the norm

o) s= it { 1l < 1> [Y(ou) ] Vo' € B}
=1
It is known that ng = ||-||- = ||-||” [43, Lemma 1.3] (thanks to Professor Bukhvalov

for pointing out this reference), cf. [36, p. 56]. In case E is a Banach ideal space
with order continuous norm, the proof is much easier and, in view of Lemma 1.3,
actually contained in [36, p. 54 {.]

Now let F again be a Banach ideal space. The following representation of
E(X) as a topological tensor product will be crucial since it allows to compute the
norm in E(X) without recourse to the underlying measure space. Let EQX be the
completion of (E® X,||-]|7).

Theorem (Levin)
The canonical map f®z — f(-)z defines an isometry EQ X — E(X), surjective

if E has order continuous norm.

Proof. [36, Theorem 1]. (Levin uses the norm ng introduced above in his proof. It
is also possible to give a direct proof, using only || - ||”. —The last assertion follows
from Remark 1.3, (2°), of course.) O

For the study of E(X) and its connection with EQX in much more general
situations than considered here, see Bukhvalov [4].
1.5 Injectivity of &

Let Fy, F be arbitrary Banach lattices, Xp,X Banach spaces, S: Fy — FE,
T: Xo — X operators, where S > 0. It is straightforward to verify that

SRT: Eg®@Xo — E® X
is bounded for || - ||7, thus extending to an operator
SQT: Eo®Xo — E®X.
Theorem (Lotz)

If S is a lattice isometry and T is an isometry then SQT is an isometry.

Proof. (38, Proposition 4.3]. (See [42, p. 194 {.] for the definition of lattice homo-
morphism in case K = C.) O

Remark. Levin proved the same if E is o-order complete and S(Fp) is an ideal in
E [36, Proposition 6]. This would not suffice for later purposes, however.
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2. The theorem, and some variants

2.1 Conditions on Banach space properties

Let P be a property of Banach spaces; the notation X € (P) stands for “X

possesses the property P”. Consider the following conditions on P:
(1) P is separably determined.
(2) If S: X — Y is a semi-embedding of Banach spaces, X is separable, and Y € (P)

then X € (P).

(3) If v is a finite measure and X € (P), then the space of Bochner integrable

functions L!(v; X) € (P).

(4) co & (P).

Here, L!(v;X) is nothing but L}(v)(X) in the sense of 1.3, of course. An
operator S: X — Y is a semi-embedding iff S is injective and SBx is closed in Y
[39], [3]. For the sake of clarity I remark that if P fulfils (2) then P devolves upon
separable subspaces, and if P fulfils (1), (2) then it is automatically an isomorphic
invariant. More comments on these conditions will be made below (2.3).

Theorem 2.2

Let E be a Banach ideal space on an arbitrary measure space (,%,p) and X
a Banach space.
(a) If P is a property of Banach spaces satisfying 2.1, (1)-(4), then

(%) E,X € (P) implies  E(X) € (P).
(b) If P satisfies only 2.1, (1)-(3), then
E2c, XEe(P) implies E(X) e (P).

(The notation E 2 cp means that no Banach subspace of E is isomorphic to co, or,
what amounts to the same [37, II, Remark p. 35], that no Banach sublattice of E is
isomorphic, as a Banach lattice, to ¢p).

(a) has been formulated for aesthetic reasons. Of course, it suffices to prove (b).

Proof. First, as in [9, 1.] a reduction to separable E and X is carried out. Since
there is a minor inaccuracy in [loc.cit], [ am giving the details. P being separably
determined (1), it suffices to prove ¥ € (P) for all separable Banach subspaces of
E(X). Since E does not contain ¢y, E has order continuous norm [42, Theorem
11.5.14]. After Levin’s theorem 1.4, E(X) can and will be identified with EQX.
Now fix a separable subspace Y C E®X, choose D C Y countable dense, and for
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every y € D choose a sequence (un(y))nen in E® X converging to y in EQX. Write
un(y) = Zf—_’tgy) fin(y) ® -’Ein(y)'

Let Ey be the Banach sublattice of E, generated by all f;,(y) € E, and Xo
be the Banach subspace of X generated by all z;,(y) € X (y € D,n € N, i =
1,...,kn(y)). After Lotz’s theorem 1.5, Eg®X, can and will be identified with its
canonical isometric image in EQ X. Then it is clear that Y C Ey®Xj, and it remains
to show that Eo®Xo € (P).

