The Product Formula

GENARO LÓPEZ ACEDO

Facultad de Matemáticas, Universidad de Sevilla, Tarfia sn, 41012 Sevilla (Spain)

Received October 2, 1990

ABSTRACT

A useful property of the Brouwer degree relates the degree of a composition of maps to the degree of each map. This property, which can be generalized for the Leray Schauder degree and in some cases for the A-proper maps [see 4], is called the Product Formula.

In [3] we develop a generalized degree theory for a class of mappings, this class contains the class of A-proper mappings and compact mappings. In this paper we prove a generalization of the Product Formula when one factor is of the Identity+Compact type and the other is an A-compact mapping.

1. Introduction

A useful property of the Brouwer degree relates the degree of a composition of maps to the degree of each map. This property, which can be generalized for the Leray Schauder degree and in some cases for the A-proper maps [see 4], is called the Product Formula.

In [3] we develop a generalized degree theory for a class of mappings, this class contains the class of A-proper mappings and compact mappings. In this paper we prove a generalization of the Product Formula when one factor is of the Identity+Compact type and the other is an A-compact mapping.

158 LÓPEZ

2. Notation and Previous Results

Throughout this paper $\Gamma_n = \{X, P_n, X_n\}$ will be a projectionally complete Banach space (see definition in [2]). For any subset G of X, Cl(G) will denote the closure of G, bdry(G) the boundary of G and $G_n = G \cap X_n$. We consider the following classes of mappings:

- 1. $A(G) = \{F : Cl(G) \longmapsto X \mid F \text{ is } A proper \text{ and } continuous\}$ (see definition in [1])
 - 2. $K(G) = \{C : Cl(G) \longmapsto X \mid C \text{ is } Compact\}$
 - 3. $\Delta(G) = \{T : Cl(G) \longmapsto X \mid \lim_{n \to \infty} \sup_{x \in G_n} d(T(x), X_n) = 0\}$

By \mathbb{Z} we denote the set of integer numbers and $\mathbb{Z}^* = \mathbb{Z} \cup \{+\infty\} \cup \{-\infty\}$.

If $A, B \subset \mathbb{Z}^*$, $A + B = \{a \in \mathbb{Z}^* \mid a = a_1 + a_2, a_1 \in A \mid a_2 \in B\}$. By definition $\{+\infty\} + \{-\infty\} = \mathbb{Z}^*$

DEFINITION 1. Let $\Gamma_n = \{X, P_n, X_n\}$ be a projectionally complete Banach space, G an open bounded subset of X, T a mapping from Cl(G) into X such that P_nT is continuous. We say that T is A-compact on Cl(G) with respect to the approximation scheme Γ_n if for any $y \in X$, for any sequence $\{n_j\}$ of positive integers with $n_j \longmapsto \infty$ and for any sequence $\{x_{n_j}\}$, $x_{n_j} \in G \cap X_{n_j}$, if:

$$\lim_{n_j \to \infty} P_{n_j} T x_{n_j} = y$$

then there exists a subsequence $\{x_{n_{j_k}}\}$ such that:

$$\lim_{n_{j_k} \to \infty} Tx_{n_{j_k}} = y$$

We will denote by A - K(G) the class of A-compact mappings.

Lemma 1. ([3])

Let T be an A-compact mapping from Cl(G) into X with respect to Γ_n . Suppose $y \notin Cl(T(\mathrm{bdry}(G)))$, then there exist $\delta > 0$ and $n_o \in \mathbb{N}$ such that for every $n > n_o$ we obtain:

$$||P_nT(x)-P_n(y)|| \geq \delta$$

for every $x \in \mathrm{bdry}(G) \cap X_n$

DEFINITION 2. Let Γ_n be a projectionally complete Banach space, G an open bounded subset of X, T a mapping in A - K(G) and let us assume that $y \notin Cl(Tbdry(G))$, We define:

$$D(T,G,y) = \left\{ z \in Z : z = \lim_{n_j \to \infty} \{ d(P_{n_j}T,G_{n_j},P_{n_j}y) \} \quad and \\ \{n_j\} \quad an \quad increasing \quad sequence \quad of \quad positive \quad integers \right\}$$

where $G_{n_j} = G \cap X_{n_j}$ and $d(P_{n_j}T, G_{n_j}, P_{n_j}y)$ is the classical Brouwer degree.

