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ABSTRACT

Starting with a continuous injection I : X — Y between Banach spaces,
we are interested in the Fréchet (non Banach) space obtained as the reduced
projective limit of the real interpolation spaces. We study relationships among
the pertenence of I to an operator ideal and the pertenence of the given
interpolation space to the Grothedieck class generated by that ideal.

0. Introduction

In this paper we construct a Fréchet (non Banach) space F intermediate of a given
couple of Banach spaces linked by a continuous injection I : X — Y. The con-
struction of the space F' resembles that of [,y lp+c: F is described as the reduced
projective limit of real interpolation spaces [X,Y ]y , with respect to the canonical
linking maps.

We study the connection between the pertenence of I to a given operator ideal
A and the pertenence of F' to the class Groth(A) of those locally convex spaces
generated by the ideal A. Our choices for A are: W (weakly compact operators),
E, (entropy ideals), N (nuclear operators), I’ (compact operators), B (completely
continuous operators) and U (unconditionally converging operators). We obtain
affirmative answers for W, K, U, negative for B, and a necessary gradations of the
result for N and E,.

Perhaps the most interesting analysis occurs in 4.5 for A = U, where we show
that if Y does not contain ¢y then F does not contain cy. In the Banach space
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setting, it was shown by Levy [12] that if X and Y do not contain ¢y, then [X,Y]s
does not contain ¢, answering in this way a question of Beauzamy [1].

1. Real Interpolation Spaces

For a more general background on interpolation theory we refer to [2].

Let (Xo,X;) be a couple of Banach spaces continuously embeded into some
Hausdorff topological vector space U; we shall at times refer to this as an interpola-
tion couple. If || - ||o and || - ||; denote their respective norms, we set Xy = Xo + X3
with norm |[z]| = K'(1,x), where the K-functional K is defined by the expression

K(t,x) = inf{ lzollo + tl|w1]l1 : @ = w0 + 1, %0 € Xo, #1 € Xl}.

Analogously, Xa = Xo N X; endowed with the norm ||z|| = J(1,z), where the
J-functional J is defined by J(¢,2) = max{ ||xollo, ||z1]l1 }-

Both Xy and X are Banach spaces.

A Banach space X is called an intermediate space of (Xo, X;) if we have con-
tinuous inclusions Xp — X — Xs.

An intermediate space X of (Xo,X) is said to be of K-type §, 0 < 6§ < 1, if
K(t,z) < cte t9|]a:]|X for all # € X. X is said to be of J-type 8, 0 < 8 < 1, if
llz||x < cte t=6J(t,z) for all z € Xa.

It is well-known that if (Xo,X;) is an interpolation couple, 0 < # < 1, and
1 < q < o0, then the intermediate space [Xo, X1]s,, defined by

0 | 1\
[Xo,X1]o, = {;1: €eX : (/ (t—eK(t,:n))" -(t—) < +oo} if g < 400
0
[Xo0,X1]6,00 = {:n €X : sup{t™?K(t,2)} < +oo} if g=+o00
t>0

is both of I and J types #.

2. Entropy Ideals

Let X and Y be Banach spaces with respective unit balls Ux and Uy and let
T : X — Y be a continuous operator. The nth entropy number of T is defined as:

q
en(T) = inf {0 >0 : 3y,...,y, €Y, ¢ <271, T(Ux) C U{ya + UUy}}
1
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The following properties of the sequence of entropy numbers come from the
definition (see [13]):

L|T|[ 2 ex(T) 2 ex(T) > ... > 0.

2. ex(T + 5) < en(T) +|5]|-
3. en(RTS) < ||R|| en(T) |IS|| and enym—1(TS) < en(T) em(S).

For a given couple of Banach spaces X,Y, E, ,(X,Y) denotes the space of all
operators of L(X,Y) whose sequence of entropy numbers belongs to the Lorentz
sequence space I, ,. When p = ¢ we simply write E,,.

3. Locally Convex Spaces and Grothendieck Ideals

We refer to [11] for general background on locally convex spaces, and to [13] for
operator ideals.