Ey is separable [42, Exercise II. 5(e)] and order continuous, e.g. since Ey does
not contain ¢g, too. After the representation theorem 1.b.14 in [37, II], Ey is order
isometric to a Banach ideal space (F,|| - ||r) on some probability space (Q',X',v),
where F C L'(v) (continuous inclusion, not closed in general). Since F' does not
contain cg, F' is a K B-space, i.e. norm bounded increasing sequences converge in
F [37, Theorem II. 1. c.4]. From there, it is easy to see and well-known that the
inclusion map F — L'(v) is a semi-embedding [26, Proof of Proposition III.1.2),
Remark p. 323], cf. also [40, pp. 758 f.]. Using Levin’s theorem 1.4 in the other
direction, F&Xo(= Eo®Xp) can and will be identified with the vector-valued Banach
ideal space F(Xo) = F(v;Xo). A verification shows that the induced inclusion
map F(v;Xo) — L'(v;Xo) is a semi-embedding, too. Since Xo C X € (P) is
separable, Xy € (P), whence L'(v; Xo) € (P) after condition (3) on P. Since F(Xp)
is separable after Remark 1.3, (4°), it finally follows that F/(Xo) € (P) by condition
(2). O

Remark. If K = C, the above proof is valid; however, some care is in order.
For instance, in order to conclude that Fy is separable it helps to know that the
complexification of a real Bananch sublattice of Re F is a complex vector sublattice
of E (see [42, p. 134] for definition), e.g. due to order continuity of E (that is, of
Re E). Also the complex version of the representation theorem [37, II.1.b.14] is
needed which, however, can be derived from the real one without difficulties.

2.3 Comments on conditions 2.1, (1)—(4)

(1°) In presence of (1) and (2), condition (3) may be replaced by the formally weaker
(3’) if A is Lebesgue-Borel measure on [0,1], and X € (P) is separable, then
LY(\;X) € (P).

For, let (1), (2), (3’) be satisfied and let any finite measure v and Banach
space X be given. After (1), (2) and [24, Lemma IIL.8.5], one can assume that
L'(v) and X are separable. Then L!(v) is order isometric to a closed sublattice
F of LY(X) [27, Theorem 41.C], cf. [40, p. 759]. Then, by Theorems 1.4 and 1.5,
LNv; X) 2 L'w)®X ¥ FRX C L*(A\)®X = L'(); X). Now P for L!(v; X) follows
from (2) and (3’).
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(2°) Assume there is some non-zero Banach space with P, and that P fulfils (1)-(3).
Then, obviously, K € (P), whence L'(u) € (P) for all finite measures p. By the
techniques of proof of Theorem 2.2, every Banach lattice not containing ¢y must
share P. In particular, /2 has P, and thus all separable dual spaces share P because
they semi-embed into {2 [3, Proposition 1.2]. If, in addittion, P fulfils (4), then P is
equivalent to not containing ¢y in the realm of Banach lattices.

ExaMmPLE 2.4 (ARNP)

Let K = C. The analytic Radon-Nikodym property ARNP introduced by
Bukhvalov and Danilevich [6], [12] fulfils (1)-(4): (1) is trivial; for (2) see [3, p. 153],
[31, Corollar (3.4)]; for (3), look at section 1.1; (4) is trivial. It follows that (*) holds
for ARNP, reproving a result of Bukhvalov [11, Theorem 7], cf. 1.1.

EXAMPLE 2.5 (2 ¢)

The property P not to contain (an isomorphic copy of) ¢o fulfils (1)-(4): (1)
is trivial. In the situation of (2), assume there is a Banach subspace Xy C X,
Xo & ¢p. Since X is separable, S: X — Y is a Gs-embedding [3, Proposition 1.8],
whence also §|Xo — Y is a Gs-embedding and even an isomorphic embedding
[3, Proposition 2.2(a)], contradiction. For (3), see introduction 1.1. (4) is trivial.
Consequently, (%) holds for this property, reproving again a result of Bukhvalov [10],
cf. 1.1.

