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ABSTRACT
We construct in this paper some simultaneous projective resolutions of the

identity operator which we later use to obtain certain new results on quasi-
complementation property and Markushevich bases.

All linear spaces mentioned throughout the following are assumed to be real. Q
stands for the field of rationals. Ny denotes the first infinite cardinal and w is the
first ordinal of cardinality Ro. The symbol |A| denotes the cardinal of the set A.
Similarly, for a given ordinal «, || represents its cardinal number.

X* stands for the conjugate of a given normed linear space X. For a given
subset A of X*, by A,, or even (A),, we mean the set A endowed with the topology
induced by the weak-star topology of X*; A, denotes the orthogonal subspace of A
in X, and lin A is the linear hull of A. For a continuous linear operator 7' from X
into X, T* is its conjugate operator and ker T its kernel. Bx will denote the closed
unit ball of X. For a given subset M of X, M+ indicates the orthogonal subspace
of M in X*, [M] is the closed linear hull of M, and L(M) is the normed subspace
of X given by the linear hull of M. If M is a closed absolutely convex bounded
subset, then Xps will stand for the normed space on lin M with M as closed unit
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ball. Given a closed subspace Y of X, a closed subspace Z of X is said to be a
quasicomplement of Y whenever Y N Z = {0} and Y + Z is dense in X. The symbol
|| - || denotes the norm of any normed space X. If z isin X, uisin X* and Aisa
subset of X, then (z,u) is the value of u on z, and d(z, A) is the distance from z
to A.

The density character of a topological space F is defined as the first cardinal
number A such that there is a dense subset A of E with |A] = A. We then write
A = dens E.

A Markushevich basis in a normed space X is a biorthogonal system
(2, ui)ier, z; € X, u; € X*,

such that
X = [{zi : i € I}],

and
lin {u,- 11 € I}

is weak-star dense in X*.
We shall then say, as Plicko [11], that (z;, u;);er is countably 1-norming provided
that the set of all elements u in Bx- for which the set of indices

{iel : (zi,u) #0}

is countable is weak-star dense in Bx«.
A projective resolution of the identity operator in a normed space X, or simply
a resolution of the identity in X, is a family

{Py : w<a<yu} (1)

of continuous projections on X, with u being the first ordinal of densX, such that:
P, is the identity operator in X,

[|Po|]l =1, dens Py(z)<|a|, PyoPg=PsgoP,, w<f<asuy,
and, for each limit ordinal «, the closure of
U{Ps(X) : w<B<a}

in X coincides with P,(X). A Markushevich basis (z;,u;):cr is said to be associated
to the resolution of the identity (1) whenever there is a partition of the index set I,

Iw’IOI+17 w S a< |,
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is a Markushevich basis of P,(X), and

(xiaui R )
(Pa+1—Pa)(X) 1€14 41

is a Markushevich basis of (P41 — Po)(X), w < a < p.

We select a countable base O of the usual topology of R.

Given a compact topological space K, C(K) is the Banach space of all contin-
uous real functions f in K, with the norm

171l = sup {If(2)] : = € K}.

For a retraction r in K, T, is the operator in C(K') such that
T.f=for, [eC(K).

If Kv,K,,...,K, are closed subsets of A" and 04, 02,...,0, € O, we write:

such that

PW(X))ieIw

P(Ky,Ks,...,K,;01,02,...,0,) =
{feC(K) : f(K1)C o1, f(K2)Coa,...,f(Kn) Con}
Assigning to each element = of a given normed space X its restriction to Bx~
we may consider X as a subspace of C((Bx=)s)- .
For a set I, given v € T and f € R, we set e,(f) = f(7); e is the function
with constant value one for every point of RT. If J is a subset of T, a mapping
r;: RN — RF
is defined by setting, for each z = (z., : v € T') in RT,
ry(z)y =0 ify¢J,
{7"](1:)7 =z, ifyelJ,
If z= (2, : v €T)isin RF, we define
supp z:={y €T : z,#0}.
If A is a subset of Rl', then

supp A := U{supp z 1 z€ A}

If K is a compact subset of RF, K(T') is the subset of K formed by all points
z such that supp z is countable. C,(K) denotes the linear space C(I) with the
topology of the pointwise convergence respect to the points of K(T').

