Collect. Math. 42, 3 (1991), 245-251

(c) 1992 Universitat de Barcelona

The Bade property and the λ -property in spaces of convergent sequences

Antonio Aizpuru Tomás and Francisco Benítez Trujillo

Dpto. Matemáticas, Universidad de Cádiz, Apdo.40, Puerto Real, Cádiz, Spain.

Received July 4, 1991

ABSTRACT

In this note we study the Bade property in the $\mathcal{C}(K,X)$ and c(X) spaces. We also characterize the spaces $X=\mathcal{C}(K,\mathbb{R})$ such that c(X) has the uniform λ -property.

1. Introduction

Given a normed space X, B_X denotes its closed unit ball, S_X the closed unit sphere of X and $ExtB_X$ the set of extreme points of B_X . X is said to have the Bade property if $\overline{\text{Co}(Ext B_X)} = B_X$.

The following questions were developed by R.M. Aron and R.H. Lohman [2]: If $x \in B_X$, a triple (e, y, λ) is said to be amenable to x if $e \in \operatorname{Ext} B_X$, $y \in B_X$, $0 < \lambda \le 1$ and $x = \lambda e + (1 - \lambda) y$. In this case, we define

$$\lambda(x) = \sup\{\lambda : (e, \lambda, y) \text{ is amenable to } x\},\$$

and

$$\frac{1-\|x\|}{2} \leq \lambda(x) \leq \frac{1+\|x\|}{2}$$

is verified. X is said to have the λ -property if each $x \in B_X$ admits an amenable triple. If, in addition,

$$\lambda(X) = \inf\{\lambda(x) : x \in B_X\} > 0,$$

then X is said to have the uniform λ -property.

In [3], it is shown that a Banach space X has the λ -property if and only if X has the convex series representation property, i.e. every point x in B_X can be written as an infinite series:

$$x = \sum_{n=1}^{\infty} \lambda_n \ e_n$$

where the points $e_n \in \operatorname{Ext} B_X$ and the scalars λ_n satisfy

$$\lambda_n \geq 0$$
 and $\sum_{n=1}^{\infty} \lambda_n = 1$.

Let K be a compact Hausdorff space and let X be a normed space. $\mathcal{C}(K,X)$ denotes the Banach space of all X-valued continuous functions f on K, with the uniform norm. As usual, $\mathcal{C}(K)$ denotes the $\mathcal{C}(K,X)$ space when $X=\mathbb{R}$. Bade's theorem states that $\mathcal{C}(K)$ has the Bade property if and only if K is 0-dimensional (see [7] and [8]).

In [2], it is shown that if X has the λ -property then X has the Bade property, but it's also shown that the converse assertion is false by means of $\mathcal{C}(K,\mathbb{C})$ where K is the unit ball of \mathbb{C} .

In [4] and [5] it's shown that if K is a compact Hausdorff space, then $\mathcal{C}(K)$ has the λ -property if and only if K is 0-dimensional and, in this particular case, $\mathcal{C}(K)$ has the uniform λ -property and $\lambda(\mathcal{C}(K)) = 1/2$. These results were also obtained independently by A. Suarez Granero.

Given a normed space X, the space of convergent sequences is denoted by c(X), endowed with the supreme norm. In [2] it's shown that c(X) has the uniform λ -property when X is a strictly convex normed space. In [1] it's shown that if K is a 0-dimensional Hausdorff compact space and X is a strictly convex Banach space, then $\mathcal{C}(K,X)$ has the uniform λ -property and, as a particular case, when $K=\gamma$ ω —Alexandroff's compactification of the discrete space ω —we get that c(X) also has the uniform λ -property.

2. The Bade property in C(K,X) and c(X) spaces

Let X be a normed space. It is easy to prove that X has the Bade property if and only if

$$\sup_{x \in B_X} f(x) = \sup_{x \in \operatorname{Ext} B_X} f(x)$$

for every $f: X \to \mathbb{R}$ continuous linear form.

