On the Composition Operator in $\mathcal{AC}[a,b]$

NELSON MERENTES *

Central University of Venezuela, Caracas L. Eötvös University, Budapest, Hungary

DEDICATED TO THE MEMORY OF PROF. PABLO NICOLAS DIAZ RIOS

Received May 24, 1991

ABSTRACT

Denote by F the composition operator generated by a given function $f: \mathbb{R} \to \mathbb{R}$, acting on the space of absolutely continuous functions. In this paper we prove that the composition operator F maps the space $\mathcal{AC}[a,b]$ into itself if and only if f satisfies a local Lipschitz condition on \mathbb{R} .

1. Introduction

The well-known De La Vallée-Poussin's lemma (see [5]) states that: If $f \in \mathcal{AC}[a,b]$, then the composition operator generated by f maps the space $\mathcal{AC}[a,b]$ into itself if and only if, for every $u \in \mathcal{AC}[a,b]$, the following holds:

$$(f' \circ u) u' \in L_1([a,b]),$$

where the product is defined to be zero when u'(t) = 0, even if f'(u(t)) is not defined. Here we shall give an example of an absolutely continuous function f, such that the composition operator F generated by f does not map $\mathcal{AC}[a,b]$ into itself. So, it is natural to look for necessary and sufficient conditions on f, in order that

^{*} A research partly supported by the Fundación Gran Mariscal de Ayacucho and the Consejo de Desarrollo de la Universidad Central de Venezuela

238 MERENTES

the corresponding composition operator maps $\mathcal{AC}[a,b]$ into itself. In this paper, we prove that this is so if and only if $f: \mathbb{R} \to \mathbb{R}$ satisfies a local Lipschitz condition. Moreover, the operator $F: \mathcal{AC}[a,b] \to \mathcal{AC}[a,b]$ is always bounded on bounded sets.

2. Preliminaries

In this section we give some definitions and results concerning the space $\mathcal{AC}[a,b]$, that we shall use in this work.

The space $\mathcal{AC}[a,b]$ consists of all absolutely continuous functions u defined on [a,b], equipped with either of the norms:

$$||u|| := |u(a)| + ||u'||_{L_1[a,b]}$$

or

$$|u| := |u(a)| + \sup_{\tau} \sum_{j=1}^{m} |u(t_j) - u(t_{j-1})|,$$

where the supremum is taken over all partitions $\tau : a = t_0 < \ldots < t_m = b$ of the interval [a, b].

Let $f: \mathbb{R} \to \mathbb{R}$ and $u: [a, b] \to \mathbb{R}$ be given functions. Let us define

$$F u(t) := f(u(t)) \qquad (t \in [a, b]).$$

The operator F is usually called a composition operator, on Nemytskii's operator.

Let us remember some known facts on the composition operator on the space $\mathcal{AC}[a,b]$. First of all, we point out that f absolutely continuous does not necessarily imply $F(\mathcal{AC}[a,b]) \subset \mathcal{AC}[a,b]$.

In this regard, we can consider the following

Example

Let $f: \mathbb{R} \to \mathbb{R}$ be defined by:

$$f(u) := \begin{cases} 1 & \text{if } -\infty < u \le -1, \\ \sqrt{|u|} & \text{if } -1 < u < 1, \\ 1 & \text{if } 1 \le u < \infty. \end{cases}$$

This function f is absolutely continuous on \mathbb{R} and so is the function

$$x(s) := s^2 \sin^2 \frac{1}{s},$$

but the composition function $f \circ x$ restricted to [-1,1] does not belong to the space $\mathcal{AC}[-1,1]$.

As will be seen in the next section, the above statement about F is due to the fact that f does no satisfy a Lipschitz condition at u = 0.

3. Main result

In this section we shall present a characterization of functions $f: \mathbb{R} \to \mathbb{R}$ for which the composition operator F maps the space $\mathcal{AC}[a, b]$ into itself.