If E is a Hausdorff locally convex spaces (in short lcs), for any given continuous
seminorm p; on E we note E, to the completion of the normed space

(E/Ker ol ||k)

where ||¢xz||r = pr(x) and ¢y is the quotient map. The spaces Ej will be referred
to as the associated Banach spaces. If p; < p; are continuous seminorms, the
canonical linking mapping Tjk is the extension to the completions of the operator
Tjkgbj.'lf = (,f)k:lf of L(Ej,Ek).

A Hausdorff Ics is said to be generated by an ideal A of operators when for each
continuous seminorm py there is a continuous seminorim p; such that the canonical
linking map Tjk belongs to A. E is also called an A-space. The class formed by all
A-spaces is called the Grothendieck space ideal generated by A, and noted Groth(A).
A study of the classes Groth(A) occurs in [3].

4. The space [X, Y],

Let X and Y be Banach spaces such that there is a continuous injection I : X — Y
with dense range. Then (X,Y") can be considered as an interpolation couple. For 0 <
# < 1,and 1 < g < 400 the real interpolation method gives an intermediate Banach
space [X,Y]y,. It is well known that for #' < @ there is an induced continuous
injection Ipg : [X,Y]g g — [X,Y]s,,.
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In this way, for a fixed ¢ we can construct a Fréchet space
[X,Y(6),q := limIg ([X, Y]@.q)

taking the projective limit of the Banach spaces [X,Y]4 , with respect to the maps
Igrg.

The space [X,Y]4),4 Is, to an extent, a generalization of some interesting spaces.
If, for instance, we take X =1{,, Y = [, with the natural inclusion [, — I, then

lpsloo](e) q ﬂ lp+5

e>0

We are interested in the locally convex structure of [ X, Y}(4),q from the point of
view of Grothendieck space ideals. To be precise, we study the relationships between
"Ie A” and "[X,Y)(4),4 € Groth{A)” for several operator ideals A.

Since [X,Y](4),, has {X,Y]s,, as associated Banach spaces it is clear that if
[X,Y](s),q is an A-space then I € A™ for all n € N. It also suggests that we should
focus our attention on idempotent operator ideals.

4.1. Weakly compact operators

The following result is due to Beauzamy ([1], p.32): I : X — Y is weakly compact
if and only if [X,Y]g,(0< 6 < 1, 1 < g < +00) is reflexive.
Therefore:

Proposition W.
I: X — Y is weakly compact if and only if {X,Y](4,, € Groth(W) for

1<g<+4o00.
4.2. Compact operators

Proposition K.

I:X — Y is compact if and only if [X,Y gy 4 is a Schwartz space.
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Proof. This is an easy consequence of the reiteration theorem ([2], 3.5.3) and
the compactness theorem ([3], 3.8.1): if I : X — Y is compact then both
[X,Y]o,, — Y and X — [X,Y]s,, are compact. Given ¢ < 0, since [X,Y])e 4
is an interpolation space intermediate between X and [X, Y], we see that Ip g
[X,Y]e g — [X,Y]s,, is again compact. O

4.3. Entropy ideals

When the ideal is not idempotent we can only get a gradation of the results for Iy 4.
This is the case of entropy ideals due to the composition formula

E,=FE,0E, rl=p7l 47t

Applications to the locally convex structure of the space [X,Y](4),, Will take place
in 4.4,

Proposition E.

Let (X,Y') be an interpolation couple with linking map I : X — Y. I € E,
implies that for ' < 6, the canonical induced operator Iy ¢4 belongs to E /66"

Proof. We use the samne idea as in Proposition K above. Recall that if Z is an
intermediate space to the couple (X,Y) of K-type 6 then I € E, implies that the
induced operator Z — Y belongs to E,j1—¢. If Z is of J-type 6 then X — Z
belongs to E, /4.

Since [X,Y]g , is of K-type 6’/ with respect to the interpolation couple
(X, [X,Y]g,) we get that Iy 4 belongs to E,, with

o p/6 o
"Ti1-(@e s -

Remark. The behaviour of entropy numbers under real interpolation with a func-
tional parameter was calculated in [4].

