Simultaneous resolutions of the identity operator in normed spaces

M. VALDIVIA

Departamento de Análisis Matemático, Universidad de Valencia Dr. Moliner 50, 46100 Burjasot (Valencia), Spain

Received August 30, 1991. Revised April 10, 1992

ABSTRACT

We construct in this paper some simultaneous projective resolutions of the identity operator which we later use to obtain certain new results on quasi-complementation property and Markushevich bases.

All linear spaces mentioned throughout the following are assumed to be real. \mathbb{Q} stands for the field of rationals. \aleph_0 denotes the first infinite cardinal and ω is the first ordinal of cardinality \aleph_0 . The symbol |A| denotes the cardinal of the set A. Similarly, for a given ordinal α , $|\alpha|$ represents its cardinal number.

 X^* stands for the conjugate of a given normed linear space X. For a given subset A of X^* , by A_{σ} , or even $(A)_{\sigma}$, we mean the set A endowed with the topology induced by the weak-star topology of X^* ; A_{\perp} denotes the orthogonal subspace of A in X, and $\lim A$ is the linear hull of A. For a continuous linear operator T from X into X, T^* is its conjugate operator and ker T its kernel. B_X will denote the closed unit ball of X. For a given subset M of X, M^{\perp} indicates the orthogonal subspace of M in X^* , [M] is the closed linear hull of M, and L(M) is the normed subspace of X given by the linear hull of M. If M is a closed absolutely convex bounded subset, then X_M will stand for the normed space on $\lim M$ with M as closed unit

266 Valdivia

ball. Given a closed subspace Y of X, a closed subspace Z of X is said to be a quasicomplement of Y whenever $Y \cap Z = \{0\}$ and Y + Z is dense in X. The symbol $\|\cdot\|$ denotes the norm of any normed space X. If x is in X, u is in X^* and A is a subset of X, then $\langle x, u \rangle$ is the value of u on x, and d(x, A) is the distance from x to A.

The density character of a topological space E is defined as the first cardinal number λ such that there is a dense subset A of E with $|A| = \lambda$. We then write $\lambda = \text{dens } E$.

A Markushevich basis in a normed space X is a biorthogonal system

$$(x_i, u_i)_{i \in I}, \quad x_i \in X, u_i \in X^*,$$

such that

$$X = [\{x_i : i \in I\}],$$

and

$$\lim \{u_i : i \in I\}$$

is weak-star dense in X^* .

We shall then say, as Plicko [11], that $(x_i, u_i)_{i \in I}$ is countably 1-norming provided that the set of all elements u in B_{X^*} for which the set of indices

$$\{i \in I : \langle x_i, u \rangle \neq 0\}$$

is countable is weak-star dense in B_{X^*} .

A projective resolution of the identity operator in a normed space X, or simply a resolution of the identity in X, is a family

$$\{P_{\alpha} : \omega \le \alpha \le \mu\} \tag{1}$$

of continuous projections on X, with μ being the first ordinal of densX, such that: P_{μ} is the identity operator in X,

$$||P_{\alpha}|| = 1$$
, dens $P_{\alpha}(x) \le |\alpha|$, $P_{\alpha} \circ P_{\beta} = P_{\beta} \circ P_{\alpha}$, $\omega \le \beta \le \alpha \le \mu$,

and, for each limit ordinal α , the closure of

$$\bigcup \left\{ P_{\beta}(X) : \omega \leq \beta < \alpha \right\}$$

in X coincides with $P_{\alpha}(X)$. A Markushevich basis $(x_i, u_i)_{i \in I}$ is said to be associated to the resolution of the identity (1) whenever there is a partition of the index set I,

$$I_{\omega}, I_{\alpha+1}, \qquad \omega \leq \alpha < \mu,$$

such that

$$\left(x_i, u_i\Big|_{P_{\omega}(X)}\right)_{i \in I_{\omega}}$$

is a Markushevich basis of $P_{\omega}(X)$, and

$$\left(x_i, u_i\Big|_{(P_{\alpha+1}-P_{\alpha})(X)}\right)_{i \in I_{\alpha+1}}$$

is a Markushevich basis of $(P_{\alpha+1} - P_{\alpha})(X)$, $\omega \leq \alpha < \mu$.

We select a countable base \mathcal{O} of the usual topology of \mathbb{R} .

Given a compact topological space K, C(K) is the Banach space of all continuous real functions f in K, with the norm

$$||f|| = \sup \{|f(x)| : x \in K\}.$$

For a retraction r in K, T_r is the operator in $\mathcal{C}(K)$ such that

$$T_r f = f \circ r, \qquad f \in \mathcal{C}(K).$$

If K_1, K_2, \ldots, K_n are closed subsets of K and $o_1, o_2, \ldots, o_n \in \mathcal{O}$, we write:

$$P(K_1, K_2, \dots, K_n; o_1, o_2, \dots, o_n) = \{ f \in \mathcal{C}(K) : f(K_1) \subset o_1, f(K_2) \subset o_2, \dots, f(K_n) \subset o_n \}.$$

Assigning to each element x of a given normed space X its restriction to B_{X^*} we may consider X as a subspace of $\mathcal{C}((B_{X^*})_{\sigma})$.

For a set Γ , given $\gamma \in \Gamma$ and $f \in \mathbb{R}^{\Gamma}$, we set $e_{\gamma}(f) = f(\gamma)$; e is the function with constant value one for every point of \mathbb{R}^{Γ} . If J is a subset of Γ , a mapping

$$r_J \colon \mathbb{R}^\Gamma \longrightarrow \mathbb{R}^\Gamma$$

is defined by setting, for each $x = (x_{\gamma} : \gamma \in \Gamma)$ in \mathbb{R}^{Γ} ,

$$\begin{cases} r_J(x)_{\gamma} = 0 & \text{if } \gamma \notin J, \\ r_J(x)_{\gamma} = x_{\gamma} & \text{if } \gamma \in J, \end{cases}$$

If $z = (z_{\gamma} : \gamma \in \Gamma)$ is in \mathbb{R}^{Γ} , we define

$$\operatorname{supp}\,z:=\{\gamma\in\Gamma\ :\ z_\gamma\neq 0\}.$$

If A is a subset of \mathbb{R}^{Γ} , then

$$\operatorname{supp}\,A:=\bigcup\{\operatorname{supp}\,z\ :\ z\in A\}.$$

If K is a compact subset of \mathbb{R}^{Γ} , $K(\Gamma)$ is the subset of K formed by all points z such that supp z is countable. $\mathcal{C}_{\sigma}(K)$ denotes the linear space $\mathcal{C}(K)$ with the topology of the pointwise convergence respect to the points of $K(\Gamma)$.