We shall say that a compact space K belongs to the class A whenever it is
homeomorphic to a subspace of R', for some set T, such that K(T) is dense in K.
In particular, if K(T') = K, is said to be a Corson compact.
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Lemma 1

Let K be a compact subset of R' such that K (T) is dense in K. Let Ay and
By be two infinite subsets of C(K') and K (T'), respectively, such that |Aqg| = |Bo|.
Then there is a retraction v in K satisfying

(a) Ao C T-(C(K)), Bo C r(K).

(b) dens T,.(C(K)) < |Ap|.

Proof. Let g, and g denote the restrictions of e, and e to K, respectively, v € I'.
The algebra generated by the set

{9y : veT}u{g}
separates points in K and contains the constant functions. Thus, for each continuous
real function f, defined in K, there is a countable subset T'(f) of T such that f lies
in the closure in C(K') of the algebra generated by

{94 + Y€ T(f}u{g}.
We set

L= (JIT(f) & f€Ao}) Usupp Bo, A= |ol.

The procedure we shall now follow in the construction of the retraction r con-
tains a method already used by Gul’ko and Benjamini for Corson compacts [2]. We
proceed by induction assuming that, for a non-negative integer n, we have already
defined the subset I,, of ' with |I,| < A. Since

dens 71, (K) < A,
there is a subset M, of K(T') such that |M,| < A and ry, (M,) is dense in 7y, (K).
We then define '
Iyq := I, Usupp M,.
Then |In4+1] < A. Now, let

I:= U{I” in=1,2,...}.

We write » meaning the restriction of ry to K. Let z be an element in K. By
compactness of K, we may find, for each non-negative integer n, a point u(*) in the
closure of M, such that ry, (u{™) = r;, (2). Let u be a cluster point of the sequence
(u{™). Take an element v in I. We then have a positive integer m such that 7 is in
I,. Thus ufy” = z,, n > m, and, hence, u, = 2,. But also we have

Suppu(n)CIn+cha n=09172,"' ’
hence supp u is contained in I, i.e., r;(u) = u, and r is a retraction in K.

Now, let 2 be in I and f in Ap. Since T'(f) is contained in I, we have that f
vanishes in the vector z — r(z) of C(X)*, and, consequently,

f(z) = f(r(z)) = (T f)(=),

thus f coincides with T, f and the final conclusion is now immediate. 0
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Lemma 2

Let K be a compact subset of RU with K(T) dense in K. Let (Nm) be a
sequence of closed subsets of C,(K). Let Ag and By be two infinite subsets of C(K)
and K(T'), respectively, such that |A¢| = |Bo|. If G is a subset of C(K') such that,
for each z in K(T),

{feG : f(z) # 0}

is countable, then there is a subset J of I such that the restriction s of vy to K is a
retraction in K and there is a subset G1 of G with the following properties:

(a) Ag C TS(C(.K)), By C S(I().

(b) dens Ts(C(K)) < | Aol

(¢) Ts(Npm) C Npp, m=1,2,...

(d) Gy C T5(C(K)), G\ Gy C ker Ts.

Proof. As established in the previous lemma, we determine a subset I of I" such that
the restriction r of r; to K be a retraction satisfying:

11 < 4ol, 4o C T,(C(K)), Bo C r(K).
Let us define
A= Ao, Jo:=1, so:=7, Qu :=C(K)\ Ny, m=1,2,....

Again, an inductive procedure allows us to assume that, for a non-negative
integer n, we have a subset J, of I such that |J,| < A and the restriction s, of rj,
to K is a retraction, and we also have the sets

An CTs,(C(K)), Bn Csn(K), [An]=|Bn|=2A.
We choose a family of compact subsets of s,(K),
{Knn : h€ Hp}, |Hp| <A, (2)

such that their interiors K, in s,(K) are a base for the topology of that space and

o
the closure of [, coincides with K. Given the positive integers
m,hl’h2""’hjEH’n.9 Onl,ongy"'yonjeo5

we select, if it exists, an open subset of C,(K) of the type

1. z1,22,...,2; € K(T),
P({-’”l}a{-’”?},'"3{$2}70m190mz""aomi)’ {0m170m2,--'30m,~ € O
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such that it contains

P(s7 M (Knhy )y 87 (Knhg )y 387 (Knh; )i 0nys0ngs - - - 5 0n;)

and at the same time contained in @,,. We write D,, for the reunion of all sets
{z1,z3,...,2;} corresponding to all

m,j €N, hy,hy,...,h; € Hyy 0n,,0n,,...,0,; €O.

