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ABSTRACT

A certain completeness concept, 2—completeness, allows us to give some
closed graph theorems between spaces whose dual space is weak™ 3—complete
and some classes of Banach spaces in the range space, namely: reflexive
Banach spaces, Banach spaces without copy of £, and dual spaces of Banach
spaces with unconditional basis and without copy of ;.

1. Introduction

In his study of the Orlicz—Pettis topologies, P. Dierolf [2] introduced the following
concept: alocally convex separated space (shortly space) F is said to be L—complete
if every unconditionally Cauchy series in FE is convergent.

Clearly, every sequentially complete space is a ¥—complete space. Non-trivial
examples of Y¥-complete spaces are given by [E,o(E, E')], where E is a Banach
space not containing a copy of ¢y, according to a well-known result of Bessaga and
Pelczynski (see (3, p. 45]).

In the context of duality closed graph theorems, we have obtained results for
mappings between spaces E such that [E',o(E’, E)] is X—complete (in the sequel, we
refer to this spaces as dual ¥—complete spaces) and some classes of Banach spaces
in the range space. We have arranged these results in two sections: wusual and
mized closed graph theorems. For usual, we mean that the topologies on the spaces
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which appear in the theorem belong to the same dual pair. However, for the mized
theorems, the involved topologies on the spaces can belong to different dual pairs.

In what follows, we refer to Jarchow’s monograph [4] for terminology and no-
tation. A wide and deep account on closed graph theorems as well as related bar-
relledness conditions can be found in Pérez Carreras-Bonet [7].

2. Usual Closed Graph Theorems

With the purpose to establish optimal closed graph theorems for mappings having
barrelled spaces in the domain, T',—spaces were introduced (see [7, ch. 7]). We recall
that a space E is said to be a I',—space if given any quasicomplete subspace G of
[E*,o(E*, E)] such that GN E' is dense in [E',0,(E’, E)], then G contains E’.

A similar approach for local completeness was made by Valdivia [10] who consid-
ered the A,—spaces (insert “quasicomplete” for “local complete” in last definition).
He also gave the corresponding closed graph theorem between c¢p—barrelled spaces
and A,-spaces [10]. In this line, we introduce the following concept: a space F is
said to be a ¥,—space if every X—complete subspace of [E*,o( E*, E)] intersecting
E' in a dense subspace of [E',0(E', E)], contains E'.

First of all, a maximal closed graph theorem between dual ¥—-complete spaces
and ¥,—spaces is given.

Theorem 1.

F is a ¥,—space if and only if for every dual ¥—complete space and for every
linear mapping T from E to F with closed graph, T is weakly continuous.

Proof. Let us consider the subspaces L = {f € F* : T*(f) € E'} of F* and
H = LN F' of F'. Since T has closed graph, H is weak* dense in F' [4, p. 197].
Bearing in mind that F' is a X,—space, if we prove that L is o(F™, F)-X—complete,
we will have H = F' and this will imply that T is weakly continuous [4, p. 161].

So, let Y f, be an unconditionally o( F*, F)-Cauchy series in L. [F*,0(F*, F)]
is a complete space, so there exists f € F* such that f is the o(F™*, F)-sum of
> fn. Since T™ is o(F*, F)-o(E*, E) continuous, we have that the series 3 T*(f,)
is unconditionally o(E*, E)-convergent to T*(f). Moreover, since T*( f, ) belongs to
E’for alln € N and E is dual £-complete, we have that 3 T*(f,.) is unconditionally
o(E', E)—convergent to a certain z € E'. Finally, by the uniqueness of the limit,
z = T*(f) or equivalently f € L.

Reciprocally, if F is not a X,—space, there exists a o( E*, E)-X—-complete sub-
space G such that G N F' is weak* dense and GN F' # F'.
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[G,0(G, F)] is a E—complete space and the identity map from [F,o(F,G)] to
F has closed graph but it is not weakly continuous, so the sought contradiction is
obtained. O

We provide a wide class of ¥,—spaces in next theorem.

Theorem 2.

Let E be a space such that [E',u(E',E)] is metrizable. Then E with any
compatible topology for the pair dual (E, E') is a ¥,—space.

Proof. Let H be a X—complete subspace of [E*,o(E*, E)] intersecting E’ in a weak*
dense subspace of E'. Given z € E’, z also belongs to the p(E’, E)-closure of
H N E'. By the hypothesis of metrizability, there exists a F-norm g which generates
the topology wu(E',E), so we can obtain a sequence (y,) of elements of H N E’
u(E', E)-convergent to z such that

1
9(Ynt1 — Yn) < — for all n € N.

If we set 2z, = Ynt1 — Yn, for any n € N, we have that )’ z, is unconditionally
u(E', E)-convergent to z — y;.