Theorem

The composition operator F generated by $f: \mathbb{R} \to \mathbb{R}$ maps the space $\mathcal{AC}[a,b]$ into itself if and only if f satisfies a local Lipschitz condition in \mathbb{R} ; i.e., for every r > 0 there exists k(r) > 0 such that:

$$|f(u) - f(v)| \le k(r)|u - v| \qquad (|u|, |v| \le r)$$
 (1)

Moreover, the composition operator $F: \mathcal{AC}[a,b] \to \mathcal{AC}[a,b]$ is always bounded on bounded sets.

Proof. It is well-known that, if f is locally Lipschitz then the composition operator F generated by f maps $\mathcal{AC}[a,b]$ into itself (see example [5] or [6]). Furthermore given $u \in \mathcal{AC}[a,b]$, $||u|| \leq r$ the following inequality holds

$$\|F u\| \le |f(0)| + 2k(r)\|u\| \tag{2}$$

Since the function $x(s) \equiv s$ is absolutely continuous, the function f is bounded on [-r,r], with a bound M. Without loss of generality, we can assume that M=1/2. Suppose that f does not satisfy a local Lipschitz condition on \mathbb{R} , and hence there exists an interval [-r,r] such that

$$\frac{|f(u) - f(v)|}{|u - v|}$$

is unbounded for $|u|, |v| \le r$ ($u \ne v$) and there exists sequences $\{u_n\}_{n=1}^{\infty}$ and $\{v_n\}_{n=1}^{\infty}$ in [-r, r] such that:

$$|k_n|u_n - v_n| \le |f(u_n) - f(v_n)| < 1$$
 (3)

By considering to subsequences, if necessary, we may assume that $u_n \to u^*$ as $n \to +\infty$ and $|u_n - u^*| \le 1/k_n$ (n = 1, 2, ...). From the inequality (3) it follows $v_n \to u^*$ as $n \to +\infty$. The analysis can be reduced to the following two cases:

240 MERENTES

- 1) u^* belongs only to finitely many intervals $[u_n, v_n]$.
- 2) u^* belongs to infinitely many intervals $[u_n, v_n]$.

Suppose that we are in the 1st case, and that infinitely many intervals not containing u^* lie to the right of u^* . Let us define a subsequence of these intervals having the following properties:

- a) $u^* < u_{n+1} < v_{n+1} < u_n < v_n \ (n = 1, 2, ...),$
- b) $|v_n u^*| \le 1/2^n \ (n = 1, 2, ...),$
- c) $k_n > 2^{2n+1}$ (n = 1, 2, ...).

From (b), it follows that

$$|v_n - u_n| < \frac{1}{2^n}$$
 and $|u_n - v_{n+1}| < \frac{1}{2^n}$ $(n = 1, 2, ...)$.

Let us choose integers m_n (see [1, p. 433]) so that

$$\frac{1}{2^{n+1}} < m_n |v_n - u_n| \le \frac{2}{2^n} \qquad (n = 1, 2, \ldots), \tag{4}$$

and groups of points in [a, b] such that

$$\begin{split} t^1_{m_1} > \bar{t}^{\,1}_{m_1} > \dots t^1_1 > \bar{t}^{\,1}_1 > t^2_{m_2} > \bar{t}^{\,2}_{m_2} > \dots > t^2_1 > \bar{t}^{\,2}_1 > t^3_{m_3} > \bar{t}^{\,3}_{m_3} > \dots \\ \dots > t^3_1 > \bar{t}^{\,3}_1 > \dots t^n_{m_n} > \bar{t}^{\,n}_{m_n} > \dots > t^n_1 > \bar{t}^{\,n}_1 > t^{\,n+1}_{m_{n+1}} > \bar{t}^{\,n+1}_{m_{n+1}} > \dots \\ \dots > t^{n+1}_1 > \bar{t}^{\,n+1}_1 > \dots & (n=1,2,\dots,\quad t^n_{m_n} \to a,\quad \bar{t}^{\,n}_{m_n} > a). \end{split}$$