Theorem 1. ([3])

Let T be an A-compact mapping from Cl(G) into X with respect to Γ_n . Suppose that $y \notin Cl(T(\mathrm{bdry}(G)))$. Then:

- 1. $D(G,T,y) \neq \emptyset$
- 2. $D(I,G,y) = \{1\}$
- 3. If G_1 and G_2 are open subsets of G, $G_1 \cap G_2 = \emptyset$ and $y \notin Cl(T(Cl(G (G_1 \cup G_2))))$ we obtain:

$$D(T, G, y) \subseteq D(T, G_1, y) + D(T, G_2, y)$$

where equality holds if either $D(T, G_1, y)$ or $D(T, G_2, y)$ is a singleton.

4. Let H be a mapping from $[0,1] \times Cl(G)$ into X. Suppose that the following hypotheses are all satisfied:

$$H(t,.) \in A - K(G)$$
 for every $t \in [0,1]$

For every $\epsilon > 0$, there exists $\delta > 0$ such that $|t_1 - t_2| < \delta$ implies $||H(t_1, .) - H(t_2, .)|| < \epsilon$ for every $x \in Cl(G)$. Then D(H(t, .), G, y(t)) is independent of t, where $y : [0, 1] \longmapsto X$ is continuous and $y(t) \notin Cl(H(t, \mathrm{bdry}(G)))$

5. If T(Cl(G)) is closed and $D(T,G,y) \neq \{0\}$ there exists a point $x \in G$ such that:

$$T(x) = y$$

- 6. $K(G) \cup \Delta(G) \cup A(G) \subset A K(G)$
- 7. If $T \in A K(G)$ and $C \in K(G)$ we obtain $T + C \in A K(G)$

160 LÓPEZ

3. Results

Lemma 2.

Let $\Gamma_n = \{X, P_n, X_n\}$ be a projectionally complete Banach space, G and U open bounded subsets of X, $C \in K(G)$, $I + C(Fr(G) \subset Cl(U))$ and T continuous and A-compact, if:

- (1) There exists n_0 such that if $n > n_0$ $P_n(I+C)(Cl(G)) \subset Cl(U)$.
- (2) $y \notin Cl(T(I+C)bdry(G))$.

Then there exists n_1 such that if $n > n_1$

$$d(P_nTP_n(I+C), G_n, P_ny) = d(P_nT, G_n, P_ny)$$

Proof. By the homotopy property for the Brouwer degree it is sufficient to prove that there exists n_1 such that for all $n > n_1$:

$$P_n y \notin (tP_n T(I+C) + (1-t)P_n TP_n (I+C))(bdry(G_n))$$
 for all $t \in [0,1]$.

If we suppose this assertion is false there exist sequences $\{x_{n_i}\}$, $\{t_{n_i}\}$ with $x_{n_i} \in X_{n_i}$ and $t_{n_i} \in [0,1]$ such that:

$$t_{n_i}P_{n_i}T(I+C)x_{n_i} + (1-t_{n_i})P_{n_i}TP_{n_i}(I+C))x_{n_i} = P_{n_i}y_{n_i}$$

We can suppose $t_{n_i} \longmapsto t_0 \in [0,1]$ and $P_{n_i} y \longmapsto y$, thus:

$$\lim_{n_i \to \infty} t_0 P_{n_i} T(I+C) x_{n_i} + (1-t_0) P_{n_i} T P_{n_i} (I+C) x_{n_i} = y$$

As C is a compact mapping there exists a convergent subsequence of $\{Cx_{n_i}\}$ and so there exists a subsequence of $\{P_{n_i}T(I+C)x_{n_i}\}$ convergent to y which is not possible by lemma 1 and hypothesis (2). \square

Lemma 3.

If in addition to the hypothesis of lemma 2 we have:

- (1) T is proper
- (2) U (I + C)bdry(G) = V is connected.