On the other hand, Y 2, is also unconditionally o( E*, E)-convergent, and since
H is o( E*, E)-YX—complete, we get that 2 — y; € H and therefore z € H. O

Remark . A similar proof can be given to show that every B,—complete Schwartz
space is a X,—space (see [4, p. 214]).

Corollary 1.

Every linear mapping from a dual ¥—complete space to a reflexive Banach space,
having closed graph, is weakly continuous.

Proof. If E is a reflexive Banach space, then G(E', E) = p(E’,E) is metrizable.
Applying theorems 1 and 2 yields the result. O

It is also possible to give necessary conditions for being a X,—space. With these
results, we are trying to characterize ¥,-spaces in the context of locally convex
spaces.

Theorem 3.

Let E be a dual X-complete space. If F is a ¥.,—space, then either E is semire-
flexive or [E',B(E', E)] contains a copy of ¢g.
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Proof. Let us suppose that E is a X,—space and [E’,B(E’, E)] contains no copy
of ¢o. If E is not semireflexive, then there exists a B(E’, E)—closed o(E’, E)-dense
hyperplane F' in E’.

Since F is a X,—space, if we prove that F is o(E’, E)-X—complete, we will
obtain that F = E' and we will get a contradiction.

So, let 3_ z,, be an unconditionally o( E’, E)-Cauchy series with z, € F, n € N.
We have that E is dual Y-complete, therefore ) z, is o(E’, E)-convergent to
z € E'. By the Bourbaki-Robertson’s lemma, if we show that ) z, is uncondi-
tionally B(E', E)-Cauchy, then that series will be S(E’, E)—convergent to z. But F
is B(E', E)—closed, so z € F.

Let us suppose that 3 z, is not unconditionally S(E’, E)-Cauchy. By induc-
tion, we can obtain a B(E’, E)-neighbourhood U of 0 and a sequence of finite subsets
a, of positive integers with sup a,, < inf a,4+; which verify that

Zp = z:c,-¢U,foralln€N.

i€ay,

For every (a,) € ¢, the series ) a, 2, is unconditionally o( E’, E)-Cauchy and,
therefore o(E', E)—convergent. This allows to define the following linear continuous
mapping

T :[eco,0(co,41)] = [E',0(E,E)] (an)— T(an) = Z anZn
n=1

T is also B(co,f1)-B(E', E)—continuous. By [5], the sequence (T(en) = 2zn)n
must tend to zero for the (E’, E) topology, and we get a contradiction. O

Our last theorem originates from a natural question: Is the Banach space ¢; a
¥,—space?. Unfortunately, the answer is negative as we show in the next example.
However, we will see that it is possible to give closed graph theorems between dual
Y—complete spaces and ¢; in mized situation.

EXAMPLE : Let (px)x be the increasing sequence of primes, i.e., (2,3,5,...). And let
us consider the following sequence (Zx)r>1 in £oo:

1 j=k-2"
o d<i<oiAk-on . bl
zx(j) = 1 j>2",jis multiple of py < k<, n =012

—1 3> 2", jis not multiple of pi
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First of all, we are going to show that (z,) is a basic sequence, in fact, it is a
unit vector basis of £;. If ¢1,...c, are real scalars, then

p p p
> enmel| < lerlllzill =D lekl.
k=1 k=1 k=1

Moreover, we can obtain a sufficiently large natural number j, (we mean that
zk(j) = £1,5 > jo,1 < k < p) whose prime factorization uses only primes from
{pr : 1 < k < p,cr > 0}. Therefore,

p
D cra
k=1

If we denote by F the closed linear span of (zx) in £y, then F' is a closed
subspace of £, isomorphic to ;. So, F' has no copy of ¢y and according to Bessaga—
Pelczyinski’s theorem F is 0(£so,(£oo)')-X—complete. Bearing in mind that, in any
Banach space E, a series is unconditionally o(E’, E)-Cauchy if and only if it is
unconditionally o(E’, E")-Cauchy, we can conclude that F is also o(£e,f1)-X—
complete.

In order to prove that £; is not a ¥,—space, it is e'nough to show that F is
0(£oo,£1)—dense.

If (a;) € £1\ {0}, then there exists (without loss of generality) no € N such that
Gn, > 0. We can also obtain my € N such that

P

= lexl.

k=1

>

P
> cxzr (o)
k=1

oo
E lai| < @n,, and 2™° > ny.

i=2m0

Let us denote s = 2™° 4+ ng. Since 2™ 4y < 2M0 4 2™M0 = 2mot1l the definition
of the sequence (zj) tells us that z5(ng) = 1, z4(j) = £1,5 > 2™° and the other
coordinates are equal to zero. Therefore (a; = £1),

[oo] (o]
(Ts,a) = any + Z Qkag > Any — z |ax| > 0.

k=2m0 k=2mo0

If we restrict to dual ¥—complete sequence spaces, we can establish other closed
graph theorems. As we see, these results show that Y—completeness is closer to
sequential completeness for sequence spaces. We begin by proving a lemma which
can be of independent interest.
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Theorem 4.