Obviously, |D,| < A. Now, let F,, be a subset dense in s,(K)N K (T), with |F,| < A.
Then we define
Ant1:= A U{f€G : f(z)# 0,z € By}

Bn+1 = Bn U Dn (0] Fn.

Cleatly, [Ans1] = |Buy1] = A.
Applying the previous lemma with A,;; and B,y instead of Ap and By, re-
spectively, we obtain a subset J,4; in I' such that the restriction s,4q of 7,

w1 to
K is a retraction and

[Jns1l €A, Angr C 1o,y (C(K)),  Brtr C snta(K).

Now, let

J = U{J" tn=1,2,...}.

If z lies in K, it is clear that r;(z) is the limit of (s,(z)) and, therefore the restriction
s of rj to K is a retraction which clearly satisfies the properties (a) and (b).
Take now an element f in N, and assume that T, f is not in N,,. We may find

Z192244..42k € K(I‘), 01,09,...,0 € O,

such that
P({zl},{ZQ},...,{Zk};01,02,...,0k) (3)

be a neighbourhood of T; f contained in @,,.
Let £ > 0 such that

(Ts f)(2:) — 3¢, (Ts f)(2i) + 3€] C o, i=1,2,...,k.
Obviously Ts;(C(K)) is a linear algebra containing the constant functions. Also

T,,(C(K)) C Ts, . (C(K)), §=1,2,...,
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thus allowing
AT (c(K)) = G=1,2,...} (4)
to be a linear algebra containing constants. If
z=(zy:v€T), y=(yy : 7€)

are two distinct points of s(K'), then there is a positive integer ¢ and an index v in
Ji such that 2, # y,. Then

ey(T) = Ty # Yy = e4(y)

and, since e | belongs to Ts; (C(K')), we have that the restriction of the functions in
(4) to s(K) are a dense subset of C(s(K)). For this reason, we may find an element
g in (4) such that

l9(2) = (Tof)(@) <&, = €s(K).
Set a positive integer n that g is in T (C(K)). Then
l9(20) — (Tsf)(20)] = l9(s(20)) — (Tsf)(s(z0))| <&,  v=1,2,...,k.

For each v = 1,2,...,k, since the intersection of all the elements in (2) contain-
ing sn(zy) is {sn(2y)}, there are hy, hs,...,hr € H, such'that

5n(%) € Knnyr  9(Knn,) C [9(sn(20)) — €,9(sn(z0)) +e],  0=1,2,0...k.
Thus, if z is a point of s;1(Kps,), with 1 < v < k,

(Ts f)(=) = (Ts £)(z0)l < [(Tsf)(2) — 9(z)| + |9(z) — 9(20)| + |9(20) = (Ts f)(20)]
<e+|g(z) — 9(20)| + € = 2e + [g(sn(2)) — 9(sn(2v))
< 3,

and we get
(T.)(@) € [(T2f)(z) = 3¢, (Tof)(2) + 3¢] C ov.
Hence, writing

Z = P(s,:l(I(nhl),s,jl(Knh?),...,s;l(Ix’nhk;ol,oz,...,ok),

we have that T, f is in Z and, since this latter set is contained in (3), there are
Y1,Y2,.-+,Yq in Dy and By, By,..., B, in O, such that

ZC P({yl},{yZ},'-"{yq};Bl,B%---,Bq) C Qm.
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Clearly, ¥1,¥2,...,Yq are in Sp41(K’), therefore

f(yu) = f(3n+1(yu)) = f(s(yu)) = (Tsf)(yv) € Bva v= 17 2, ceesq,

concluding that

f € P({yl}v{:‘h},'-"{yq};B17B27---an) C Qm’

which is a contradiction. Thus showing (c).