We shall say that a compact space K belongs to the class \mathcal{A} whenever it is homeomorphic to a subspace of \mathbb{R}^{Γ} , for some set Γ , such that $K(\Gamma)$ is dense in K. In particular, if $K(\Gamma) = K$, is said to be a Corson compact.

268 Valdivia

Lemma 1

Let K be a compact subset of \mathbb{R}^{Γ} such that $K(\Gamma)$ is dense in K. Let A_0 and B_0 be two infinite subsets of $\mathcal{C}(K)$ and $K(\Gamma)$, respectively, such that $|A_0| = |B_0|$. Then there is a retraction r in K satisfying

(a)
$$A_0 \subset T_r(\mathcal{C}(K)), B_0 \subset r(K)$$
.

(b) dens
$$T_r(\mathcal{C}(K)) \leq |A_0|$$
.

Proof. Let g_{γ} and g denote the restrictions of e_{γ} and e to K, respectively, $\gamma \in \Gamma$. The algebra generated by the set

$$\{g_{\gamma} : \gamma \in \Gamma\} \cup \{g\}$$

separates points in K and contains the constant functions. Thus, for each continuous real function f, defined in K, there is a countable subset $\Gamma(f)$ of Γ such that f lies in the closure in $\mathcal{C}(K)$ of the algebra generated by

$$\{g_{\gamma} : \gamma \in \Gamma(f)\} \cup \{g\}.$$

We set

$$I_0 := \left(\bigcup \{\Gamma(f) : f \in A_0\}\right) \cup \operatorname{supp} B_0, \qquad \lambda := |A_0|.$$

The procedure we shall now follow in the construction of the retraction r contains a method already used by Gul'ko and Benjamini for Corson compacts [2]. We proceed by induction assuming that, for a non-negative integer n, we have already defined the subset I_n of Γ with $|I_n| \leq \lambda$. Since

dens
$$r_{I_n}(K) \leq \lambda$$
,

there is a subset M_n of $K(\Gamma)$ such that $|M_n| \leq \lambda$ and $r_{I_n}(M_n)$ is dense in $r_{I_n}(K)$. We then define

$$I_{n+1} := I_n \cup \operatorname{supp} M_n.$$

Then $|I_{n+1}| \leq \lambda$. Now, let

$$I:=\bigcup \{I_n: n=1,2,\ldots\}.$$

We write r meaning the restriction of r_I to K. Let z be an element in K. By compactness of K, we may find, for each non-negative integer n, a point $u^{(n)}$ in the closure of M_n such that $r_{I_n}(u^{(n)}) = r_{I_n}(z)$. Let u be a cluster point of the sequence $(u^{(n)})$. Take an element γ in I. We then have a positive integer m such that γ is in I_m . Thus $u_{\gamma}^{(n)} = z_{\gamma}$, $n \geq m$, and, hence, $u_{\gamma} = z_{\gamma}$. But also we have

supp
$$u^{(n)} \subset I_{n+1} \subset I$$
, $n = 0, 1, 2, ...$,

hence supp u is contained in I, i.e., $r_I(u) = u$, and r is a retraction in K.

Now, let x be in K and f in A_0 . Since $\Gamma(f)$ is contained in I, we have that f vanishes in the vector x - r(x) of $\mathcal{C}(X)^*$, and, consequently,

$$f(x) = f(r(x)) = (T_r f)(x),$$

thus f coincides with $T_r f$ and the final conclusion is now immediate. \square

Lemma 2

Let K be a compact subset of \mathbb{R}^{Γ} with $K(\Gamma)$ dense in K. Let (N_m) be a sequence of closed subsets of $\mathcal{C}_{\sigma}(K)$. Let A_0 and B_0 be two infinite subsets of $\mathcal{C}(K)$ and $K(\Gamma)$, respectively, such that $|A_0| = |B_0|$. If G is a subset of $\mathcal{C}(K)$ such that, for each x in $K(\Gamma)$,

$$\left\{f\in G\ :\ f(x)\neq 0\right\}$$

is countable, then there is a subset J of I such that the restriction s of r_J to K is a retraction in K and there is a subset G_1 of G with the following properties:

- (a) $A_0 \subset T_s(\mathcal{C}(K)), B_0 \subset s(K).$
- (b) dens $T_s(\mathcal{C}(K)) \leq |A_0|$.
- (c) $T_s(N_m) \subset N_m$, $m = 1, 2, \ldots$
- (d) $G_1 \subset T_s(\mathcal{C}(K)), G \setminus G_1 \subset \ker T_s$.

Proof. As established in the previous lemma, we determine a subset I of Γ such that the restriction r of r_I to K be a retraction satisfying:

$$|I| \le |A_0|, \quad A_0 \subset T_r(\mathcal{C}(K)), \quad B_0 \subset r(K).$$

Let us define

$$\lambda := |A_0|, \ J_0 := I, \ s_0 := r, \ Q_m := \mathcal{C}(K) \setminus N_m, \ m = 1, 2, \dots$$

Again, an inductive procedure allows us to assume that, for a non-negative integer n, we have a subset J_n of Γ such that $|J_n| \leq \lambda$ and the restriction s_n of r_{J_n} to K is a retraction, and we also have the sets

$$A_n \subset T_{s_n}(\mathcal{C}(K)), \quad B_n \subset s_n(K), \quad |A_n| = |B_n| = \lambda.$$

We choose a family of compact subsets of $s_n(K)$,

$$\{K_{nh} : h \in H_n\}, \quad |H_n| \le \lambda, \tag{2}$$

such that their interiors K_{nh} in $s_n(K)$ are a base for the topology of that space and the closure of K_{nh} coincides with K_{nh} . Given the positive integers

$$m, h_1, h_2, \ldots, h_i \in H_n, \quad o_{n_1}, o_{n_2}, \ldots, o_{n_i} \in \mathcal{O},$$

we select, if it exists, an open subset of $\mathcal{C}_{\sigma}(K)$ of the type

$$P(\{x_1\}, \{x_2\}, \dots, \{x_i\}; o_{m_1}, o_{m_2}, \dots, o_{m_i}), \qquad \begin{cases} x_1, x_2, \dots, x_i \in K(\Gamma), \\ o_{m_1}, o_{m_2}, \dots, o_{m_i} \in \mathcal{O} \end{cases}$$

such that it contains

$$P(s_n^{-1}(K_{nh_1}), s_n^{-1}(K_{nh_2}), \dots, s_n^{-1}(K_{nh_i}); o_{n_1}, o_{n_2}, \dots, o_{n_i})$$

and at the same time contained in Q_m . We write D_n for the reunion of all sets $\{x_1, x_2, \ldots, x_i\}$ corresponding to all

$$m, j \in \mathbb{N}, \quad h_1, h_2, \dots, h_j \in H_n, \quad o_{n_1}, o_{n_2}, \dots, o_{n_j} \in \mathcal{O}.$$

Obviously, $|D_n| \leq \lambda$. Now, let F_n be a subset dense in $s_n(K) \cap K(\Gamma)$, with $|F_n| \leq \lambda$. Then we define

$$A_{n+1} := A_n \cup \{ f \in G : f(x) \neq 0, x \in B_n \}$$

$$B_{n+1} := B_n \cup D_n \cup F_n.$$

Clearly, $|A_{n+1}| = |B_{n+1}| = \lambda$.