4.4. Nuclear operators

Since N is not an idempotent ideal we pass to Nynen N = No, the ideal of strongly
nuclear or (s)-nuclear operators. We have:
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Proposition N.
I: X — Y is strongly nuclear if and only if [X, Y)s),q Is a nuclear space.

Proof. We prove only the "only if” part. Recall that the class Groth(N) coincides
([13], 29.7) with the classes Groth(E,) for all p > 0. Also recall that T € Ny if and
only if
TeE;y= ﬂ E,.
p>0
In this way, for  given we can choose r and #' < 6 such that p = r/(8 — 6").
Next apply Proposition E. O

4.5. Unconditional converging operators

Recall that an operator T : X — Y is said to be unconditionally converging if
it sends weakly -1-summable sequences (in short wuC), i.e., sequences (z,) such
that, for each z* € X*, (a:*(a:n))” € 1, into sumable sequences. The ideal of
unconditionally convergent operators will be denoted by U.

In ([1], p.36) is stated the problem whether X and Y do not contain co implies
[X,Y]s,y does not contain co. This is in connection with the problem of whether
the ideal U is idempotent ([13], 3.1.9) and ([8], p.260). The first problem was solved
affirmatively by Levy in [12]. The second one was solved negatively by Ghoussoub
et alt [9].

A simpler proof for [X,Y]) ,, which does not implies, nor is implied by, that
of Levy, follows:

Firstly, it is easy to see that:

Lemma 4.5.1

Let (X,Y’) be an interpolation couple of Banach spaces. Let F be an inter-
mediate space of J-type 6, 0 < # < 1. If T : E — (X,Y)a is a continuous
operator such that T : E — Y is unconditionally converging then T : E — F is
unconditionally converging.

Proof. By ([13], ¢.5.7), having J-type 6 means that |jz||p < ||z]|}¢ ||x]|$ for all
€ (X,Y)a. Therefore, if (2,) is a wuC sequence of E then |ITzp]| — 0in Y.
Since Tz, € (X.Y)a and is bounded in X we also have ||T=,|| — 0 in F. That is

all we need. O

It is well known that the identity of a Banach space is unconditionally converging
if and only if the space does not contain a copy of ¢y (see [7], p. 45). We extend
this result to Fréchet spaces.
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Proposition 4.5.2

Let E be a Fréchet space. Then Idg € U if and only if E does not contain a
copy of ¢p.

Proof. One implication is trivially true. Let us go for the other. Let E be a Fréchet
space such that Idg ¢ U. There is a sequence (z,,) in E weakly-1-summable but not
strongly summable. Assume a sequence of seminorms || - I <|-ll2 < ... defining
the topology of E. There must be a sequence p; < g1 <pa < q2< ... of Nyad >0
and a kg € N such that

gi

5.
k
Pi

>d
0

Let us call y;, = Z: Tp. (Yi) is a weakly-1-summable sequence of E satisfaying
llykllk, > d for all k. We may easily suppose kg = 1. Clearly (qu(yk))k is a wuC
sequence in E,, and ||, (yk)||m = ||yx||m > d. By the Bessaga-Pelczynski selection
principle we can pick a basic subsequence (¢1(y,1c)) equivalent to the unit vector basis
of co (see [7], p.42-46). We proceed inductively to obtain a subsequence (y*t1) of
(yg*) such that (qﬁ,,,,.,.l(yl’c'“"l)) is a basic sequence in E, 41 equivalent to the unit
vector basis of ¢g.

If we diagonalize to obtain (yI') we get a basic sequence in E which is equivalent
to the unit vector basis of ¢y due to the following straightforward extension of a
classical result (see [7], Th. 6, p. 44):

Lemma 4.5.3

Let 3> x, be a formal series in a Fréchet space. They are equivalent:
1. Y. @, is weakly-1-summable.
2. For any (t,) € co, Y., ty&n converges.