Lemma 2.1

Let X be a normed space and let $n \in \mathbb{N}$, n > 0. Let's consider the space X^n , with the norm

$$||(x_1,\ldots,x_n)|| = \max_{1 \le i \le n} ||x_i||.$$

Then:

- a) $(x_1, \ldots, x_n) \in \text{Ext } B_{X^n}$ if and only if $x_i \in \text{Ext } B_X$ for every $i \in \{1, 2, \ldots, n\}$.
- b) X^n has the Bade property if and only if X has the Bade property.

Proof. We just want to show that whenever X has the Bade property, then X^n also has it.

Let $f: X \to \mathbb{R}$ be a continuous linear form, and let $\varepsilon > 0$. Every $(x_1, \ldots, x_n) \in X^n$ verifies

$$f(x_1,\ldots,x_n)=\sum_{i=1}^n f_i(x_i),$$

where, for every $i \in \{1, ..., n\}$, $f_i: X \to \mathbb{R}$ is defined by

$$f_i(x) = f(0, \ldots, \underset{i}{x}, \ldots, 0).$$

For every $i \in \{1, ..., n\}$ there exists an $e_i \in \text{Ext } B_X$ such that

$$f_i(e_i) + \frac{\varepsilon}{n} > \sup_{x \in B_X} f_i(x).$$

Hence we have that $(e_1, \ldots, e_n) \in \operatorname{Ext} B_{X^n}$ and

$$f(e_1,\ldots,e_n)+\varepsilon>\sup_{(x_1,\ldots,x_n)\in B_{X^n}}f(x_1,\ldots,x_n).$$

Proposition 2.2

Let K be a compact Hausdorff space and let X be a normed space.

- a) If $\mathcal{C}(K)$ and X have the Bade property, then $\mathcal{C}(K,X)$ has the Bade property.
- b) If K is non-perfect and C(K, X) has the Bade property, then X has the Bade property.

Proof. a) If K is 0-dimensional, it can be easily proved that the subspace of the finite-valued functions is dense in $\mathcal{C}(K,X)$. Let $f \in \mathcal{C}(K,X)$ and $\varepsilon > 0$. Since K is 0-dimensional, there exist $\{x_1,\ldots,x_n\} \subset B_X$ and a partition $\{A_1,\ldots,A_n\}$ of K, where the A_i are disjoint clopen subsets such that

$$\left\|f-\sum_{i=1}^n x_i \chi_{A_i}\right\|<\frac{\varepsilon}{2}.$$

By Lemma 2.1, X^n has the Bade property. Hence there exist

$$\{\beta_1,\ldots,\beta_m\}\subset [0,1]$$
 and $(y_{ij})_{\substack{1\leq i\leq m\\1\leq j\leq n}}\subset\operatorname{Ext} B_X$

such that

$$\sum_{i=1}^{m} \beta_i = 1 \quad \text{and} \quad \left\| (x_1, \dots, x_n) - \sum_{i=1}^{m} \beta_i (y_{i1}, \dots, y_{in}) \right\| < \frac{\varepsilon}{2}.$$

For every $i \in \{1, ..., m\}$ we define

$$g_i = \sum_{i=1}^n y_{ij} \ \chi_{A_j}$$
 and $g = \sum_{i=1}^m \beta_i \ g_i$.

It's clear that $g \in \text{Co}(\text{Ext } B_{\mathcal{C}(K,X)})$ and that $\|f - g\| < \varepsilon$.

b) Let $x \in B_X$ and $\varepsilon > 0$. We define $f: K \to X$ by f(t) = x for every $t \in K$. Since C(K, X) has the Bade property there exist

$$\{\alpha_1,\ldots,\alpha_n\}\subset[0,1]$$
 and $\{e_1,\ldots,e_n\}\subset\operatorname{Ext} B_{\mathcal{C}(K,X)}$

such that

$$\sum_{i=1}^n \alpha_i = 1 \quad \text{and} \quad \left\| f - \sum_{i=1}^n \alpha_i \; e_i \right\| < \varepsilon.$$