Let G; be the subset of G whose elements are in T5(C(K)). It is easily seen
from the construction just given that G \ G, is contained in ker T, property (d) is
then satisfied. O

Theorem 1

Let K be a compact subset of R with K(T) dense in K. Let (N,,) be a
sequence of closed absolutely convex subsets of C,(K). If p and p,, are the first
ordinals of dens C(K') and dens N,,, respectively, and |pr| > Ro, m = 1,2,..., then
there is a resolution of the identity

{To : w<a<yu}

in C(K) with the following properties:

(a) {Talonn) @ w < @ £ pn} is a resolution of the identity in L(Ny),
m=1,2,.... '

(b) In Co(K), Ty is continuous and To(C(K)) is closed, w < a < p.

(¢) Ta(Nm) C Ny, m=1,2,..., w< a < p

Proof. We may clearly assume |T'| = dens K. Let

{fa : 0 a<pu} and {fma : 0<a<pun}

be dense subsets of C(K) anf L(N,,), respectively, m = 1,2,.... We apply our
former lemma for the particular case

Ao = {fa =05a5w}U(G{fm L 0<a<w})
m=1

and By a countably infinite subset of K(T') and we obtain a subset Iy of T' such
that the restriction s of v, to K satisfies properties (a), (b) and (c) there stated.
We set now T, [, and s, instead of T, Iy and s, respectively, and we proceed by
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transfinite induction. Let @ be an ordinal number, w < a < u, such that, for each
ordinal §, with w < 3 < a, a subset I3 of I has been defined so that

’rﬁ|S|ﬂ|’ I\HCI‘& WSOS§<0,

and the restriction of rr, to K is a retraction sg. We define T := T,,. Let us
assume first that a is not a limit ordinal. Let » := a — 1. We choose a dense subset
A, in T,(C(K)) such that |A,| < |v|. If fis an element in A, and m,n are positive
integers with v < p,,,, we select in N,, an element f, , such that

|V—ﬂmH<ﬂﬁMﬂ+%.

We define

m=1,2,....

F, :={fma} ifv<pmnm,
F, =0 if g < v

We choose now a dense subset B, of s,(K), with |B,| = |A,|. Apply again the
previous lemma for the particular case

Ag = A, U{fa}U{f0,.. : 1/<,um,n=1,2,...}U(U{F,,m : m=1,2,...}),
Bo !—_-B,,

and thus we get a subset Iy, of I' for which the restriction s, of rr, to K is a
retraction with the properties (a), (b) and (c) stated in the mentioned lemma with
Sy instead of s. Then I, C I,. Let T, := T, . If a is a limit ordinal, we write

I‘a:=U{I‘g : w< B <al,

and T, := T,_, s, being the restriction of rr, to K.
We show next that
{Ta twla< ,u'}

is a resolution ofthe identity in C(K’). Evidently,
|ITall =1, densTo(C(K))<|a|, TooTg=Tg=TpoTy, w<B<a<lyu.
Also, if e is a limit ordinal, w < & < py, it is simple to see that

UHTs(C(K)) : w<B<a} (5)
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is a subalgebra of C(K') containing constants that separates points in s, (K). There-
fore, for a given € > 0 and an element f of To(C(K')), we may find in (5) an element
g such that

|f(z) —g(z)l <&, =z € sa(K).
Now, if z is an arbitrary element of K, we have
17(2) = 9(2)| = [(Taf)(2) — (Tag)(2)] = |f(3a(2)) - 9(sa(2))]| < &,

thus the closure of (5) in C(K) coincides with T,(C(K)). Finally, if & = u, (5) is
dense in C(K), concluding that T, is the identity operator.

Condition (c) clearly holds. Fix now the positive integer m. Condition (c)
guarantees that T,|r(n,,) is an operator in L(Np,). If  is a limit ordinal, w < @ <
Hm, and f belongs to To(C(K)) N L(N,,), we may find a real number b > 0 such
that bf lies in N,,. Also, we may determine a sequence (f,) in

U{Ts(C(K)) : w<B<a)
convergent to bf in C(K). Hence, we find
wf<ayp<o<...<a,<...<a
such that f, is in Ty, (C(K)). By the preceding construction, there are

frn € Nm,  fan € Tauy, (C(K))

such that .
o = fuall < dlfns M)+ = m=1,2,...