Proof. If )7 w, is weakly-1-summable in a Fréchet space E, then for each contin-
uous seminorm || - || in E, 3", ¢(a,) is wuC in Ej; therefore for each (tn) € co,
2o tadik(x,) converges in Ey. This proves 1 = 2. To prove 2 = 1, consider a
sequence (x,) in E such that for each (t,) € ¢ > n tn@n converges. This implies
that for each continuous seminorm || - ||, in E, >, tndr(2,) converges in Ey. For
each ' € E' there exists a k such that =’ € E}'.

Therefore Z"|ar’(:vn)l = an””¢k(”’ﬂ-)| < +o0. 0O

Now the proof of 4.5.2 can be rounded off with a standard argument:

If (¢.) € co, )_, tny); converges in E; if, on the other hand, Y. lnyl converges
in FE, then (t,) € co, since |t,,| Hy',’f”kb tends to 0 but ||y77:'”k0 > d >0 for all n € N.
O
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Corollary

A sequence () in a Fréchet space F with defining sequence of seminorms
(Il - lln) is weakly-1-summable if and only if for any k € N the sequence (¢yz,) is
weakly-1-summable in Ej; and if and only if for any continuous seminorm p in E
exists a constant K, such that

(3 2.) < K,

neA

for any choice of signs, and any finite subset A C N.
The following proposition is very simple but necessary

Proposition 4.5.4
Let E be any Ics. If E € Groth(U) then Idg € U.

Proposition 4.5.5

Let (X,Y) be an interpolation couple with linking map I : X — Y. Assume
that Y does not contain co. Then [X,Y ), does not contain co.

Proof. Let 0 < 6’ < # < 1. Looking at the diagram
X —[X,Y)gpq— [X,Y]sq — Y
we see that [X,Y]g ; — Y belongs to U by the hypothesis. Therefore
[X,Y]or,g — [X,YV]o
also belongs to U, by 4.5.1 and the reiteration theorem.
This implies that [X,Y]4),, belongs to Groth(U), and Id{x,y},,, € U. By 4.5.2

it cannot contain ¢g. O

And as a consequence:
Proposition U
I:X — Y belongs to U if and only if [X,Y](4),, € Groth(U).
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Remark. That 4.5.5 is not a rewarding of Levy’s result is a consequence of the fact
that a Fréchet space F having a fundamental sequence of associated Banach spaces
(Fk) not containing cp can contain ¢ or, in other words, that proposition 4.5.4 has
no counterpart; that is, Idg € U does not imply that E € Groth(U), even in the
Fréchet space setting: just consider F a Kothe echelon space of order 0 which is
Fréchet-Montel but not a Schwartz space (see [11] or [10]). F is a reduced projective
limit of copies of ¢y with diagonal maps. Since F is Montel it cannot contain cg.
Since it is not Schwartz, the diagonal maps cannot be in U, since in that case D,
would be compact.

A simpler example in the general locally convex setting is as follows: consider T
an uncountable set of cardinality d, and consider the sum space ¢, := @ ;K endowed
with the so-called box-topology, for which a fundamental system of neighborhoods
of 0 is given by the sets: pq N [];r;B, where B is the unit ball of & and

(ri) € IL(I) = {(r:) € KT : r; > 0}.
It is easy to see that

[‘Pd’tbox] = l‘il_“Dn(CO(I))’ S l::)([)’

where Dy : ¢o(I) — co(1) is the diagonal operator defined by o. |pg,tpoy| is
therefore complete.

[¢d,thox] does not belong to Groth(U) since the diagonal operators D, acting
from ¢o(I) into ¢o([) are not unconditionally converging: there must be an ¢ > 0
such that o; > ¢ for an uncountable set of i. Let us call this set J. Choose now
a sequence (e,) with all n € J. This sequence is wuC, while ||Dye,|| > €, which
prevents (Dye,) from being summable.

On the other hand, the identity of [¢4,t},0x] belongs to U since given any se-
quence of this space it lies inside a copy of ¢ := Py K.

4.6 Completely continuous operators

In this case [_Y,Y](g),q € Groth(B) is not implied by I € B as the example l; — [,
shows.
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