Define the function u on [a,b] in the following way: $u(a) = u^*$, $u(t) = v_1$ if $t_{m_1}^1 \le t \le b$, and on the other intervals by:

$$u(t) := \begin{cases} \frac{v_n - u_n}{t_j^n - t_j^n} (t - t_j^n) + v_n & \bar{t}_j^n \le t \le t_j^n \ (n = 1, 2, \dots, j = 1, 2, \dots, m_n), \\ \frac{v_n - u_n}{t_{j-1}^n - t_j^n} (t - \bar{t}_j^n) + u_n & t_{j-1}^n \le t \le \bar{t}_j^n \ (n = 1, 2, \dots, j = 2, \dots, m_n), \\ \frac{u_n - v_{n+1}}{\bar{t}_1^n - t_{m+1}^{n+1}} (t - \bar{t}_1^n) + u_n & t_{m_{n+1}}^{n+1} \le t \le \bar{t}_1^n \ (n = 1, 2, \dots). \end{cases}$$

We claim that $u \in \mathcal{AC}[a,b]$, but F $u \notin \mathcal{AC}[a,b]$. Indeed, from the definition of the function u, it follows that u is continuous on [a,b] and its derivative u'(t) exists for all $t \in [a,b]$ except on a countable set, and u' is integrable, in fact the following inequality holds:

$$||u'||_{L_1[a,b]} \leq \sum_{n=1}^{\infty} \left[2m_n |v_n - u_n| + |u_n - v_{n-1}| \right] \leq 2 \sum_{n=1}^{\infty} \frac{1}{2^{n-1}} + \sum_{n=1}^{\infty} \frac{1}{2^n} < \infty.$$

Moreover, the function u is absolutely continuous on [a, b] (see [3, p.183]). From the inequalities (3), (4) and the property (c), we get

$$V(F u; [a, b]) \ge \sum_{n=1}^{\infty} m_n |f(v_n) - f(u_n)|$$

$$\ge \sum_{n=1}^{\infty} k_n m_n |v_n - u_n| \ge \sum_{n=1}^{\infty} \frac{2^{2n+1}}{2^{n+1}} = \sum_{n=1}^{\infty} 2^n = +\infty$$

Thus $u \in \mathcal{AC}[a,b]$ and F $u \notin \mathcal{AC}[a,b]$ which is a contradiction. The same argument applies if infinitely many intervals lie to the left of u^* .

Let us consider the second case. Suppose that u^* is contained in infinitely many intervals $[u_n, v_n]$. Considering, if necessary, to a subsequence, one can assume the following:

$$u_n \le u^* \le v_n \qquad (n = 1, 2, \ldots)$$

and

$$2n(n+1)|v_n - u_n| < |f(v_n) - f(u_n)| \le 1 \qquad (n = 1, 2, ...)$$
 (5)

From the inequality (5), we have

$$\frac{1}{2n(n+1)|v_n - u_n|} > 1 \qquad (n = 1, 2, \ldots).$$

Defining the numbers m_n and m'_n by:

$$m_n := \frac{1}{2n(n+1)|v_n - u_n|}$$
 and $m'_n := [m_n]$ $(n = 1, 2, ...),$

where $[m_n]$ denotes the integer part of m_n . Hence

$$m'_n \le m_n \text{ and } \frac{m_n}{2} \le m'_n \quad (n = 1, 2, \ldots).$$
 (6)

Without loss of generality we can assume that the interval [a, b] is the interval [0, 1].

Now, for each $n = 1, 2, ..., let l_n$ denote the interval

$$l_n := \left\lceil \frac{1}{n+1}, \frac{1}{n} \right\rceil,$$

and let τ^n denote the partition of l_n defined by:

$$\tau^n := \frac{1}{n+1} = t_0^n < t_1^n < \dots < t_{2m'_n}^n < t_{2m'_n+1}^n = \frac{1}{n}$$

where

$$t_0^n := \frac{1}{n+1}, \ t_j^n := \frac{1}{n+1} + \frac{j}{2}|u_n - v_n| \ (j = 1, 2, \dots, 2m'_n) \ \text{ and } t_{2m'_n+1}^n := \frac{1}{n}.$$