Then, (fyn) is in N,, and converges to bf in C(K'), so that the closure of

U { (TslL(Nw) ) (L(Nm)) : w < B < a}

in L(Ny,) equals To|r(N,,)(L(Nm)). The remaining properties to complete the proof
of (a) are immediate. Condition (b) is straghtforward. O

Note 1. Let X be a Banach space. We identity (Bx-) with a subspace K of RI.
Suppose that there is a linear subspace Y of X* such that Y N K is dense in K
and K(T') contains Y N K. Then X is closed in C,(K) and applying Theorem 1 a
resolution of the identity operator is obtained in X. Using a method introduced in
[15] this result can be proved also, [10].
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Corollary 1.1

Let X be a Banach space such that the closed unit ball of X*, with the weak-
star topology, is a Corson compact. Let (Nn,) be a sequence of closed absolutely
convex subsets of X. If p and p,, are the first ordinal numbers of dens X and
dens N,,, respectively, and |pm| > Ro, m = 1,2,,..., then there is a resolution of
the identity

{To : w<a<u}
in X, such that, for each positive integer m
{Tale(Nm) * w < a< pm}

is a resolution of the identity in L(N,,) and To(N,,) is contained in Ny, w < @ < pp.

Proof. Set K := (Bx~),. We may certainly assume that K is a compact subset of
R, for a convenient T', such that K(T') = K. We then have X, N1, Na,...,Np,...
are closed absolutely convex subsets of ¢,(K). An application of the previous theo-
rem leads to the desired conclusion. O

Theorem 2

Let K be a compact subset of RT with K(T) dense in K. Let M be a closed
absolutely convex subset of C,(K), such that L(M) has infinite dimension. If v is
the first ordinal number of dens L(M), then there is a resolution of the identity

{S¢ : w<a<v}
in L(M) and associated Markushevich basis (f;,u;);er such that
S«(M)C M, w<a<y,
and for each z in K(T'), the set

{iel : fi(X)#0}

is countable.
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Proof. We write g, and g for the restrictions of e., and e to K, respectively, v € T.
Let
G:=AU{g}

where A denotes the subset of C(K') formed by all finite products of the type

g"ng"lz"'g'vn’ 71972,'-',7716]:\-

The linear hull of G is an algebra containing the constant functions that sepa-
rates points in K. Thus, [G] = C(K). Besides, for each z in K(T'),

{feqG: f(z)# 0}

is clearly countable.

We base our discussion on the density character of L(M). If [v| = Rg, the
assertion of the theorem is then obvious [7, Prop. 1. £.3]. Suppose that |v| > Ro and
for each closed absolutely convex subset B of C,(K), with L(B) infinite dimensional,
such that dens L(B) < |v|, there is a resolution of the identity in L(B) and associated
Markushevich basis (g;,v;)jes such that, for each z in K(T'), the set

{ieJ : gi(z) #0}

is countable.

We proceed now as in the proof of Theorem 1, making use also of condition (d)
of Lemma 2, and thus we obtain a projective resolution of the identity in C(K),

{Ty : w<a<yu},
where p is the first ordinal of dens C(K'), and a partition of G,
Gw,Ga-{-l, w<la<y,

such that
{Tolpry @ w<agv}

is a resolution of the identity in L(M),

To(M)C M, w<La<py,
G, C T (C(K)), Gat1 C (Tay1 — T.)(C(K)), w<la<p,
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and, also, in C,(K), Ty is continuous and T (C(K)) is closed, w < a < p. Clearly,
[Gu) = Tu(C(K)), [Gat1] = (Tatr —To)(C(K)), w<a<p.
Now we write
Sa = TalL(M), wSaSv.