Applying the previous lemma with A_{n+1} and B_{n+1} instead of A_0 and B_0 , respectively, we obtain a subset J_{n+1} in Γ such that the restriction s_{n+1} of $r_{J_{n+1}}$ to K is a retraction and

$$|J_{n+1}| \le \lambda$$
, $A_{n+1} \subset T_{s_{n+1}}(\mathcal{C}(K))$, $B_{n+1} \subset s_{n+1}(K)$.

Now, let

$$J:=\bigcup\{J_n\,:\,n=1,2,\ldots\}.$$

If x lies in K, it is clear that $r_J(x)$ is the limit of $(s_n(x))$ and, therefore the restriction s of r_J to K is a retraction which clearly satisfies the properties (a) and (b).

Take now an element f in N_m and assume that $T_s f$ is not in N_m . We may find

$$z_1, z_2, \ldots, z_k \in K(\Gamma), o_1, o_2, \ldots, o_k \in \mathcal{O},$$

such that

$$P(\{z_1\},\{z_2\},\ldots,\{z_k\};o_1,o_2,\ldots,o_k)$$
 (3)

be a neighbourhood of $T_s f$ contained in Q_m .

Let $\varepsilon > 0$ such that

$$[(T_s f)(z_i) - 3\varepsilon, (T_s f)(z_i) + 3\varepsilon] \subset o_i, \qquad i = 1, 2, \dots, k.$$

Obviously $T_{s_i}(\mathcal{C}(K))$ is a linear algebra containing the constant functions. Also

$$T_{s_j}(\mathcal{C}(K)) \subset T_{s_{j+1}}(\mathcal{C}(K)), \qquad j = 1, 2, \ldots,$$

thus allowing

$$\bigcup \{T_{s_j}(\mathcal{C}(K)) : j = 1, 2, \ldots\}$$
 (4)

to be a linear algebra containing constants. If

$$x = (x_{\gamma} : \gamma \in \Gamma), \quad y = (y_{\gamma} : \gamma \in \Gamma)$$

are two distinct points of s(K), then there is a positive integer i and an index γ in J_i such that $x_{\gamma} \neq y_{\gamma}$. Then

$$e_{\gamma}(x) = x_{\gamma} \neq y_{\gamma} = e_{\gamma}(y)$$

and, since $e_{\gamma}|_{K}$ belongs to $T_{s_{j}}(\mathcal{C}(K))$, we have that the restriction of the functions in (4) to s(K) are a dense subset of $\mathcal{C}(s(K))$. For this reason, we may find an element g in (4) such that

$$|g(x) - (T_s f)(x)| < \varepsilon, \qquad x \in s(K).$$

Set a positive integer n that g is in $T_{s_n}(\mathcal{C}(K))$. Then

$$|g(z_v) - (T_s f)(z_v)| = |g(s(z_v)) - (T_s f)(s(z_v))| < \varepsilon, \qquad v = 1, 2, \dots, k.$$

For each v = 1, 2, ..., k, since the intersection of all the elements in (2) containing $s_n(z_v)$ is $\{s_n(z_v)\}$, there are $h_1, h_2, ..., h_k \in H_n$ such that

$$s_n(z_v) \in K_{nh_v}, \quad g(K_{nh_v}) \subset \Big[g(s_n(z_v)) - \varepsilon, g(s_n(z_v)) + \varepsilon\Big], \qquad v = 1, 2, \dots, k.$$

Thus, if x is a point of $s_n^{-1}(K_{nh_v})$, with $1 \le v \le k$,

$$|(T_{s}f)(x) - (T_{s}f)(z_{v})| \leq |(T_{s}f)(x) - g(x)| + |g(x) - g(z_{v})| + |g(z_{v}) - (T_{s}f)(z_{v})|$$

$$\leq \varepsilon + |g(x) - g(z_{v})| + \varepsilon = 2\varepsilon + |g(s_{n}(x)) - g(s_{n}(z_{v}))|$$

$$\leq 3\varepsilon,$$

and we get

$$(T_s f)(x) \in \left[(T_s f)(z_v) - 3\varepsilon, (T_s f)(z_v) + 3\varepsilon \right] \subset o_v.$$

Hence, writing

$$Z := P(s_n^{-1}(K_{nh_1}), s_n^{-1}(K_{nh_2}), \dots, s_n^{-1}(K_{nh_k}; o_1, o_2, \dots, o_k),$$

we have that $T_s f$ is in Z and, since this latter set is contained in (3), there are y_1, y_2, \ldots, y_q in D_n and B_1, B_2, \ldots, B_q in \mathcal{O} , such that

$$Z \subset P(\{y_1\}, \{y_2\}, \dots, \{y_q\}; B_1, B_2, \dots, B_q) \subset Q_m$$
.

VALDIVIA VALDIVIA

Clearly, y_1, y_2, \ldots, y_q are in $s_{n+1}(K)$, therefore

$$f(y_v) = f(s_{n+1}(y_v)) = f(s(y_v)) = (T_s f)(y_v) \in B_v, \quad v = 1, 2, \dots, q,$$

concluding that

$$f \in P(\{y_1\}, \{y_2\}, \dots, \{y_q\}; B_1, B_2, \dots, B_q) \subset Q_m$$

which is a contradiction. Thus showing (c).

