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ABSTRACT
In this paper we give bounds and recurrence formulae for the number of
solutions of the system Zi‘:l gy = Ay(modq,), 1 <v<n, A,qeN,
which satisfy the conditions y;z; = f;(mod q),g.c.d.(7:,q) = d;|B; and
q=lcm.q,...,q,), where v;, i and q are given integers.

1. Introduction and notations

Let K > n > 2, A\),q,, 1 < v < n be natural numbers and ¢ = l.e.m.(q1,...,¢n).
€1,...,2, will denote unknows taken over a complete set of residues modulo q. The
letter p will always stand for a prime number. Suppose that any prime number p
dividing q is greater than n. Then a k-tuple (z;,...,zx) is called regular mod q if for
any prime divisor p of g, there are at least n components which belong to different
classes of residues mod p. A regular solution is denoted by (z1,...,2x)n(mod g).
We shall study the number of regular solutions of the system

(1.1) a4+ .ot =A(modg,), 1<v<n; u1,...,2€Z[/¢Z

where z;4q,...,%; satisfy the following conditions : ~v;z; = 8i(modyg), 7, Bi€Z.
From the symimetry of the system, we can suppose, without loss of generality that
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126 CALDERON AND DE VELASCO

1<di=gcd(7i,9|6:,i=j+1,...,mandd; =1fori=m+1,...,k. We denote
S(q) the following set

S(q) = {(131,---,37k)n(m0d‘1) | 1< 21,...,2; < g;vizi = Bi(mod g)

1<di=gecd(vi,9)|8 Vi=j+1,...,m;g.cd.(vi,q) =1,Vi=m + 1,...,k}.

Ifdi=1,Vi=j41,...,kor 1 < d;|8; Vi=j+1,...,k this set is denoted by S;(g) or
52(q) respectively. For each n-tuple (Aq1,...,A,) of integers A, let Ji(A1,...,An;q)
be the number of regular solutions of the system

(1.2) {4+ ... +2=A(modgqg); 1<v<n (¢1,...,2k)eS(q)

First we shall study this system when ¢ = p“, « > 1 and p > n. The sym-

bol Egzl’_“'xk)" means that the sum is restricted to the regular k-tuples

(x1,...,2k)n(mod ¢q)eS(g). We prove the following theorems
Theorem 1
1) If the system of congruences
i+ ...tz =N (modp);l <v<n, (21,...,2x)eS1(p),

is solvable, then the number of solutions verifies the following bound

y it ifj<mn
(13) Jk(/\l»- . -1/\na[)) .<_ {n!p]-n’ ifn < _/ S k

2) If the above system has solutions in the set Sy(p), then we have
Jk‘(A] ey An‘;])) _<- ,,.L![)k_n

In particular,

. J'a if(ml,...,mn)esl(p);
v ny ) S .

I Auip) {n!, if (21,...,2)€52(p)

Theorem 2
Suppose that the number of unknowns x;41,...,2, that belong to differents

classes of residues mod p is s. If the system of congruences
(14) i+ ...+ap=A(modp®);1 <v<m, (21,...,25)e51(p%) a>2,
is solvable, then
(1.5) ‘
Je(A1, . A p%) < p("’_l)j_(a_?){?—s(ps - 1)(n - 1)-7 + pj""Jk(/\l, e A p®TY

By repeating the argument used in Theorem 2 we obtain the following corollary.
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Corollary 1
The number of solutions of the system (1.4) verifies the following bound

a—-2
gy O i) S 1t e 5 )
.0 6=0

+p VI I (A A )
where Ji(A1,...,Aq;p) is given in Theorem 1.
Corollary 2
Suppose that (z1,...,2,)eS2(p*) j < n=k, then
Ju(My - s p%) < pTTLL (A s p)
where J, (A1, ..., Au;p) is given in Theorem 1.
Theorem 3
Suppose that system of congruences
i+ ...+ = A (modp®); 1 <v<n, (z1,...,28)e52(p%), a>2

is solvable, and let R = min{r;|p" = g.c.d.(v;,p*),i =j+1,...,k}. Then

(1.7) Je(A1, . A p%) = ])R(k_").]k(/\l yeens /\.,,_;p"_R)
where Ji(Ar, ..., A p~8) is the number of solutions of the system (1.2) mod q =
pe.