Let $t_0 \in K$ be such that $\{t_0\}$ is a clopen subset of K. Every $e \in \operatorname{Ext} B_{\mathcal{C}(K,X)}$ verifies that $e(t_0) \in \operatorname{Ext} B_X$. Therefore

$$\sum_{i=1}^{n} \alpha_{i} \ e_{i}(t_{0}) \in \operatorname{Co}(\operatorname{Ext} B_{X}) \quad \text{ and } \quad \left\| x - \sum_{i=1}^{n} \alpha_{i} \ e_{i}(t_{0}) \right\| < \varepsilon. \ \Box$$

Remark 2.3. Aron and Lohman ([2], Th. 1.6) proved that if K is a compact metric space and X is a strictly convex normed space then $\mathcal{C}(K,X)$ has the uniform λ -property (and, hence, the Bade property). As a consequence, it may happen that $\mathcal{C}(K,X)$ has the Bade property but $\mathcal{C}(K)$ does not have it (this occurs, for instance, when K = [0,1]). Proposition 2.2 a) gives us a sufficient condition for $\mathcal{C}(K,X)$ to have the Bade property, if $\mathcal{C}(K)$ and X have it (in this case K is 0-dimensional). We don't know if there exist spaces $\mathcal{C}(K,X)$ with the Bade property such that neither $\mathcal{C}(K)$ nor X have that property. Proposition 2.2 b) tells us that this cannot occur if K is non-perfect.

As a consequence of Proposition 2.2 we obtain:

Corollary 2.4

Let X be a normed space. Then X has the Bade property if and only if c(X) has the Bade property.

3. The λ -property in c(X) when $X = \mathcal{C}(K)$

If c(X) has the λ -property (resp. the uniform λ -property), then X has the λ -property (resp. the uniform λ -property). J.C. Navarro [6] has obtained a Banach space X, in fact a 3-dimensional space, with the uniform λ -property such that the corresponding c(X) space has not the λ -property.

Nevertheless, as a consequence of 2.4, c(X) has the Bade property. This raises the question about geometric conditions, additional to the λ -property, on X that are necessary for c(X) to have the λ -property (or, the uniform λ -property).

Proposition 3.1

Let X be a normed space with the λ -property. If

$$x = (x_n)_{n \in \mathbb{N}} \in B_{c(X)}, \quad x_\infty = \lim_{n \to \infty} (x_n) \quad \text{and} \quad ||x_\infty|| < 1,$$

then x has an amenable triple.

Proof. Let $\alpha \in \mathbb{R}$ be such that $||x_{\infty}|| < \alpha < 1$, there exists a $n_0 \in \mathbb{N}$ such that $||x_n|| < \alpha$ for every $n \ge n_0$. Let

$$\lambda < \min \left\{ \frac{1-\alpha}{2}, \lambda(x_1), \ldots, \lambda(x_{n_0}) \right\}.$$

For every $n \in \mathbb{N}$, $\lambda < \lambda(x_n)$ and also $\lambda < \lambda(x_\infty)$. Hence, there exists an amenable triple (e, y, λ) for x_∞ . Since

$$\lim_{n\to\infty} ||x_n - \lambda e|| = ||x_\infty - \lambda e|| \le ||x_\infty|| + \lambda < 1,$$

there exists a $n_1 \in \mathbb{N}$ such that $||x_n - \lambda e|| < 1 - \lambda$ for every $n \ge n_1$.

For $n \leq n_1$, let (e_n, y_n, λ) be an amenable triple for x_n . We consider the sequences $(e_n)_{n \in \mathbb{N}}$ and $(y_n)_{n \in \mathbb{N}}$, where for $n > n_1$,

$$e_n = e$$
 and $y_n = \frac{x_n - \lambda e}{1 - \lambda}$,

then $((e_n)_{n\in\mathbb{N}},(y_n)_{n\in\mathbb{N}},\lambda)$ is an amenable triple for x. \square

Remark 3.2. Let's recall the fact that if K is a Hausdorff compact space then $e \in \operatorname{Ext} B_{\mathcal{C}(K)}$ if and only if $e = \chi_A - \chi_{A^c}$, where A is a clopen subset of K.

Proposition 3.3

Let K be a 0-dimensional Hausdorff compact space and let $X = \mathcal{C}(K)$. Then c(X) has the λ -property and $\lambda(c(X)) = 1/2$.