Let G_1 be the subset of G whose elements are in $T_s(\mathcal{C}(K))$. It is easily seen from the construction just given that $G \setminus G_1$ is contained in ker T_s , property (d) is then satisfied. \square

Theorem 1

Let K be a compact subset of \mathbb{R}^{Γ} with $K(\Gamma)$ dense in K. Let (N_m) be a sequence of closed absolutely convex subsets of $C_{\sigma}(K)$. If μ and μ_m are the first ordinals of dens C(K) and dens N_m , respectively, and $|\mu_m| \geq \aleph_0$, $m = 1, 2, \ldots$, then there is a resolution of the identity

$$\{T_{\alpha} : \omega \leq \alpha \leq \mu\}$$

in C(K) with the following properties:

- (a) $\{T_{\alpha}|_{L(N_m)}: \omega \leq \alpha \leq \mu_m\}$ is a resolution of the identity in $L(N_m)$, $m=1,2,\ldots$
 - (b) In $C_{\sigma}(K)$, T_{α} is continuous and $T_{\alpha}(C(K))$ is closed, $\omega \leq \alpha \leq \mu$.
 - (c) $T_{\alpha}(N_m) \subset N_m$, $m = 1, 2, \ldots, \omega \leq \alpha \leq \mu$.

Proof. We may clearly assume $|\Gamma| = \text{dens } K$. Let

$$\{f_{\alpha}: 0 \leq \alpha < \mu\}$$
 and $\{f_{m\alpha}: 0 \leq \alpha < \mu_m\}$

be dense subsets of C(K) and $L(N_m)$, respectively, $m=1,2,\ldots$. We apply our former lemma for the particular case

$$A_0 = \{ f_{\alpha} : 0 \le \alpha \le \omega \} \cup \left(\bigcup_{m=1}^{\infty} \{ f_{m\alpha} : 0 \le \alpha \le \omega \} \right)$$

and B_0 a countably infinite subset of $K(\Gamma)$ and we obtain a subset Γ_0 of Γ such that the restriction s of r_{Γ_0} to K satisfies properties (a), (b) and (c) there stated. We set now T_{ω} , Γ_{ω} and s_{ω} instead of T_s , Γ_0 and s, respectively, and we proceed by

transfinite induction. Let α be an ordinal number, $\omega < \alpha \leq \mu$, such that, for each ordinal β , with $\omega \leq \beta < \alpha$, a subset Γ_{β} of Γ has been defined so that

$$|\Gamma_{\beta}| \leq |\beta|, \quad \Gamma_{\eta} \subset \Gamma_{\xi}, \quad \omega \leq \eta \leq \xi < \alpha,$$

and the restriction of $r_{\Gamma_{\beta}}$ to K is a retraction s_{β} . We define $T_{\beta} := T_{s_{\beta}}$. Let us assume first that α is not a limit ordinal. Let $\nu := \alpha - 1$. We choose a dense subset A_{ν} in $T_{\nu}(\mathcal{C}(K))$ such that $|A_{\nu}| \leq |\nu|$. If f is an element in A_{ν} and m, n are positive integers with $\nu < \mu_m$, we select in N_m an element $f_{\nu_{mn}}$ such that

$$||f - f_{\nu_{mn}}|| < d(f, N_m) + \frac{1}{n}.$$

We define

$$\begin{cases} F_{\nu_m} := \{ f_{m\alpha} \} & \text{if } \nu < \mu_m, \\ F_{\nu_m} := \emptyset & \text{if } \mu_m \le \nu \end{cases} \qquad m = 1, 2, \dots.$$

We choose now a dense subset B_{ν} of $s_{\nu}(K)$, with $|B_{\nu}| = |A_{\nu}|$. Apply again the previous lemma for the particular case

$$A_0 := A_{\nu} \cup \{f_{\alpha}\} \cup \{f_{\nu_{mn}} : \nu < \mu_m, n = 1, 2, \ldots\} \cup \left(\bigcup \{F_{\nu_m} : m = 1, 2, \ldots\}\right),$$

$$B_0 := B_{\nu}$$

and thus we get a subset Γ_{α} of Γ for which the restriction s_{α} of $r_{\Gamma_{\alpha}}$ to K is a retraction with the properties (a), (b) and (c) stated in the mentioned lemma with s_{α} instead of s. Then $\Gamma_{\nu} \subset \Gamma_{\alpha}$. Let $T_{\alpha} := T_{s_{\alpha}}$. If α is a limit ordinal, we write

$$\Gamma_{\alpha} := \bigcup \{ \Gamma_{\beta} : \omega \leq \beta < \alpha \},$$

and $T_{\alpha} := T_{s_{\alpha}}$, s_{α} being the restriction of $r_{\Gamma_{\alpha}}$ to K.

We show next that

$$\{T_{\alpha} : \omega \leq \alpha \leq \mu\}$$

is a resolution of the identity in C(K). Evidently,

$$||T_{\alpha}|| = 1$$
, dens $T_{\alpha}(\mathcal{C}(K)) \leq |\alpha|$, $T_{\alpha} \circ T_{\beta} = T_{\beta} = T_{\beta} \circ T_{\alpha}$, $\omega \leq \beta \leq \alpha \leq \mu$.

Also, if α is a limit ordinal, $\omega < \alpha \leq \mu$, it is simple to see that

$$\bigcup \{ T_{\beta}(\mathcal{C}(K)) : \omega \le \beta < \alpha \} \tag{5}$$

is a subalgebra of $\mathcal{C}(K)$ containing constants that separates points in $s_{\alpha}(K)$. Therefore, for a given $\varepsilon > 0$ and an element f of $T_{\alpha}(\mathcal{C}(K))$, we may find in (5) an element g such that

$$|f(x) - g(x)| < \varepsilon, \qquad x \in s_{\alpha}(K).$$

Now, if z is an arbitrary element of K, we have

$$|f(z) - g(z)| = |(T_{\alpha}f)(z) - (T_{\alpha}g)(z)| = |f(s_{\alpha}(z)) - g(s_{\alpha}(z))| < \varepsilon,$$

thus the closure of (5) in $\mathcal{C}(K)$ coincides with $T_{\alpha}(\mathcal{C}(K))$. Finally, if $\alpha = \mu$, (5) is dense in $\mathcal{C}(K)$, concluding that T_{μ} is the identity operator.

