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ABSTRACT

In this note we study the Bade property in the C( K, X ) and ¢(X') spaces. We
also characterize the spaces X = C(K,R) such that ¢(X) has the uniform
A-property.

1. Introduction

Given a normed space X, Bx denotes its closed unit ball, Sx the closed unit sphere
of X and ExtBx the set of extreme points of Bx. X is said to have the Bade
property if Co(Ext Bx) = Bx.

The following questions were developed by R.M. Aron and R.H. Lohman [2]:
If z € By, a triple (e,y,A) is said to be amenable to z if e € Ext Bx, y € Bx
0<A<land z=XAe+ (1 - A)y. In this case, we define

A(z) = sup{A : (e, A, y) is amenable to z},

and

Lol ¢ oy ¢ Lt

is verified. X is said to have the A-property if each z € Bx admits an amenable
triple. If, in addition,

MX) =inf{A(z) : z € Bx} >0,

245



246 AIZPURU AND BENITEZ

then X is said to have the uniform A-property.
In [3], it is shown that a Banach space X has the A-property if and only if X has
the convex series representation property, i.e. every point z in Bx can be written

as an infinite series:
o0
T = E An €n
n=1

where the points e,, € Ext Bx and the scalars A, satisfy
o0
An>0  and ) A, =1
n=1

Let K be a compact Hausdorff space and let X be a normed space. C(K,X)
denotes the Banach space of all X-valued continuous functions f on K, with the
uniform norm. As usual, C(K) denotes the C(K,X) space when X = R. Bade’s
theorem states that C(K) has the Bade property if and only if K is 0-dimensional
(see [7] and [8]).

In [2], it is shown that if X has the A-property then X has the Bade property,
but it’s also shown that the converse assertion is false by means of C(K,C) where
K is the unit ball of C.

In [4] and [5] it’s shown that if K is a compact Hausdorff space, then C(K') has
the A-property if and only if K is 0-dimensional and, in this particular case, C(K)
has the uniform A-property and A(C(K)) = 1/2. These results were also obtained
independently by A. Suarez Granero.

Given a normed space X, the space of convergent sequences is denoted by ¢(X),
endowed with the supreme norm. In [2] it’s shown that ¢(X) has the uniform A-
property when X is a strictly convex normed space. In [1] it’s shown that if K is
a 0-dimensional Hausdorff compact space and X is a strictly convex Banach space,
then C(K,X) has the uniform A-property and, as a particular case, when K =y w
— Alexandroff’s compactification of the discrete space w — we get that ¢(X) also
has the uniform A-property.

2. The Bade property in C(K,X) and ¢(X) spaces

Let X be a normed space. It is easy to prove that X has the Bade property if and
only if
sup f(z) = sup f(z)

r€Bx r€ExtBx

for every f: X — R continuous linear form.
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Lemma 2.1

Let X be a normed space and let n € N, n > 0. Let’s consider the space X",
with the norm

@1, s2n)ll = max o

Then:
a)(z1,...,%n) € Ext Bxn ifand only ifz; € Ext Bx foreveryi€ {1,2,...,n}.
b) X™ has the Bade property if and only if X has the Bade property.

Proof. We just want to show that whenever X has the Bade property, then X™ also
has it.

Let f: X — R be a continuous linear form, and let ¢ > 0. Every (z1,...,2,) €
X" verifies

f(z1,...,2,) = Zn:f,'(a:,-),
i=1
where, for every ¢ € {1,...,n}, fi: X — R is defined by
fi(z) = f(O,...,:f,...,O),.
For every i € {1,...,n} there exists an e; € Ext Bx such that
file) + = > sup fi(a)
Hence we have that (e1,...,e,) € Ext Bx» and

fler,....en) +€> sup f(z1,...,2,). 0O
(zl,...,m,.)Ean

Proposition 2.2

Let K be a compact Hausdorff space and let X be a normed space.

a) If C(K) and X have the Bade property, then C(K, X) has the Bade property.

b) If K is non-perfect and C(K,X) has the Bade property, then X has the Bade
property.
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Proof. a) If K is 0-dimensional, it can be easily proved that the subspace of the
finite-valued functions is dense in C(K,X). Let f € C(K,X) and € > 0. Since K
is 0-dimensional, there exist {z;,...,2,} C Bx and a partition {A;,...,4,} of K,
where the A; are disjoint clopen subsets such that

n
F=) mixa
i=1
By Lemma 2.1, X™ has the Bade property. Hence there exist
{ﬂl,...,ﬂm} C [0,1] and (y,])llénjév: C Ext Bx

<t
5"

such that
E Bi=1 and

i=1

For every i € {1,...,m} we define

n m
gi = Zyij XA, and g¢g= Eﬂi gi.
j=1 =1

It’s clear that g € Co(Ext Be(k,x)) and that || f — g|| < e.
b) Let z € Bx and ¢ > 0. We define f: K — X by f(t) = z for every t € K.
Since C(K, X)) has the Bade property there exist

{a1,...,a,} C[0,1] and {e1,...,en} C Ext Be(k,x)

such that . .
Za,~=1 and f—Za,-e,—
=1 i=1
Let to € K be such that {5} is a clopen subset of K. Every e € Ext Bk, x) verifies
that e(to) € Ext Bx. Therefore

<t
5"

m
(zlv"-,zn) - Zﬂt (yil,---7yin)
i=1

<eE.