Since S, (L(M)) is separable, there is a biorthogonal system ( fi, u;)ier, in L(M)
such that

[{f1 + i€ L} nL(M) = S.(L(M))

and lin {u; : ¢ € I,} is weak-star dense in S} (L(M)*). Obviously, for each z in
K(T), the set

{iel, : fi(z)# 0}
is countable. Given an ordinal number a, w < a < p, we have that
May1 3= M 0 (Say1 = Sa)(L(M))
is closed in Cy(K') and
L(Mas1) = (Sapr = Sa)(L(M)), dens L(M) < |v],

thus, there is a Markushevich basis (fi,vi)ier,,, in L(Mq+1) such that, for each z

in K(T'), the set

+1

(i € Iny1 : fi(z) # 0}

is countable. We may therefore find a biorthogonal system (fi,u;)ier.,, in L(M)
such that

[{fi + i€ Lat1}] N L(M) = (Sot1 — Sa)(L(M))
and lin {u; : i € Io41} is weak-star dense in (S%,; — S%)(L(M)*). If we take
Iy, Io41, w<<a<uvy,
pairwise disjoint and define
I'=1,U{l441,w < a<v}

we clearly have that (fi,u;)ier is a Markushevich basisin L(M). Choose an arbitrary
point z of K(T') and suppose that

{iel : fi(z)#0} (6)

is not countable. Then, there is an uncountable subset A in the interval [w,»] and
an element f° in Gsyq such that

fo(z)#£0, beA

which is a contradiction. Thus, the set (6) is countable. O
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Corollary 2.1

Let K be a compact subset of Rl with K(T') dense in K. Let ¢ be a continuous
mapping from K onto a compact H accomplishing the following conditions:

(a) The restriction ¢ of ¢ to K(T') is a quotient mapping of K (T") onto (K (T)).

(b) If z is a point of H such that ¢~1(z) has more than a point, then = 1(z)N
K(T) is dense in ¢~ 1(z).

Then H belongs to the class A.

Proof. We identity C(H) with a subspace of C(K) simply assigning to each f in
C(H) the function fo .

We now take a function g of C(K') belongs to the closure of C(H) in C,(K).
It is not hard then to see that there is a function f in C(H) such that g = fo ¢,
thus having that C(H) is closed in Cy(K). The previous theorem applies to obtain
a Markushevich basis (fi,u:)ier in C(H) such that, for each z in K(T'), the set

{iel : fi(c)#0}

is countable. For each z in H, we choose z in K such that ¢(z) = 2, and write

P(z) = (fi(z) : i €1).

Then 9 is a continuous injection of H in R’ such that ¢(¢(K(T'))) is dense in ¥(H).
The conclusion now follows. O

In the above corollary, if K is a Corson compact, then K = K(I'), thus condi-
tions (a) and (b) of the corollary are obviously satisfied, and H belongs to class .A.
It is easily verified that H is angelic and, hence, H is a Corson compact. This result
is due to Gul’ko [4] and to Michael and Rudin [9].

Corollary 2.2

Let K be a compact subset of RU' with K(T) dense in K. Let M be a closed
absolutely convex subset of Co(K'), such that L(M) has infinite dimension. Then
there is a resolution of the identity in L(M) and an associated countably 1-norming
Markushevich basis.
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Proof. Applying Theorem 2 we obtain a resolution of the identity in L(M) and an
associated Markushevich basis (fi, u;)ier such that, for each z in K(T'), the set

{iel : fi(z)# 0}

is countable.

We write D for the absolutely convex hull of K(T') in C(K)*. Let v be in
L(M)*, ||v|| £ 1. Hahn-Banach’s theorem provides an element w of C(K)* such that
lw]|| = ||v]l, w|L(ary = v. We find a net

{w; : j€J, >}

in D weak-star convergent to w.
Then

{wileay : 7€J >}

is a net in the closed unit ball of L(M)* weak-star convergent to v. From the
equalities
(fiswilLon) = (fis ws), iel,jelJ,

we deduce that the set
{iel : (fi,wlLan) # 0}

is countable, 7 € J, and, therefore, the basis (f;, u;)ier is countably 1-norming. 0O

Theorem 3

Let K be a compact subset of R'' with K(T') dense in K. Let X be a subspace
of C(K) closed in C,(K). Let M be a bounded absolutely convex subset of X,
closed in C,(I) and such that L(M) has infinite dimension. If the weak topologies
of X and Xps coincide on M, then there are a countably 1-norming Markushevich
basis (fi,ui)ier in X and a subset I of I such that (fi,ui|r (am))ier, is a contably
1-norming Markushevich basis in X ps.