Condition (c) clearly holds. Fix now the positive integer m. Condition (c) guarantees that $T_{\alpha}|_{L(N_m)}$ is an operator in $L(N_m)$. If α is a limit ordinal, $\omega < \alpha \le \mu_m$, and f belongs to $T_{\alpha}(\mathcal{C}(K)) \cap L(N_m)$, we may find a real number b > 0 such that bf lies in N_m . Also, we may determine a sequence (f_n) in

$$\bigcup \left\{ T_{\beta}(\mathcal{C}(K)) : \omega \leq \beta < \alpha \right\}$$

convergent to bf in C(K). Hence, we find

$$\omega \leq \alpha_1 < \alpha_2 < \ldots < \alpha_n < \ldots < \alpha$$

such that f_n is in $T_{\alpha_n}(\mathcal{C}(K))$. By the preceding construction, there are

$$f_{nn} \in N_m, \quad f_{nn} \in T_{\alpha_{n+1}}(\mathcal{C}(K))$$

such that

$$||f_n - f_{nn}|| < d(f_n, N_m) + \frac{1}{n}$$
 $n = 1, 2, ...$

Then, (f_{nn}) is in N_m and converges to bf in C(K), so that the closure of

$$\bigcup \left\{ \left(T_{\beta}|_{L(N_m)} \right) (L(N_m)) : \omega \leq \beta < \alpha \right\}$$

in $L(N_m)$ equals $T_{\alpha}|_{L(N_m)}(L(N_m))$. The remaining properties to complete the proof of (a) are immediate. Condition (b) is straightforward. \square

Note 1. Let X be a Banach space. We identity (B_{X^*}) with a subspace K of \mathbb{R}^{Γ} . Suppose that there is a linear subspace Y of X^* such that $Y \cap K$ is dense in K and $K(\Gamma)$ contains $Y \cap K$. Then X is closed in $C_{\sigma}(K)$ and applying Theorem 1 a resolution of the identity operator is obtained in X. Using a method introduced in [15] this result can be proved also, [10].

Corollary 1.1

Let X be a Banach space such that the closed unit ball of X^* , with the weakstar topology, is a Corson compact. Let (N_m) be a sequence of closed absolutely convex subsets of X. If μ and μ_m are the first ordinal numbers of dens X and dens N_m , respectively, and $|\mu_m| \geq \aleph_0$, $m = 1, 2, \ldots$, then there is a resolution of the identity

$$\{T_{\alpha} : \omega \leq \alpha \leq \mu\}$$

in X, such that, for each positive integer m

$$\{T_{\alpha}|_{L(N_m)}: \omega \leq \alpha \leq \mu_m\}$$

is a resolution of the identity in $L(N_m)$ and $T_{\alpha}(N_m)$ is contained in N_m , $\omega \leq \alpha \leq \mu_m$.

Proof. Set $K := (B_{X^*})_{\sigma}$. We may certainly assume that K is a compact subset of \mathbb{R}^{Γ} , for a convenient Γ , such that $K(\Gamma) = K$. We then have $X, N_1, N_2, \ldots, N_m, \ldots$ are closed absolutely convex subsets of $c_{\sigma}(K)$. An application of the previous theorem leads to the desired conclusion. \square

Theorem 2

Let K be a compact subset of \mathbb{R}^{Γ} with $K(\Gamma)$ dense in K. Let M be a closed absolutely convex subset of $C_{\sigma}(K)$, such that L(M) has infinite dimension. If ν is the first ordinal number of dens L(M), then there is a resolution of the identity

$${S_{\alpha} : \omega \leq \alpha \leq \nu}$$

in L(M) and associated Markushevich basis $(f_i, u_i)_{i \in I}$ such that

$$S_{\alpha}(M) \subset M, \qquad \omega \leq \alpha \leq \nu,$$

and for each x in $K(\Gamma)$, the set

$$\{i \in I : f_i(X) \neq 0\}$$

is countable.

Proof. We write g_{γ} and g for the restrictions of e_{γ} and e to K, respectively, $\gamma \in \Gamma$. Let

$$G := A \cup \{g\}$$

where A denotes the subset of $\mathcal{C}(K)$ formed by all finite products of the type

$$g_{\gamma_1}g_{\gamma_2}\ldots g_{\gamma_n}, \quad \gamma_1,\gamma_2,\ldots,\gamma_n\in\Gamma.$$

The linear hull of G is an algebra containing the constant functions that separates points in K. Thus, $[G] = \mathcal{C}(K)$. Besides, for each x in $K(\Gamma)$,

$$\{f \in G : f(x) \neq 0\}$$

is clearly countable.

We base our discussion on the density character of L(M). If $|\nu| = \aleph_0$, the assertion of the theorem is then obvious [7, Prop. 1. f.3]. Suppose that $|\nu| > \aleph_0$ and for each closed absolutely convex subset B of $C_{\sigma}(K)$, with L(B) infinite dimensional, such that dens $L(B) < |\nu|$, there is a resolution of the identity in L(B) and associated Markushevich basis $(g_j, v_j)_{j \in J}$ such that, for each x in $K(\Gamma)$, the set

$$\{j \in J : g_j(x) \neq 0\}$$

is countable.

We proceed now as in the proof of Theorem 1, making use also of condition (d) of Lemma 2, and thus we obtain a projective resolution of the identity in C(K),

$$\{T_{\alpha} : \omega \leq \alpha \leq \mu\},\$$

where μ is the first ordinal of dens C(K), and a partition of G,

$$G_{\omega}, G_{\alpha+1}, \qquad \omega \leq \alpha < \mu,$$

such that

$$\{T_{\alpha}|_{L(M)}: \omega \leq \alpha \leq \nu\}$$

is a resolution of the identity in L(M),

$$T_{\alpha}(M) \subset M, \qquad \omega \leq \alpha \leq \mu,$$

$$G_{\omega} \subset T_{\omega}(\mathcal{C}(K)), \quad G_{\alpha+1} \subset (T_{\alpha+1} - T_{\alpha})(\mathcal{C}(K)), \qquad \omega \leq \alpha < \mu,$$

and, also, in $C_{\sigma}(K)$, T_{α} is continuous and $T_{\alpha}(\mathcal{C}(K))$ is closed, $\omega \leq \alpha \leq \mu$. Clearly,

$$[G_{\omega}] = T_{\omega}(\mathcal{C}(K)), \quad [G_{\alpha+1}] = (T_{\alpha+1} - T_{\alpha})(\mathcal{C}(K)), \qquad \omega \leq \alpha < \mu.$$