ExAMPLE 2.6 (A-RNPs)

Let G' be a metrizable compact abelian group and A a Riesz subset of the dual
group I' (i.e. every measure on G with Fourier-Stieltjes coefficients vanishing off
A is absolutely continuous). As introduced by Dowling [21-23] and Edgar [26], a
complex Banach space X is said to possess the type I- (resp., type II-) A-RNP if
every X-valued measure on G with bounded average range (resp., with bounded
variation) and Fourier-Stieltjes coefficients vanishing off A admits of a Bochner inte-
grable Radon-Nikodym derivative (all notions with respect to Haar measure on G).
As is easily seen, both properties satisfy conditions 2.1 (1) and (4) (if A is infinite),
cf. [22, §3, Remarks 1) and 4)].

Dowling [private communication] proved that type II-A-RNP fulfils 2.1 (2) and,
if ' = Z, also 2.1 (3) [22, Proposition 8] (the latter proof is only notationally different
from the case of ARNP, i.e. A = Ny, treated in [20] and [31]). It follows that (*)
holds for the type II-A-RNP provided A is a Riesz subset of Z.

Example 2.4 (ARNP) is the special case A = Ng. On the other hand, if A is an
infinite Sidon set then the assertion reduces to example 2.5 (2 ¢o) [21, Corollary 7).
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Type I-A-RNP (for general I') clearly satisfies 2.1 (2) [22, §3, Remark 2], but I
can prove only the weaker version of (3) [32]: If v is a finite measure and X has type
II-A-RNP then L!(v; X) has type I-A-RNP. The procedure of proof of Theorem 2.2
yields:

Remark. Let A be a Riesz subset of I'. If F has type [-A-RNP and X has type
II-A-RNP then F(X) has type I-A-RNP.

ExaMPLE 2.7 (P)

Consider the property (P) introduced by Costé and Lust-Piquard [16]. It fulfils
(2)—(4) [16, Proposition 4, Théoréme 4, Corollaire 2a], but only the following weaker
version of (1) [16, p. 55]:

(1’) In spaces with the separable complementation property SCP, P is separably
determined.

(A Banach space X has SCP iff every separable Banach subspace Xo C X is con-

tained in a separable and complemented Banach subspace X; C X).

The following variant of Theorem 2.2 therefore applies to Costé’s and Lust-
Piquard’s property (P).

Proposition 2.8
(a) If P satisfies (1°), (2), (3), (4), then

E,X € (P) and X € (SCP) implies E(X)€ (P) (and E(X) €(SCP)).
(b) If P satisfies only (1), (2), (3), then
EPDecy, X €(P), X € (SCP) implies E(X)€ (P) (and E(X) €(SCP)).

Lemma

If F is an order continuous Banach lattice and X a Banach space with SCP,
then EQX has SCP as well.

Remarks. (1°)1t is known that a Banach lattice E is order continuous if and only if
E is o-order complete and has SCP. For the “only if” part, see [5, Proposition 2.1, 1)],
(26, Proof of Proposition IV. 1, 2)]. The other implication is stated without proof
in [5, Proposition 2.1, 3)], [14, §2, Remark 3h)], seemingly only for order complete
Banach lattices. Let me give an argument to prove the “if” part. After [37, II. 1.a.8]
only o-order continuity is to be shown. Assuming the contrary, then [*° — E as a
Banach subspace [37, II. 1.a.7]. This, however, is impossible even for Banach spaces
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E with SCP: Suppose, in somewhat sloppy notation, [ C E = ¢ C [* C E =
3Xo C F separable and complemented in F s.t. ¢¢ C Xo. ¢o is complemented in Xg
by Sobczyk’s theorem [37, 1.2.f.5] = ¢y complemented in E => ¢y complemented in
[*°, contradiction.

(2°) Because of (1°), in the realm of Banach ideal spaces E the lemma takes on the
nice form: E, X €(SCP) implies E(X) €(SCP), that is, (x) holds for SCP.

