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ABSTRACT

Denote by F the composition operator generated by a given function f: R —
IR, acting on the space of absolutely continuous function$. In this paper we
prove that the composition operator F maps the space .AC|a, b] into itself if
and only if f satisfies a local Lipschitz condition on IR.

1. Introduction

The well-known De La Vallée-Poussin’s lemma (see [5]) states that: If f € AC[a,b],
then the composition operator generated by f maps the space AC[a,b] into itself if
and only if, for every u € AC|a,b], the following holds:

(f" o u) ' € Ly([a,B]),

where the product is defined to be zero when u'(t) = 0, even if f'(u(t)) is not defined.

Here we shall give an example of an absolutely continuous function f, such
that the composition operator F generated by f does not map .AC[a,b] into itself.
So, it is natural to look for necessary and sufficient conditions on f, in order that
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the corresponding composition operator maps .AC[a, b] into itself. In this paper, we
prove that this is so if and only if f:R — IR satisfies a local Lipschitz condition.
Moreover, the operator F: AC[a,b] — AC|a,b] is always bounded on bounded sets.

2. Preliminaries

In this section we give some definitions and results concerning the space.AC|a,b],
that we shall use in this work.

The space AC[a,b] consists of all absolutely continuous functions u defined on
[a,b], equipped with either of the norms:

llull == lu(a)] + [|u']| L, (a
or
m
jul 1= fu(a)| + sup Y [ult;) = u(ts-1)],
i=1
where the supremum is taken over all partitions 7:a =ty < ... < t,, = b of the

interval [a, b].
Let f: R — R and u: [a,b] — R be given functions. Let us define

F u(t) := f(u(?)) (t € [a,b]).

The operator F is usually called a composition operator, on Nemytskii’s oper-
ator.

Let us remember some known facts on the composition operator on the space
ACla,b]. First of all, we point out that f absolutely continuous does not necessarily
imply F (ACl[a,b]) C AC|a,b].

In this regard, we can consider the following

Example
Let f : R — R be defined by:
1 if —o0o<u< -1,
f(w):=< /lu| if -1<u<1,
1 if 1<u<o00.
This function f is absolutely continuous on R and so is the function
z(s) := s sin? -i—,

but the composition function f oz restricted to [-1,1] does not belong to the space

AC[-1,1].
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As will be seen in the next section, the above statement about F is due to the
fact that f does no satisfy a Lipschitz condition at u = 0.

3. Main result

In this section we shall present a characterization of functions f : R — R for which
the composition operator F maps the space .AC[a, b] into itself.

Theorem

The composition operator F generated by f : R — R maps the space AC|a,b]
into itself if and only if f satisfies a local Lipschitz condition in R; i.e., for every
r > 0 there exists k(r) > 0 such that:

|f(w) = f() < k(r)fu—o|  (Jul,]v] < 7) (1)

Moreover, the composition operator F : AC[a,b] — AC[a,b] is always bounded
on bounded sets.

Proof. It is well-known that, if f is locally Lipschitz then-the composition operator
F generated by f maps AC[a,b] into itself (see example [5] or [6]). Furthermore
given u € ACla,b)], ||u|| < r the following inequality holds

IF ul| < [£(O)] + 2k(r)l[ull (2)

Since the function z(s) = s is absolutely continuous, the function f is bounded
on [—r,r], with a bound M. Without loss of generality, we can assume that M = 1/2.
Suppose that f does not satisfy a local Lipschitz condition on R, and hence there
exists an interval [—r,7] such that

|f(w) — f(v)]

|u— o]

is unbounded for |u|, |v] < r (u # v) and there exists sequences {u,}32; and {v, }32,
in [—r,7] such that:
knlun — va| < [f(un) — f(vn)l < 1 (3)
By considering to subsequences, if necessary, we may assume that u, — u* as
n — 400 and |un, — u*| < 1/k, (n = 1,2,...). From the inequality (3) it follows
v, — u* as n — +00. The analysis can be reduced to the following two cases:
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1) u* belongs only to finitely many intervals [uy,, vy).

2) u* belongs to infinitely many intervals [u,, v,].

Suppose that we are in the 1st case, and that infinitely many intervals not
containing u* lie to the right of u*. Let us define a subsequence of these intervals
having the following properties:

a) U* < Upt1 < Vnt1 < up < 0y (R =1,2,...),

b) |v, —u*| £ 1/2" (n=1,2,...),

c) kn, > 227%1 (n = 1,2,...).

From (b), it follows that
1

1
Ivn—un]<§; and |un—vn+1|<2—n (n=1,2,...).

Let us choose integers m, (see [1, p. 433]) so that

1 2
'2,1—+1"<mnlvn"‘unls2_n (n=1>2,"')7 (4)

and groups of points in [a,b] such that

> th > > > > > >8> >3 >3 > ...
L B T A A I 7 S SR S A
>t s s L (n=1,2,..., t —a, tn >a).