Now we write

$$S_{\alpha} := T_{\alpha}|_{L(M)}, \qquad \omega \leq \alpha \leq \nu.$$

Since $S_{\omega}(L(M))$ is separable, there is a biorthogonal system $(f_i, u_i)_{i \in I_{\omega}}$ in L(M) such that

$$[\{f_1 : i \in I_{\omega}\}] \cap L(M) = S_{\omega}(L(M))$$

and lin $\{u_i : i \in I_\omega\}$ is weak-star dense in $S^*_\omega(L(M)^*)$. Obviously, for each x in $K(\Gamma)$, the set

$$\{i \in I_{\omega} : f_i(x) \neq 0\}$$

is countable. Given an ordinal number $\alpha, \omega \leq \alpha < \mu$, we have that

$$M_{\alpha+1} := M \cap (S_{\alpha+1} - S_{\alpha})(L(M))$$

is closed in $C_{\sigma}(K)$ and

$$L(M_{\alpha+1}) = (S_{\alpha+1} - S_{\alpha})(L(M)), \quad \text{dens } L(M) < |\nu|,$$

thus, there is a Markushevich basis $(f_i, v_i)_{i \in I_{\alpha+1}}$ in $L(M_{\alpha+1})$ such that, for each x in $K(\Gamma)$, the set

$$\{i \in I_{\alpha+1} : f_i(x) \neq 0\}$$

is countable. We may therefore find a biorthogonal system $(f_i, u_i)_{i \in I_{\alpha+1}}$ in L(M) such that

$$\left[\left\{f_i : i \in I_{\alpha+1}\right\}\right] \cap L(M) = \left(S_{\alpha+1} - S_{\alpha}\right)(L(M))$$

and $\lim \{u_i : i \in I_{\alpha+1}\}$ is weak-star dense in $(S_{\alpha+1}^* - S_{\alpha}^*)(L(M)^*)$. If we take

$$I_{\omega}, I_{\alpha+1}, \qquad \omega \leq \alpha < \nu,$$

pairwise disjoint and define

$$I := I_{\omega} \cup \{I_{\alpha+1}, \omega \le \alpha < \nu\}$$

we clearly have that $(f_i, u_i)_{i \in I}$ is a Markushevich basis in L(M). Choose an arbitrary point x of $K(\Gamma)$ and suppose that

$$\{i \in I : f_i(x) \neq 0\}$$
 (6)

is not countable. Then, there is an uncountable subset A in the interval $[\omega, \nu]$ and an element f^{δ} in $G_{\delta+1}$ such that

$$f^{\delta}(x) \neq 0, \qquad \delta \in A$$

which is a contradiction. Thus, the set (6) is countable. \square

Corollary 2.1

Let K be a compact subset of \mathbb{R}^{Γ} with $K(\Gamma)$ dense in K. Let φ be a continuous mapping from K onto a compact H accomplishing the following conditions:

- (a) The restriction ψ of φ to $K(\Gamma)$ is a quotient mapping of $K(\Gamma)$ onto $\psi(K(\Gamma))$.
- (b) If x is a point of H such that $\varphi^{-1}(x)$ has more than a point, then $\varphi^{-1}(x) \cap K(\Gamma)$ is dense in $\varphi^{-1}(x)$.

Then H belongs to the class A.

Proof. We identity C(H) with a subspace of C(K) simply assigning to each f in C(H) the function $f \circ \varphi$.

We now take a function g of C(K) belongs to the closure of C(H) in $C_{\sigma}(K)$. It is not hard then to see that there is a function f in C(H) such that $g = f \circ \varphi$, thus having that C(H) is closed in $C_{\sigma}(K)$. The previous theorem applies to obtain a Markushevich basis $(f_i, u_i)_{i \in I}$ in C(H) such that, for each x in $K(\Gamma)$, the set

$$\{i \in I : f_i(x) \neq 0\}$$

is countable. For each z in H, we choose x in K such that $\varphi(x) = z$, and write

$$\psi(z) := (f_i(x) : i \in I).$$

Then ψ is a continuous injection of H in \mathbb{R}^I such that $\psi(\varphi(K(\Gamma)))$ is dense in $\psi(H)$. The conclusion now follows. \square

In the above corollary, if K is a Corson compact, then $K = K(\Gamma)$, thus conditions (a) and (b) of the corollary are obviously satisfied, and H belongs to class \mathcal{A} . It is easily verified that H is angelic and, hence, H is a Corson compact. This result is due to Gul'ko [4] and to Michael and Rudin [9].

Corollary 2.2

Let K be a compact subset of \mathbb{R}^{Γ} with $K(\Gamma)$ dense in K. Let M be a closed absolutely convex subset of $C_{\sigma}(K)$, such that L(M) has infinite dimension. Then there is a resolution of the identity in L(M) and an associated countably 1-norming Markushevich basis.

Proof. Applying Theorem 2 we obtain a resolution of the identity in L(M) and an associated Markushevich basis $(f_i, u_i)_{i \in I}$ such that, for each x in $K(\Gamma)$, the set

$$\{i \in I : f_i(x) \neq 0\}$$

is countable.

We write D for the absolutely convex hull of $K(\Gamma)$ in $\mathcal{C}(K)^*$. Let v be in $L(M)^*$, $||v|| \leq 1$. Hahn-Banach's theorem provides an element w of $\mathcal{C}(K)^*$ such that ||w|| = ||v||, $w|_{L(M)} = v$. We find a net

$$\{w_j : j \in J, \geq\}$$

in D weak-star convergent to w.

Then

$$\{w_j|_{L(M)}: j \in J \geq \}$$

is a net in the closed unit ball of $L(M)^*$ weak-star convergent to v. From the equalities

$$\langle f_i, w_j |_{L(M)} \rangle = \langle f_i, w_j \rangle, \qquad i \in I, j \in J,$$

we deduce that the set

$$\{i \in I : \langle f_i, w_j | L(M) \rangle \neq 0\}$$

is countable, $j \in J$, and, therefore, the basis $(f_i, u_i)_{i \in I}$ is countably 1-norming. \square

Theorem 3

Let K be a compact subset of R^{Γ} with $K(\Gamma)$ dense in K. Let X be a subspace of C(K) closed in $C_{\sigma}(K)$. Let M be a bounded absolutely convex subset of X, closed in $C_{\sigma}(K)$ and such that L(M) has infinite dimension. If the weak topologies of X and X_M coincide on M, then there are a countably 1-norming Markushevich basis $(f_i, u_i)_{i \in I}$ in X and a subset I_1 of I such that $(f_i, u_i|_{L(M)})_{i \in I_1}$ is a contably 1-norming Markushevich basis in X_M .