Proof. Let

$$x = (x_n)_{n \in \mathbb{N}} \in B_{c(X)}$$
 and $x_\infty = \lim_{n \to \infty} (x_n)_{n \in \mathbb{N}}$.

For every $\lambda \in (0,1/2)$ and $\alpha \in (\lambda,1/2)$ there exists an amenable triple (e,y_{∞},α) for x_{∞} . Let A be a clopen subset of K such that $e=\chi_a-\chi_{A^c}$. Since $||x_{\infty}-\alpha|| \leq 1-\alpha$, we obtain:

- a) If $t \in A$, then $|x_{\infty}(t) \alpha| \le 1 \alpha \implies -1 + 2 \alpha \le x_{\infty}(t) \le 1$.
- b) If $t \in A^c$, then $|x_{\infty}(t) + \alpha| \le 1 \alpha$ \implies $-1 \le x_{\infty}(t) \le 1 2\alpha$

Since $\alpha - \lambda \geq 0$, there exists $n_0 \in \mathbb{N}$ such that $||x_n - x_\infty|| \leq \alpha - \lambda$ for every $n > n_0$. Therefore it follows that:

- a) If $t \in A$, then $1 \ge x_n(t) \ge -\alpha + \lambda + x_\infty(t) \ge -1 + 2\lambda$, and hence $|x_n(t) \lambda| \le 1 \lambda$.
- b) If $t \in A^c$, then $-1 \le x_n(t) \le \alpha \lambda + x_\infty(t) \le 1 2\lambda$, and hence $|x_n(t) \lambda| e(t) \le 1 \lambda$.

For every $n \leq n_0$, we choose an amenable triple (e_n, y_n, λ) for x_n . Let's consider the sequences $(e_n)_{n \in \mathbb{N}}$ and $(y_n)_{n \in \mathbb{N}}$, where $e_n = e$ and

$$y_n = \frac{x_n - \lambda e}{1 - \lambda}$$

for every $n > n_0$. Then $((e_n)_{n \in \mathbb{N}}, (y_n)_{n \in \mathbb{N}}, \lambda)$ is an amenable triple for x. \square

Remark 3.4. An immediate consequence of the former proposition is that c(c) and $c(\ell_{\infty})$ have the uniform λ -property.

As a consequence of corollary 2.4, the proposition 3.3 and the results obtained in [4] and [5] it's quite apparent that:

Corollary 3.5

Let K be a Hausdorff compact space, then the following statements are equivalent:

- a) K is 0-dimensional.
- b) C(K) has the Bade property.
- c) c(C(K)) has the Bade property.
- d) C(K) has the λ -property.
- e) C(K) has the uniform λ -property and $\lambda(C(K)) = 1/2$.
- f) c(C(K)) has the λ -property.
- g) c(C(K)) has the uniform λ -property and $\lambda(C(C(K))) = 1/2$.

References

- 1. A. Aizpuru y F. Benítez, La λ-propiedad débil, densa y uniforme en espacios normados, Jornadas Luso Españolas de Matemáticas (1990), Evora, Portugal.
- 2. R.M. Aron and R.H. Lohman, A geometric function determined by extreme points of the unit ball of a normed space, *Pacific Journal of Math.* 2 (1987), 209-231.
- 3. R.M. Aron, R.H. Lohman and A. Suarez, Rotundity, the convex series representation property and the λ -property in Banach spaces, *Proc. AMS* 111 (Jan 1991).
- 4. F. Benítez, The λ -property is not hereditary to dual space, I Congreso internacional de Análisis Funcional (1988).
- 5. F. Benítez, Estudio de los espacios $\mathcal{C}(K,\mathbb{R})$ con K compactificación 0-dimensional de ω , Tesis, Universidad de Sevilla.
- 6. J.C. Navarro Pascual, Sobre la λ -propiedad en espacios de sucesiones convergentes, *Jornadas Luso Españolas de Matemáticas* (1990), Evora, Portugal.
- N.M. Roy, Extreme points of convex sets in infinite dimensional spaces, Math. Monthly (1987), 409-422.
- 8. A. Semadeni, Banach spaces of continuous functions, D.W.N., Varsovia, 1971.