Let X be a perfect sequence space and [E, 7] a B,—complete space with no copy
of £. Then every linear closed graph map from [\, u(A, A%*)] to E is continuous.

Proof. Let T a mapping under the hypothesis of the theorem. By Bennett—Kalton
[1], we know that T' maps subseries summable sequences of A in subseries summable
sequences of FE.

Let OP(t) be the finest locally convex topology which has the same subseries
summable sequences as the topology 7 (see [9]). According to Dierolf [2], last para-
graph can be rewritten in this way: T is OP(u(A, A%))—7 continuous.

In Tweddle [9] can be seen that OP(o(E,E')) = OP(u(E,E")) = u(E,GEg),
where Gg is the subspace of E* such that y € Gg if

<a(E,E')—g:1zn,y> = g:l(wn,y)

for all series ) _ z,, weakly subseries convergent in E.

So if we prove that OP(u(A,A%)) = p(A,A%), the proof will be finished. This
last happens, since (A, A%), (A, G») are isomorphic dual pairs.

In fact, given z € A and g € G, we have

(x,g)(A,GA) = <anen,g> = Z(mnemg) = ("”((emg))n)(z\.)\")'m
n=1 n=1

Theorem 5.

Let A be a sequence space containing ¢. Then the following are equivalent:

(1) Every linear map from [A%, u(A%, )] to E, having closed graph, is continuous,
where E is a separable B,—complete space.

(2) Every linear map from [A®, u(A®,A)] to E, having closed graph, is continuous,
where E is a weakly compactly generated B,—complete space.

(3) Every linear map from [A%, u(A%, )] to E, having closed graph, is continuous,
where E is a B,—complete space not containing a copy of £,.

(4) Every linear map from [A*, u(A*, A)] to €1, having closed graph, is continuous.

(5) Every linear map from [A®, u(A%, A)] to co, having closed graph, is continuous.

(6) X is a perfect sequence space.

(7) [A,0(X, A?)] is E—complete.
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Proof. (5) < (6). Since A is a perfect sequence space if and only if [A,o(A,A%)] is
sequentially complete, and Kalton [6].
(6) = (7). Since sequential completeness implies X—completeness.
(7) = (6). Let (z) be a o(A,A*)-Cauchy sequence. Since [A**,o(A%*,A%)] is
sequentially complete, (z,) is weak™ convergent to z = (z,) € A*%.

On the other hand, the series Y z e, is unconditionally o(A*®, A®)—convergent
to z. Since zpe, € ¢ C A and (7), we deduce that z € A.

(4) = (7). Let >z, be a weakly unconditionally Cauchy series in A. This means

Z {y,zn)| < +00, forall y e A*

n=1

So we can define the following linear map
T: 2 =4, yw T(y) = ((yazn»n

Moreover, T has (A%, A)-p(€1, s )—closed graph. Therefore, by (4) T is con-
tinuous, so the adjoint T* : £,, — A is weakly* continuous and the series )_ z,, is
bounded multiplier convergent in [A,o(A, A?)].

(6) = (3). By theorem 4.

(3) = (2). Since the copies of £, are always complemented [4, p. 133], and £ is
not weakly compactly generated.

(3) = (1). By Kalton [5].

(1) = (4),(2) = (4). Since ¢, is separable and therefore weakly compactly gener-
ated. O

Remarks . (1) We notice that in theorem 5, since ¢p is not perfect we can not
consider sequence spaces in the way [A, u(X, A%)].

(2) The third sentence improves Kalton’s results on closed graph theorems for dual
sequentially complete spaces (see [6]).
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3. Mixed Closed Graph Theorems

For our next closed graph theorem, we use a mixed dual pair condition on the
spaces E' which appear in the range space. Namely, the topology used for the
graph is related to the dual pair (E’, E) and the topology used for the continuity is
related to the dual pair (E’, E”). These kind of conditions were already employed
by Poppola-Tweddle to give closed graph theorems for £,,—barrelled spaces (see [7,
ch. 8]).

To formulate the theorem, we need the so called property (u) for Banach spaces:
a Banach space has this property if for each weakly Cauchy sequence (2,) in E, there
exists a weakly unconditionally Cuachy series S z, in E such that

Zp — zn:zk — 0 (o(E,E")).
k=1

Theorem 6.

Let E be a space. The following conditions are equivalent:

(1) E is dual £-complete.

(2) Every linear mapping from E to [€y,u(¢1,¢,)], having closed graph, is o(E, E")-
o(€1,€o)—continuous.