Proof. Our discussion is based on the density character of X. Suppose first that dens $X \leq \aleph_0$. If L(M) is dense in X, the result is obvious, considering that X_M is separable and by virtue of [7, Prop 1.f.3]. If L(M) is not dense in X, we find a quasicomplement Y of the closure of L(M) in X, [8]. We also find two biorthogonal systems in X, $(f_i, u_i)_{i \in I_1}$ and $(f_i, u_i)_{i \in I_2}$ with I_1 and I_2 disjoint, such that

$$\big[\{f_i : i \in I_2\}\big] = Y,$$

lin $\{f_i: i \in I_1\}$ is dense in X_M , lin $\{u_i: i \in I_2\}$, lin $\{u_i: i \in I_2\}$ are weak-star dense subsets of Y^{\perp} and $L(M)^{\perp}$, respectively. If $I:=I_1 \cup I_2$ then $(f_i,u_I)_{i\in I}$ is the basis stated in the theorem. Clearly, for each x in $K(\Gamma)$,

$$\{i \in I : f_i(x) \neq 0\}$$

is countable. Let us assume now that

$$\lambda := \operatorname{dens} X > \aleph_0$$

and, for each subspace F of C(K), closed in $C_{\sigma}(K)$, dens $F < \lambda$, and each bounded absolutely convex subset P of F, closed in $C_{\sigma}(K)$, with L(P) infinite dimensional, such that the weak topologies of F and F_P coincide in P, there is a Markushevich basis $(g_j, v_j)_{j \in J}$ in X, and a subset J_1 of J such that $(g_j, v_j|_{L(P)})_{j \in J_1}$ is a countably 1-norming Markushevich basis in F_P , and for each x in $K(\Gamma)$, the set

$$\{j \in J : g_j(x) \neq 0\}$$

is countable.

Let G be as in the proof of Theorem 2. Let μ , ν and ρ be the first ordinal numbers of dens $\mathcal{C}(K)$, λ and dens $L(M) = \mathrm{dens} X_M$, respectively. By a similar argument to that of Theorem 2, making use also of condition (d) of Lemma 2, we obtain a projective resolution of the identity in $\mathcal{C}(K)$,

$$\{T_{\alpha} : \omega \leq \alpha \leq \mu\}$$

and a partition of G,

$$G_{\omega}, G_{\alpha+1}, \qquad \omega \leq \alpha < \mu,$$

such that

$$T_{\alpha}(M) \subset M$$
, $G_{\omega} \subset T_{\omega}(\mathcal{C}(K))$, $G_{\alpha+1} \subset (T_{\alpha+1} - T_{\alpha})(\mathcal{C}(K))$, $\omega \leq \alpha < \mu$,

and

$$\{T_{\alpha}|_{X}: \omega \leq \alpha \leq \nu\}$$
 and $\{T_{\alpha}|_{L(M)}: \omega \leq \alpha \leq \rho\}$

are projective resolution of the identity in X and L(M), respectively. Also, in $C_{\sigma}(K)$, T_{α} is continuous and $T_{\alpha}(\mathcal{C}(K))$ is closed, $\omega \leq \alpha \leq \mu$. Clearly,

$$[G_{\omega}] = T_{\omega}(\mathcal{C}(K))$$
 and $[G_{\alpha+1}] = (T_{\alpha+1} - T_{\alpha})(\mathcal{C}(K)), \quad \omega \leq \alpha < \mu.$

We choose now a limit ordinal β , $\omega < \beta \leq \rho$, and an element f of $T_{\beta}(\mathcal{C}(K) \cap L(M))$. We then determine a non-zero real number b for wich bf lies in M. Using a similar process in the construction of the resolution of the identity to that of Theorem 1, there is a sequence (f_n) in

$$M \cap (U\{T_{\alpha}(\mathcal{C}(K)) : \omega \leq \alpha < \beta\})$$

norm convergent to bf. Then (f_n) converges to bf respect to the weak topology of X_M , hence concluding that

$$\{T_{\alpha}|_{L(M)}: \omega \leq \alpha \leq \rho\}$$

is a resolution of the identity in X_M . We define

$$S_{\alpha} := T_{\alpha}|_{\mathbf{Y}}, \qquad \omega \leq \alpha < \nu$$

Assume first that $\rho = \nu$. Since $S_{\omega}(X)$ and $M_{\omega} := S_{\omega}(X) \cap M$ are closed in $C_{\sigma}(K)$, $S_{\omega}(X)$ is separable and the weak topologies of $S_{\omega}(x)$ and $X_{M_{\omega}}$ coincide in M_{ω} , we may find a biorthogonal system $(f_i, u_i)_{i \in I_{\omega}}$ in X and a subset I_{ω}^1 of I_{ω} such that

$$[\{f_i:i\in I_\omega\}]=S_\omega(X),$$

lin $\{f_i: i \in I^1_\omega\}$ is a dense subset of X_{M_ω} , and $\{u_i: i \in I_\omega\}$ is a weak-star dense subset of $S^*_\omega(X^*)$. Clearly, for each x in $K(\Gamma)$,

$$\{i \in I_{\omega} : f_i(x) \neq 0\}$$

is countable. For a given ordinal $\alpha, \omega \leq \alpha < \mu$, we have that

$$(S_{\alpha+1} - S_{\alpha})(X)$$
 and $M_{\alpha+1} := M \cap (S_{\alpha+1} - S_{\alpha})(X)$

are closed in $C_{\sigma}(K)$, the weak topologies of $(S_{\alpha+1}-S_{\alpha})(X)$ and $(S_{\alpha+1}-S_{\alpha})(X_{M_{\alpha+1}})$ coincide in $M_{\alpha+1}$ and dens $(S_{\alpha+1}-S_{\alpha})(X)<\lambda$. Therefore, there is a Markushevich basis $(f_i,\omega_i)_{i\in I_{\alpha+1}}$ in $(S_{\alpha+1}-S_{\alpha})(X)$ and a subset $I^1_{\alpha+1}$ of $I_{\alpha+1}$ such that, for each x in $K(\Gamma)$,

$$\{i \in I_{\alpha+1} : f_i(x) \neq 0\}$$

is countable and lin $\{f_i:I_{\alpha+1}^1\}$ is a dense subset of $X_{M_{\alpha+1}}$. We take a subset $\{u_i:i\in I_{\alpha+1}\}$ of $(S_{\alpha+1}^*-S_{\alpha}^*)(X^*)$ whose linear hull is weak-star dense in that space and such that $(f_i,u_i)_{i\in I_{\alpha+1}}$ is a biorthogonal system in X.

If we set

$$I_{\omega}, I_{\alpha+1}, \qquad \omega \leq \alpha < \nu,$$

pairwise disjoint, and define

$$I_1 := I^1_\omega \cup \left(\bigcup \{I^1_{\alpha+1} : \omega \le \alpha < \nu\} \right), \qquad I := I_\omega \cup \left(\bigcup \{I_{\alpha+1} : \omega \le \alpha < \nu\} \right)$$

we have that $(f_i, u_i)_{i \in I}$ is a Markushevich basis in X such that, for each x in $K(\Gamma)$,

$$\{i \in I : f_i(x) \neq 0\}$$

is countable and, proceeding as in the proof of Corollary 2.2, it happens that $(f_i, u_i)_{i \in I}$ and $(f_i, u_i|_{L(M)})_{i \in I_1}$ are countable 1-norming Markushevich bases in X and L(M), respectively. It is then quite easy to see that $(f_i, u_i|_{L(M)})_{i \in I_1}$ is a countably 1-norming Markushevich basis in X_M .