Proof of lemma. First I remark that after the famous Amir-Lindenstrauss theorem
“WCG = SCP” [18, Theorem V.2.3], in order to prove SCP for a Banach space
Y it suffices to find, for every separable Yy C Y, a complemented WCG subspace
/y C Y such that Yy C ;. Let Y C EQX be a separable Banach subspace. As in
the proof of Theorem 2.2, there exists a separable Banach sublattice Fy C E and a
separable Banach subspace Xy C X such that Y C Eg®Xo C E®X. Following [26,
Proof of Proposition IV. 1, 2)], there exists a Banach sublattice E;y of E such that
Ey C Eq, E; is WCG and complemented in E by a positive projection P: E — E;.
By hypothesis, there exists a Banach subspace X7 of X such that Xo C X1, X is
separable (hence WCG) and complemented in X by a projection @: X — X;. By a
result of Bukhvalov [7, Theorem 2, Proof], E1®X; is WCG together with E; and X;.
Now PRQ: E®X — E1®X; is a projection and Y C Eq®Xo C E;®X; C EQX
(Theorem 1.5). By the initial remark, this proves the lemma.

Remarks. (3°) For the convenience of the reader, let me sketch an (alternative)
proof of the assertion: £ WCG Banach lattice, X WCG Banach space implies EQ X
is WCG. As in [loc.cit], it suffices to show that if f, — 0 weakly in E, z, — 0 weakly
in X then f, ® z, — 0 weakly in EQX. As indicated already in Remark 1.4, (1°),
an element of (EQX)' is given by a cone absolutely summing operator T: E — X'
according to the formula (f®z,T) = (z,Tf). By [42, Proposition IV.3.3], T admits

of a factoring £ D, 1 = X', where L is an AL-space, so that
(mefn) = <znaT2T1fn) = (TlfmT:f-Tn> — 0,

L possessing the Dunford-Pettis property [42, Theorems 11.9.7, 11.9.9].

(4°) In connection with the proof of the lemma, the following interesting prob-
lem arises. I say that a Banach lattice F has the positive SCP iff every separable
Banach sublattice Ey of E is contained in a separable Banach sublattice F; of E
which is complemented by a positive projection. Does order continuity imply the
positive SCP? By conditional expectation operators, this is true for L!(v)-spaces,
v finite measure. Professor Bukhvalov has informed me that, building on this, it is
also true for rearrangement invariant Banach function spaces.
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Proof of proposition. Again, only (b) is to be shown. By hypotheses and lemma,
E(X)= E®X € (SCP), so that P for E(X) is separably determined (1’). Now the
proof proceeds as given for Theorem 2.2.

ExaMPpLE 2.9 (NRNP)

As a final example, I consider the near Radon-Nikodym property introduced by
Kaufman, Petrakis, Riddle and Uhl [34]. A Banach space X has NRNP iff every near
Radon-Nikodym operator T: L!()\) — X is Riesz representable, where T is called a
near Radon-Nikodym operator iff T D is Riesz representable for all Dunford-Pettis
operators D: L'(\) — L'()\). By a routine argument (e.g. [19, Proof of Theorem
IT1.3.2], this property fulfils condition 2.1 (1), and also (2) [34, Proofs of Corollaries
19, 22], and (4) [loc.cit., Example 10]. The main result of [loc.cit.] is that L'(X)
has the NRNP. Unfortunately, I do not know whether L!(\; X) has NRNP together
with X, that is, whether NRNP fulfils condition 2.3 (3”). (If so, then () is true for
NRNP (2.2, 2.3).) However, I can prove that L!(u; X) has NRNP if X has RNP
(and p is any measure) [32]. Inspecting the proof of Theorem 2.2 yields

Proposition
E €(NRNP), X €(RNP) implies E(X) €(NRNP).

NOTE ADDED IN PROOF: The answer to the question raised in Remark 2.8 (4°)
is positive. This follows by an adaptation of Valdivia’s stunningly simple proof of
the Amir-Lindenstrauss theorem [M. Valdivia, Espacios de Fréchet de generacién
débilmente compacta, Collect. Math. 38 (1987), 17-25, Lemma 1] to the lattice
situation. The proof of Lemma 2.8 simplifies accordingly.
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