Define the function u on [a,b] in the following way: u(a) = u*, u(t) = vy if

t}nl <t < b, and on the other intervals by:
-t'i?'—_T—t"-_};L(t—t;)+vn tr<t<t? (n=12,..., j=1,2,...,my),
u(t) = ﬁ(t—ff)-{—un AT <t<iP (n=12,...,5 =2,...,my),
%’lﬁ:ﬁ%(t —i) tun <t <EP (n=1,2,..0).

We claim that u € AC[a,b], but F u ¢ AC[a,b]. Indeed, from the definition of
the function u, it follows that u is continuous on [a,b] and its derivative u'(t) exists
for all ¢t € [a,b] except on a countable set, and v’ is integrable, in fact the following
inequality holds:

W iaton < 3 [2maltn = tnl & Jum = v l] <23 s 4 30 & <
Lifab] S My |Vn n Up — Up-1|| S -1 on 0.
n=1

n=1 n=1
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Moreover, the function u is absolutely continuous on [a, b] (see [3, p.183]).
From the inequalities (3), (4) and the property (c), we get

V(F u;[a,bd]) > Z M| f(vn) = f(un)l
n=1

0 22n+1 0

o o]
Zanmn!vn——un|_>_ W:ZQ”:-}-OO
n=1

n=1 n=1

Thus u € AC[a,b] and F u ¢ AC[a,b] which is a contradiction. The same
argument applies if infinitely many intervals lie to the left of u*.

Let us consider the second case. Suppose that u* is contained in infinitely many
intervals [un,v,]. Considering, if necessary, to a subsequence, one can assume the
following;:

u, <u* < v, (n=1,2,...)

and
2n(n + 1)|vp — un| < |f(vn) = f(un)| <1 (n=1,2,...) (5)

From the inequality (5), we have

1
2n(n + 1)|v, — uy| >

1 (n=1,2,...).

Defining the numbers m,, and m!, by:

1
T 2n(n 4 1)|v, — U

Mp and m, :=[m,] (n=12,...),

where [m,] denotes the integer part of m,. Hence
' Mn '
m;,, < m, and > < my, (n=1,2,...). (6)

Without loss of generality we can assume that the interval [a,b] is the interval
[0,1].
Now, for each n = 1,2,..., let [, denote the interval

b= | ——, =
R Y

and let 7™ denote the partition of [, defined by:

1 1
n._ — 47T n n —
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where
1 1 j . 1
17 = + ‘-;—Iun —v| (G =1,2,...,2m!) and Ume 41 = -

= = ———
0 n4+1" 7 n+1

Let us define the function » on [0,1] by: %(0) = u*, »(1) = u; and on the
intervals [, by:

u,;l—_u%?l (t—13) 4+ unyr ifty <t <tT,
u(t) := _,,n__tf;ﬂ—_un,rj (t—t7)+ un if 12 <t<t?, (5 =1,3,...,2m}, — 1),

tl-L_I_l_-—vtjz (t - t.”;) +on if t? <t< t_?+1 (.7 =2,4,... s2m{n)
J

We claim that v € AC[a,b], but F u ¢ AC[a,b]. Indeed, from the definition
of the function u we have that is absolutely continuous on [0,1]. Moreover, the

following estimation holds:

o) [e o]
1
||u'||L1[a,b] S ;[2m;|vn - unl + I'U:n - u'n,+1|] S 3nz=:1 ——n(n n 1) < 0.

From the inequalities (5) and (6), we have

V(F 4;[0,1]) > Y 2m}, | f(va) — f(un)] > Y 4min(n + 1)|vn — un

n=1 n=1
) )

> 2man(n+ 1)vg — un| > Y 1= +oo.
n=1 n=1

Thus u € AC[a,b] and F u ¢ AC[a, b], which is a contradiction. O

Remarks. 1) If we suppose that F maps .AC[a,d] into itself, then since u(s) = s
is absolutely continuous, we know that f is locally absolutely continuous. In the
present situation we prove that in addition f is locally Lipschitz on R.

2) For 1 < p < o0, the inclusions

BV,[a,b] C AC[a,b] C BV][a,b]

are known, where BV,[a,b] and BV][a,b] are the spaces of all functions of bounded
p-variation (1 < p < co0) and bounded variation, respectively. In 1981 M. Josephy



On the Composition Operator in AC|a,b] 243

[2] proved that F maps the space BV[a,b] into itself if and only if f : R — R is
locally Lipschitz.

Recently, the present author [4] obtained a similar result for the space BV,[a, ]
(1 < p < ). The above Theorem gives an analogous result for a space intermediate
with respect to the inclusion.

3) From the above remark the following questions arise:
a) Suppose that X is any Banach space with the norm of BV{a,b], and

BV,[a,b] C X C BV[a,b] (7)

for some 1 < p < oo. Is it true that F maps X into itself if and only if f : R — R
satisfies a local Lipschitz condition?

b) If the answer to a) is negative, characterize those intermediate spaces X for
which the above type of result is true.
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