(3) Every linear mapping from E to [y, ({1, H)), having closed graph, is o(E, E")-
0(¢1,€x )—continuous, for each dense subspace H of ¢q.

(4) Every linear mapping from E to [F',u(F', F)], having closed graph, is weakly
continuous, where F' is a separable Banach space which has the property (u) of
Pelczinsky and does not contain a copy of £;.

(5) Every linear mapping from E to [F',u(F', F)], having closed graph, is weakly
continuous, where F is a Banach space with unconditional basis and which does
not contain a copy of £;.

Proof. (1) = (2). Let T be a map satisfying the corresponding hypothesis. Since
[co, (co, £1)] is metrizable, we obtain from theorems 1 and 2 that T is o(E, E')-
o(£y,co)—continuous.

In particular, this implies that T*(e,) € E’ for all n € N, where e, is the
sequence which vanishes except in the n—th position. Since, for every 2 € E, we can
write T(z) = ({(T'(z), en))n, the series 3 T*(e,) is unconditionally o( E’, E)—-Cauchy.
In fact, )  @,T*(e,) is weakly* unconditionally Cauchy for every (a,) € £e.-

Finally, since E is dual ¥—complete the series Y T*(e,) is weakly* bounded
multiplier convergent in E', that is to say, T*(£o) C E' and T'is 0(E, E')-0(£1,£00 )-
continuous.
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(2) = (1). Let >z, be a weakly* unconditionally Cauchy series in E’. This means

oo

E Ky,zn)| < 400, forall ye E

n=1

So we can define the following linear map

T:E—{, yoT(y) =y 2n))n

Moreover, T has u(£y,co)-closed graph, since z,, € E' and the sequence e, belongs
to cp.

Therefore, by (2) T is weakly continuous, so the adjoint 7™ : [{e, 0(£eo, f1)] —
[E',o(E', E)] is continuous and the series } z, is weakly* bounded multiplier con-
vergent.

(1) = (3). Let T be a map satisfying the corresponding hypothesis and H an
arbitrary dense subspace of ¢o. Since [H,u(H,£;)] is metrizable, from theorems 1
and 2 we obtain that T is o(E, E')-o ({1, H)-continuous.

Moreover, for all n € N we can express e, as the sum of an unconditionally
o(co,€1)-Cauchy series }, h7 of elements of H.

E is dual -complete, so 3, T*(h}) is unconditionally o(E’, E)-convergent
to zn. On the other hand, these series are unconditionally o(E*, E)-convergent to
T*(en). By the uniqueness of the limit, we deduce that T*(e,) € E'. After that, we
continue as in implication (1) = (2).

(3) = (2). It is a particular case.

(1) = (4). Let T be a map satisfying the corresponding hypothesis of (4). Since

[F',u(F', F)] is a ¥,—space, we obtain that T is o(E, E')-o(F’, F)-continuous.
Let us consider the former mapping in the following way

T:[E,0(E,E")] — [F',o(F',F")

By the continuity of T which was proved before, we can deduce that T has
o(E,E")-o(F',F")—closed graph. So, by [4, p. 197] the subspace of F"

L={feF":T*(f)€ E'}

is weak* dense in F". The continuity also shows that FF C L C F", where we have
identified F with the corresponding normed subspace of F".

Given z € F", by Rosenthal’s theorem [3, p. 215] there is a sequence (z,) in F
which is o(F", F')—convergent to z. Moreover, F' has property (u), so there exists
an unconditionally o(F, F')-Cauchy series ) y, in E such that
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mn"zyk'l’o (U(F’F’))
k=1 .

Since (z,) is convergent, we really have that the series Y y, is unconditionally
o(F", F')~convergent to 2.

If we prove that for every unconditionally o(F", F')-convergent series with
elements in L, the sum of these series also belong to L, we will get F"' C L and T
will be o(E, E')-o(F', F"")—continuous and the theorem will be proved.

So, let (fn) a sequence in L and let us suppose that the series ) f, is uncon-
ditionally o(F", F')-convergent to f € F".

Since T* from F" to E* is weakly* continuous, we have that the series Y T*(f,)
is unconditionally o(E*, E)—convergent to T*( f).

But, for all n € NT*(f,) belongs to E', and E is dual ¥—complete. So 3 T*(f,)
is unconditionally o(E’, E)-convergent to a certain z € E’. By the uniqueness of
the limit, z = T™*(f) or equivalently f € L.

(4) = (5). Since every Banach space with unconditional basis has property (u) [8,
pp. 442-446].

(5) = (2). Since co is a separable Banach space which has unconditional basis,
property (u) [8, pp. 442-446], no copy of £; [4, p. 310] and a strong dual separable.
O

Remark . The classes of Banach spaces which appear in (4) and (5) have been
considered in the context of when a separable Banach space has a separable dual
(see [3, p. 214]).
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