There exists n_0 such that for all $n > n_0$:

$$d(P_nTP_n(I+C),G_n,P_ny)=D(I+C,G,V)d(P_nT,V_n,P_ny)$$

Where D(I+C,G,V) is the Leray-Schauder degree for any $x \in V$

Proof. By the Product Formula for the Brouwer degree whenever n is sufficiently large

$$d(P_nTP_n(I+C), G_n, P_ny) = \sum_{i_n=1}^k d(P_n(I+C), G_n, V_n^{i_n}) d(P_nT, V_n^{i_n}, P_ny)$$

where $V_n^{i_n}$ are the finite connected components of $V_n - P_n(I+C)(\mathrm{bdry}(G_n))$ which satisfy $d(P_nT, V_n^{i_n}, P_ny) \neq 0$

The lemma will be proved if when $h \neq k$ whatever the subsequences, whenever $d(P_{n_j}T,V_{n_j}^k,P_{n_j}y)$ and $d(P_{n_j}T,V_{n_j}^h,P_{n_j}y)$ are not zero:

$$d(P_{n_i}(I+C), G_{n_i}, V_{n_i}^h) = d(P_{n_i}(I+C), G_{n_i}, V_{n_i}^k) = D(I+C, G, V)$$

is satisfied.

In order to prove the equality it suffices to show that if $\{x_n\}$ is a sequence of points with $x_n \in V_n - P_n(I+C)$ bdry (G_n) and $P_nTx_n = P_ny$, there exists n_1 such that for all $n > n_1$:

(1)
$$d(P_n(I+C), G_n, x_n) = D((I+C), G, V)$$

At first we prove that there exists $\delta > 0$ satisfying

$$d(x_n, (I+C)(\mathrm{bdry}(G))) > \delta > 0$$

Suppose that this assertion is false. If we consider the sets

$$V^{j} = \{x \in V \mid d(x, (I+C)bdry(G)) < 1/j\}$$

for all j there would exist a subsequence $\{x_{n_j}\}\subset V^j$. As T is A-compact and proper it must be closed, so there exists $\{x_j\}$ with $x_j\in V^j$ such that $T(x_j)=y$. As T is proper and I+C is closed then T(x)=y with $x\in I+C(\mathrm{bdry}(G))$, which is not possible from the hypothesis.

Let $x \in V$ and $d(x, (I+C)(\mathrm{bdry}(G))) > \delta > 0$. If we prove that there exits n_0 such that for $n > n_0$

$$d(P_n(I+C), G_n, x_n) = d(P_n(I+C), G_n, P_n x)$$

is verified, the equality (1) would be proved since $d(P_n(I+C), G_n, P_n x) = D((I+C), G, x) = D((I+C), G, V)$ whenever n is sufficiently large.

162 LÓPEZ

By the homotopy property we only need to show that:

$$tP_nx + (1-t)x_n \notin P_n(I+C)(\mathrm{bdry}(G))$$

If this assertion were false there would exist sequences $\{z_{n_i}\}$, $\{t_{n_i}\}$ with $z_{n_i} \in \text{bdry}(G_{n_i})$ and $t_{n_i} \in [0,1]$ such that:

$$t_{n_i} P_{n_i} x + (1 - t_{n_i}) x_{n_i} = P_{n_i} (I + C) z_{n_i}$$

Hence there would exist $t_0 \in [0,1]$ and a subsequence of $\{n_i\}$, which we denote $\{n_i\}$ again, such that there exists n_0 satisfying for all $n > n_1$

$$||t_0x + (1-t_0)x_{n_i} - P_{n_i}(I+C)z_{n_i}|| < \frac{1}{j}$$

which is not possible because $d(x_n, (I+C)(\operatorname{bdry}(G))) > \delta > 0$ for all n and $d(x, (I+C)(\operatorname{bdry}(G))) > \delta > 0$. \square

Theorem 2.

With the hypotheses of lemmas 2 and 3

$$D(T(I+C),G,y) = D(I+C,G,V)D(T,V,y)$$

The proof is deduced from lemmas 1 and 2.

References

- 1. F. E. Browder and W. V. Petryshyn, The topological degree and Galerkin approximation for noncompact operators in Banach spaces, *Bull. Amer. Math. Soc.* 74 (1968), 641-646.
- K. Deimling, Nonlinear Functional Analysis, Springer-Verlag, Berlin, Heildelberg, New-York, 1984
- 3. G. Lopez, On the topological degree for A-compact mappings, J. Math. Anal. Appl. 159, 2 (1991), 382–388.
- 4. N.G. Lloyd, Degree Theory, Cambridge University Press, London, 1974.
- 5. S. Ship-Fah Wong, A product Formula for the degree for A-proper Maps, J. Functional Analysis 10 (1972), 361-372.