Proof. Our discussion is based on the density character of X. Suppose first that
dens X < Ro. If L(M) is dense in X, the result is obvious, considering that X,
is separable and by virtue of [7, Prop 1.£3]. If L(M) is not dense in X, we find a
quasicomplement Y of the closure of L(M) in X, [8]. We also find two biorthogonal
systems in X, (fi,u;)ier, and (fi, u;)ier, with I and I, disjoint, such that

[{fi : ienL}] =Y,
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lin {fi : ¢t € I;} is dense in Xps, lin{u; : ¢ € L}, lin{u; : ¢ € I} are weak-star
dense subsets of Y+ and L(M)', respectively. If I := I; U I then (fi,ur)ier is the
basis stated in the theorem. Clearly, for each z in K(T'),

i€l fi(z) # 0}
is countable. Let us assume now that
A:=dens X > Ny

and, for each subspace F of C(K), closed in C,(K), dens F < A, and each bounded
absolutely convex subset P of F, closed in C,(K'), with L(P) infinite dimensional,
such that the weak topologies of F' and Fp coincide in P, there is a Markushevich
basis (g;,vj)jes in X, and a subset J; of J such that (gj,'vj|L(P))jeJ1 is a countably
1-norming Markushevich basis in Fp, and for each z in K(T'), the set

{s€J : gj(z) # 0}

is countable.

Let G be as in the proof of Theorem 2. Let u, v and p be the first ordinal
numbers of dens C(K), A and densL(M) = densXjs, respectively. By a similar
argument to that of Theorem 2, making use also of condition (d) of Lemma 2, we
obtain a projective resolution of the identity in C(K),

{To : w<a<yu}

and a partition of G,
GwaGa+1, w_<_01</L,

such that

To(M)C M, G,CTyCK)), Gas1C (Tas1-Ta)(C(K)), w<a<np,

and
{Tolx : wa<v} and {Tulpmy @ w<a<p}

are projective resolution of the identity in X and L(M), respectively. Also, in
Cy(K), Ty is continuous and T,(C(K)) is closed, w < a < pu. Clearly,

[G,] =TL(C(K)) and [Gat1] = (Tat1 — To)(C(K)), w<a<pu.
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We choose now a limit ordinal 8, w < 8 < p, and an element f of T3(C(K) N
L(M). We then determine a non-zero real number b for wich bf lies in M. Using
a similar process in the construction of the resolution of the identity to that of
Theorem 1, there is a sequence (f,) in

M (U{TW(C(K)) : w< a<pB})

norm convergent to bf. Then (f,) converges to bf respect to the weak topology of
X, hence concluding that

{Talpary + w<a<p}
is a resolution of the identity in Xas. We define
Sa = Talx, w<a<v

Assume first that p = v. Since S,(X) and M,, := S, (X)N M are closed in C,(K),
Sw(X) is separable and the weak topologies of S, (z) and X, coincide in M,,, we
may find a biorthogonal system (f;,ui)icr, in X and a subset I}, of I, such that

[{fz (1€ Iw}] = Sw(X)v

lin {f; :i € 11} is a dense subset of Xps,, and {u; : i € I} is a weak-star dense
subset of S5 (X ™). Clearly, for each z in K(T'),

{i€el,: fi(z) # 0}
is countable. For a given ordinal a, w < a < u, we have that
(Sa+1 - Sa)(X) and Myt :=MnN (Sa+1 - Sa)(X)

are closed in C; (K'), the weak topologies of (Sq41—S54)(X) and (Sa41—S5a) (X, y,)
coincide in M4 and dens (Sqa41— Sqa)(X) < A. Therefore, there is a Markushevich
basis (fi,wi)ier, 4, in (Sa+1 - Sa)(X) and a subset Ié+1 of I,4+1 such that, for each
z in K(T),