Let us define the function u on [0,1] by: $u(0) = u^*$, $u(1) = u_1$ and on the intervals l_n by:

$$u(t) := \begin{cases} \frac{u_n - u_{n+1}}{t_1^n - t_0^n} (t - t_0^n) + u_{n+1} & \text{if } t_0^n \le t \le t_1^n, \\ \frac{v_n - u_n}{t_{j+1}^n - t_j^n} (t - t_j^n) + u_n & \text{if } t_j^n \le t \le t_{j+1}^n \ (j = 1, 3, \dots, 2m'_n - 1), \\ \frac{u_n - v_n}{t_{j+1}^n - t_j^n} (t - t_j^n) + v_n & \text{if } t_j^n \le t \le t_{j+1}^n \ (j = 2, 4, \dots, 2m'_n). \end{cases}$$

We claim that $u \in \mathcal{AC}[a,b]$, but F $u \notin \mathcal{AC}[a,b]$. Indeed, from the definition of the function u we have that is absolutely continuous on [0,1]. Moreover, the following estimation holds:

$$||u'||_{L_1[a,b]} \leq \sum_{n=1}^{\infty} \left[2m'_n |v_n - u_n| + |u_n - u_{n+1}| \right] \leq 3 \sum_{n=1}^{\infty} \frac{1}{n(n+1)} < \infty.$$

From the inequalities (5) and (6), we have

$$V(F \ u; [0,1]) \ge \sum_{n=1}^{\infty} 2m'_n |f(v_n) - f(u_n)| \ge \sum_{n=1}^{\infty} 4m'_n n(n+1) |v_n - u_n|$$
$$\ge \sum_{n=1}^{\infty} 2m_n n(n+1) |v_n - u_n| \ge \sum_{n=1}^{\infty} 1 = +\infty.$$

Thus $u \in \mathcal{AC}[a,b]$ and F $u \notin \mathcal{AC}[a,b]$, which is a contradiction. \square

Remarks. 1) If we suppose that F maps $\mathcal{AC}[a,b]$ into itself, then since $u(s) \equiv s$ is absolutely continuous, we know that f is locally absolutely continuous. In the present situation we prove that in addition f is locally Lipschitz on \mathbb{R} .

2) For 1 , the inclusions

$$\mathrm{BV}_p[a,b] \subset \mathcal{AC}[a,b] \subset \mathrm{BV}[a,b]$$

are known, where $BV_p[a, b]$ and BV[a, b] are the spaces of all functions of bounded p-variation (1 < p < ∞) and bounded variation, respectively. In 1981 M. Josephy

[2] proved that F maps the space $\mathrm{BV}[a,b]$ into itself if and only if $f:\mathbb{R}\to\mathbb{R}$ is locally Lipschitz.

Recently, the present author [4] obtained a similar result for the space $\mathrm{BV}_p[a,b]$ (1 . The above Theorem gives an analogous result for a space intermediate with respect to the inclusion.

- 3) From the above remark the following questions arise:
- a) Suppose that X is any Banach space with the norm of BV[a,b], and

$$\mathrm{BV}_p[a,b] \subset X \subset \mathrm{BV}[a,b]$$
 (7)

for some $1 . Is it true that F maps X into itself if and only if <math>f : \mathbb{R} \to \mathbb{R}$ satisfies a local Lipschitz condition?

b) If the answer to a) is negative, characterize those intermediate spaces X for which the above type of result is true.

Acknowledgements. I like to thank to Dr. F. Szigeti for his helpful suggestions during the preparation of this work.

References

- 1. J. Ciemnoczolowski and W. Orlicz, Composing functions of bounded ϕ -variation, *Proc. Amer. Math. Soc.* 96, 3 (1986), 431–436.
- 2. M. Josephy, Composing functions of bounded variation, *Proc. Amer. Math. Soc.* 83 (1981), 354-356.
- 3. H. Kestelma, Modern theories of integration, Oxford, 1937.
- 4. N. Merentes, Composing functions of bounded p-variation, Ann. Pol. Math. (submitted).
- 5. Ch. J. De La Vallée Poussin, Sur l'integrale de Lebesgue, Trans. Amer. Math. Soc. 16 (1915), 435-501.
- 6. E. Varberg Dale, On absolutely continuous functions, Amer. Math. Monthly 72 (1965), 831–941.