Suppose now that $\rho < \nu$. Lemma 2 applies to obtain two subspaces Y and Z of X, closed in $C_{\sigma}(X)$, $M \subset Y$, dens $Y = |\rho|$, such that Z is a topological complement of Y in X. We find a Markushevich basis $(f_j, v_j)_{j \in J}$ in Y and a subset I_1 of J such that $(f_i, v_i|_{L(M)})_{i \in I}$ is a countably 1-norming Markushevich basis in $Y_M = X_M$ and, for each x in $K(\Gamma)$, the set

$${j \in J : f_i(x) \neq 0}$$

is countable. We find now in Z a Markushevich basisi $(f_h, v_h)_{h \in H}$, with H being disjoint with J, such that, for each x in $K(\Gamma)$

$$\{h \in H : f_h(x) \neq 0\}$$

is countable. Let Y^{\perp} and Z^{\perp} be the subspaces of X^* orthogonal to Y and Z, respectively. We may take

$$u_j \in Z^{\perp}, \quad j \in J, \qquad u_h \in Y^{\perp}, \quad h \in H,$$

so that $(f_j, u_j)_{j \in J}$ and $(f_h, u_h)_{h \in H}$, are biorthogonal systems in X. Writing $I := J \cup H$, then $(f_i, u_i)_{i \in I}$ is the desired Markushevich basis in X stated in the theorem. \square

Corollary 3.1

Let X be a Banach space such that $(B_{X^*})_{\sigma}$ is a Corson compact. Let M be a closed bounded absolutely convex subset of X such that L(M) has infinite dimension. If the weak topologies of X and X_M coincide in M, then the following properties hold:

- (a) There is a Markushevich basis $(x_i, u_i)_{i \in I}$ in X and a subset I_1 of I such that $(x_i, u_i|_{X_M})_{i \in I_1}$ is a Markushevich basis in X_M .
- (b) The closed unit ball of $(X_M)^*$, with the weak-star topology, is a Corson compact.

Proof. We write K to mean $(B_X^*)_{\sigma}$. We may assume that K is a compact subset of \mathbb{R}^{Γ} , for a convenient Γ , such that $K(\Gamma) = K$. Then M and X are closed in $C_{\sigma}(K)$ and property (a) obtains directly from Theorem 3. Since $L(M)^*$ is a dense subspace of $(X_M)^*$ and, for each v in $L(M)^*$, the set

$$\{i \in I_1 : \langle x_i, v \rangle \neq 0\}$$

is countable, we get that, for each u in $(X_M)^*$, the set

$$\{i \in I_1 : \langle x_i, u \rangle \neq 0\}$$

is countable, and property (b) is thus satisfied. \square

The next corollaries are simple consequences of Theorem 3.

Corollary 3.2

If X is a Banach space such that the closed unit ball of X^* is a Corson compact for the weak-star topology, then every closed subspace of X admits a quasicomplement in X.

Corollary 3.3

If X is a Banach space such that $(B_{X^*})_{\sigma}$ is a Corson compact, then X admits a quasicomplement in $C((B_{X^*})_{\sigma})$.

If X is a reflexive Banach space, then it admits a resolution of the identity [5]. This property is extend in [1] for the case of X being weakly compactly generated, and in [16] when X is a weakly countably determined Banach space.

The former results, changing the term Banach for Frèchet, are shown in [12] and [13] by a rather simple method.

Resolutions of the identity may be of interest to show that certain Banach subspaces admit Markushevich bases [5].

Note 2. Let K be a compact of the class A. It is shown in [14] that there is in C(K) a resolution of the identity formed by extension operators. In [3] a resolution of the identity in C(K) is constructed in such a way that permit to prove that if H is the continuous image of a compact of the class A then H has Namioka's property, i.e., for each Baire topological space E and each mapping $g: E \times H \to \mathbb{R}$ separatedly continuous there is a residual subset Ω of E such that G is continuous in every point of $\Omega \times K$.

284 Valdivia

Bibliography

- 1. D. Amir and J. Lindenstrauss, The structure of weakly compact sets in Banach spaces, Ann. of Math 88 (1968), 35-46.
- 2. W. W. Confort and S. Negrepontis, *Chain Conditions in Topology*, Cambridge Tract in Math 79, Cambridge Univ. Press, 1982.
- 3. R. Deville and G. Godefroy, Some applications of projectional resolutions of identity, (preprint).
- 4. S.P. Gul'ko, On properties of subsets of Σ -products, Soviet Math. Dokl. 18 (1977), 1438–1442.
- 5. J. Lindenstrauss, On non separable reflexive Banach spaces, Bull. Amer. Math. Soc. 72 (1966), 967-970.
- 6. J. Lindenstrauss, Decomposition of Banach spaces, *Indiana Univ. Math. J.* 20 (1941), 917-919.
- 7. J. Lindenstrauss and L. Tzafriri, Classical Banach Spaces I, Springer-Verlag, Berlin-Heildelberg-New York, 1977.
- 8. G.W. Mackey, Note on a theorem of Murray, Bull. Amer. Math. Soc. 52 (1946), 322-325.
- 9. E. Michael and M.E. Rudin, A note on Eberlein compacts, *Pacific J. Math.* 72 (1977), 487-495.
- 10. J. Orihuela and M. Valdivia, Resolutions of identity and first Baire class selectors in Banach spaces, (preprint).
- 11. A.N. Plicko, On projective resolutions of the identity operators and Markushevich bases, *Soviet Math. Dokl.* 25 (1982), 386–389.
- 12. M. Valdivia, Espacios de Fréchet de generación débilmente compacta, *Collect. Math.* 38 (1987), 17–25.
- 13. M. Valdivia, Resolutions of identity in certain metrizable locally convex spaces, Rev. Real Academia Ciencias Exactas, Físicas y Naturales de Madrid, LXXXIII (1989), 75-96.
- 14. M. Valdivia, Projective resolutions of identity in C(K) spaces, Archiv d. Math. 54 (1990), 493-498.
- 15. M. Valdivia, Resolutions of the identity in certain Banach spaces, *Collect. Math.* 39 (1988), 127-140.
- 16. L. Vasak, On one generalization of weakly compact generated Banach spaces, *Studia Math.* 70 (1980), 11–19.