Za,- ei(to) € Co(Ext Bx) " and

i=1

<e. O

n
T — z a; ei(to)
i=1

Remark 2.3. Aron and Lohman ([2], Th. 1.6) proved that if K is a compact metric
space and X is a strictly convex normed space then C(K,X) has the uniform A-
property (and, hence, the Bade property). As a consequence, it may happen that
C(K,X) has the Bade property but C(K') does not have it (this occurs, for instance,
when K = [0,1]). Proposition 2.2 a) gives us a sufficient condition for C(K,X) to
have the Bade property, if C(X) and X have it (in this case K is 0-dimensional). We
don’t know if there exist spaces C(K,X) with the Bade property such that neither
C(K) nor X have that property. Proposition 2.2 b) tells us that this cannot occur
if K is non-perfect.
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As a consequence of Proposition 2.2 we obtain:

Corollary 2.4

Let X be a normed space. Then X has the Bade property if and only if ¢(X)
has the Bade property.

3. The A-property in ¢(X) when X = C(K)

If ¢(X ) has the A-property (resp. the uniform A-property), then X has the A-property
(resp. the uniform A-property). J.C. Navarro [6] has obtained a Banach space X, in
fact a 3-dimensional space, with the uniform A-property such that the corresponding
¢(X) space has not the A-property.

Nevertheless, as a consequence of 2.4, ¢(X) has the Bade property. This raises
the question about geometric conditions, additional to the A-property, on X that
are necessary for ¢(X) to have the A-property (or, the uniform A-property).

Proposition 3.1
Let X be a normed space with the A-property. If
T = (mn)neN € Byx), ZToo = nh_{%o(xn) and ||zl <1,

then x has an amenable triple.

Proof. Let a € R be such that ||z|| < @ < 1, there exists a no € N such that
||zn|] < a for every n > ng. Let

A< min{%g,)\(xl),...,/\(zno)}.
For every n € N, A < A(z,) and also A < A(z). Hence, there exists an amenable
triple (e,y,A) for . Since
Jim flzn = Xef| = [[zoo — Ae]| < [|l2eoll + A < 1,
there exists a ny € N such that ||z, — Ae|| < 1 — A for every n > n;.

For n < ny, let (en,yYn,A) be an amenable triple for z,. We consider the
sequences (€n)nen and (Yn)nen, where for n > nq,

Tp—Ae

en.:e a.nd ynz 1 A 9

then ((en)nGN’(yn)nEN’ A) is an amenable triple for z. O
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Remark 3.2.  Let’s recall the fact that if K is a Hausdorff compact space then
e € Ext B¢k if and only if e = x4 — x4c, where A is a clopen subset of K.

Proposition 3.3

Let K be a 0-dimensional Hausdorff compact space and let X = C(K). Then
¢(X) has the A-property and A(¢(X)) = 1/2.

Proof. Let

T = (Tn),en € Be(x) and Too = nﬁn;o (ZTn)nen

For every A € (0,1/2) and a € (A,1/2) there exists an amenable triple (e, yoo, ) for
To. Let A be a clopen subset of I such that e = x,—x4¢ . Since ||[zo—a e]| < 1-a,
we obtain:

a)Ift€ A, then |zo(t)—a|<1-a = -1+2a<z,(t)<1L

b)Ift € A° then [zo(t)+ | <1-a = -1<z,(t)<1-2a

Since @ — A > 0, there exists ng € N such that ||z, — 2| < & — A for every
n > ng. Therefore it follows that:

a)Ifte A, then 1> z,(t) > —a+ A+ zx(t) > —1+ 2 A, and hence |z,(t) —
Ae(t)| 1=

b) If t € A°, then —1 < z,(t) L a— A+ z5(t) <1 -2 A, and hence |z,(t) —
Ae(t) <1-A.

For every n < ng, we choose an amenable triple (e, ¥, A) for z,,. Let’s consider
the sequences (en),cy and (¥n),cn> Where e, = e and

_Tp—Ae
=T

for every n > ng. Then ((Cn)neN,(yn)neN, A) is an amenable triple for z. O

Remark 3.4. An immediate consequence of the former proposition is that ¢(¢) and
¢(£) have the uniform A-property.

As a consequence of corollary 2.4, the proposition 3.3 and the results obtained
in [4] and [5] it’s quite apparent that:
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Corollary 3.5

Let K be a Hausdorff compact space, then the following statements are equiv-
alent:

a) K is 0-dimensional.

b) C(K) has the Bade property.

¢) ¢(C(K')) has the Bade property.

d) C(K) has the A-property.

e) C(K) has the uniform A-property and A(C(K)) = 1/2.

f) ¢(C(K)) has the A-property.

g) ¢(C(K)) has the uniform A-property and A(C(C(K))) = 1/2.
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