{1 € Loy1 : fi(z) # 0}
is countable and lin {f; : I},;} is a dense subset of Xy, ,,. We take a subset

{ui 11 € Inp1} of (Skyy — S%)(X*) whose linear hull is weak-star dense in that
space and such that (f;,4;)ier,,, is a biorthogonal system in X.
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If we set
IwaIa+1a wSa<V,

pairwise disjoint, and define

L :=1u (LJ{I;+1 rw<la< l/}), I:=1I,U (U{Ia+1 rw<la< z/})
we have that (f;, u;)ier is a Markushevich basis in X such that, for each = in K(T'),

iel: fi(z) £ 0}
is countable and, proceeding as in the proof of Corollary 2.2, it happens that
(fi,ui)ier and (f,-,u,-|L(1\,!))i€I1 are countable 1-norming Markushevich bases in X
and L(M), respectively. It is then quite easy to see that (f;, uilL(M))ieII is a count-
ably 1-norming Markushevich basis in Xjs.

Suppose now that p < v. Lemma 2 applies to obtain two subspaces Y and Z of

X, closed in C,(X), M CY, densY = |p|, such that Z is a topological complement
of Y in X. We find a Markushevich basis (f;,v;)jes in Y and a subset I; of J such
that (fi, vi|L(M))ieI is a countably 1-norming Markushevich basis in Yar = Xr and,
for each z in K(T'), the set

{7 €J: fi(z) # 0}
is countable. We find now in Z a Markushevich basisi (fi,vn)ren, with H being
disjoint with J, such that, for each z in K(T)

{h € H : fn(z) # 0}

is countable. Let Y and Z1 be the subspaces of X* orthogonal to Y and Z,
respectively. We may take

quZ-L’ jEJ, uhEYl’ h€H7

so that (fj,u;)jes and (fn,un)reH, are biorthogonal systems in X. Writing I :=
JUH, then (fi,u;);er is the desired Markushevich basis in X stated in the theorem.
O

Corollary 3.1

Let X be a Banach space such that (Bx«), is a Corson compact. Let M
be a closed bounded absolutely convex subset of X such that L(M) has infinite
dimension. If the weak topologies of X and X s coincide in M, then the following
properties hold:

(a) There is a Markushevich basis (z;,ui)ier in X and a subset Iy of I such
that (zi,uilx,, )ieh is a Markushevich basis in X ps.

(b) The closed unit ball of (Xpr)*, with the weak-star topology, is a Corson
compact.
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Proof. We write K to mean (Bx*),. We may assume that K is a compact subset of
R, for a convenient T', such that K(I') = K. Then M and X are closed in C,(K)
and property (a) obtains directly from Theorem 3. Since L(M)* is a dense subspace
of (Xa)* and, for each v in L(M)*, the set

{i el : (zi,v) #0}

is countable, we get that, for each u in (Xpr)*, the set

{i€e : (zi,u) #0}

is countable, and property (b) is thus satisfied. O
The next corollaries are simple consequences of Theorem 3.

Corollary 3.2

If X is a Banach space such that the closed unit ball of X* is a Corson compact
for the weak-star topology, then every closed subspace of X admits a quasicomple-
ment in X.

Corollary 3.3

If X is a Banach space such that (Bx~), is a Corson compact, then X admits
a quasicomplement in C((Bx+)s)-

If X is a reflexive Banach space, then it admits a resolution of the identity [5].
This property is extend in [1] for the case of X being weakly compactly generated,
and in [16] when X is a weakly countably determined Banach space.

The former results, changing the term Banach for Fréchet, are shown in [12]
and [13] by a rather simple method.

Resolutions of the identity may be of interest to show that certain Banach
subspaces admit Markushevich bases [5].

Note 2. Let K be a compact of the class A. It is shown in [14] that there is in C(K)
a resolution of the identity formed by extension operators. In [3] a resolution of the
identity in C(K) is constructed in such a way that permit to prove that if H is the
continuous image of a compact of the class A then H has Namioka’s property, i.e.,
for each Baire topological space F and each mapping g: E X H — R separatedly

continuous there is a residual subset © of E such that g is continuous in every point
of @ x K.
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