Theorem 4

For any j + 1 <1 <, &; denote the unique solution of the linear congruence

(1.8) (a;/di)e; = (Bi/di)(modp®[d;), 1 < d; = p™ < p*
and let #; be the solution of the same congruence whend; = 1,1 =m+1,...,k. We
suppose that £,s is the number of &;,&; respectively which are noncongruent mod

p- If the system of congruences (1.2) with ¢ = p® is solvable, then

(1.9) JeALy - A ™) = ™ Tk A 027, when £2>n

Jk(’\la ey ,\”;pn) < (,”' _ l)jpm-—n+L1-—€+j((r—'.’)(1—1/11.)(pn—L1 _ 1)

(110) = (r,—1)(1=1/n) — a—1
X H P " T (A1, A p“T); when £< n

v=3+1

being Ly = max{{,n— L}, L < {+ s and L is the number of;itj.,.],...,:%k which are
noncongruent mod p.
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Theorem 5

Let ¢ = pfl ...p%». Then the following formula for the number of solutions of
the system of congruences (1.2) holds

(1.11) Je(Ms- - n,q)_HJk(Al, A pl)

If Jk(/\l,...,/\n;pf‘) is the number of solutions (x4, ... ,mk)eSg(pf‘) of the system,
then

v

(1.12) Je(A1,-- 0 Au5q) = Hpt (k= ")J (Al,...,/\n;pf'_R‘)

t=1

If d; = g.c.d.(w,p?‘) =LVi=j5+1,...,n, Vt=1,...,0, then from (1.11)
and Corollary 2 we have

TuQas ) < T 7P 00, Asp), G<n=k
t=1

For any arbitrary modulus ¢, and any k£ > n we obtain formulae for the number of
solutions of the system (1.1) by means of the number solutions of the incomplete
system

e+ .+ l"’ = fin,
(1.13) e (mod p*)
l;“ + ...+ .’ITZ' = fin,

where plg, and 1 <n; < ... < n; < n.

Theorem 6

Let Jy be the number of regular solutions of the system
{4+ ... +af =, (modq,); 1<v<n, (x1,...,2£)eS(q)

where ¢ = Lem.(q1,...,q,) = pf‘ co.ple. Let1 < ny < ... < mny, <n by natural
numbers such that qu,,...,qn,, C {n,q2,-- s qn}-

1) prf‘lq,“ Vi=1,...t and g.c.d.(pi‘,qm‘.) = 1,Vm;e{1,2,...,n},m; # ni,
then,

(114) Jk H[)(Sltl-]k(/\m, .. n‘lv‘"e )

.q
(In =1
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2) If pelqn, Vi =1,...t, and g.c.d.(pe,qm;) = 1,Ym;e{1,2,...,n},m; # n;,
then

13
v p[
1

) be(te—s 13
(1.15) Je=—— Py ST iyt
=1

211,...le(=1

Whel@ Se = #{qn yi=1,.. .1 |(1n } 0< s < t — 1 and ;u'n = /\n + qn; Zn; 0,
if l’e hani; pn, = g, if pg‘|qn. Moreover Ji(fonys - vsbng, s Py %) is the number of
regular solutions of the system (1.13).

2. Previous lemmas

Following the notations of Korobov [1], let

, 1< mx I, if m = 0(mod ¢ wi
(2.1) dy(m) = = Z €<_> - { 0, = ( 1) e(t) = ™t

1= q otherwise.
=

then

Ty Aig) = Z Hé,, (2% + z¥ = \,)

hence by (2.1)
(2.2)

: T k) — A nn
Je(A1, - A5 q) :;1‘1.,7 Z ff(f(ll')_*_ + f(zx) q(“l 1t...ta ))

where f(a) is the polynowmial of integer coefficients, f(x) = aye + ... + a,2™. We
denote .
P -
. x+ p*Ty)
Al = Yo (L)
y=1 !
Lemma 1

Let R = min{r,Jv = N+ 1,...,M} M — N > n and let a, = p¥b,,v =
1,...,n such that f(x) = pBfr(x,). Then the following formula holds for the
values ny1,. .., 20 of the systems (£N41,- .., 20 )n(modp)

(2.3) ﬁ A [f ()] {1' =M T g AZZ7 U R(2))), i pPd;

g R
v=N+1 0, if pt*Td,
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where d = g.c.d.(ay,...,a,) and

f(z+p°""y)

);1$'r<a
P

(2.4) AT @) = s 3 e (

Proof. In A%[f(z)] each y modulo p", can be written uniquely in the form zp™! +y,
1<y<p~1, 1<z<p. Hence, (2.4) follows from Taylor's Theorem. Moreover
since at least n values among zxn41,...,2 are different mod p we have

M H r .
(2.5) I1 57)[f’(mu)]={(l): if pld;

otherwise
v=N+1
and if f(z) = pfi(a) we deduce

ﬁ A‘::[f(a:u)]:{P‘M‘”’HﬁiNﬂsz_:‘{fl(mu)], if pld:

V= N+1 0, if pTd,

Repeating this argument, we obtain (2.3). If r = a — 1, then AS~[f(2)] = A.[f(2)]
and for (x1,...,2n)n(mod p) we have (see Lemma 2 [1])

N
n(a—1)N 11N f(zy) se o a=1] 7.
eo) T Adsa= | P IL e (5 i
v=1 0, if ])a—le. a
Lemma 2
Let a > 2, k > n > 2. Then if the system of congruences

2.7) ey +...+2f = A, (modp®);1 <v<n, (x1,...,25)eS(p%),
, 1

is soluble, the number of regular solutions verifies the following formula
(2.8)

a

P
Jek(A1,oo A p®) =p~ " Z e (

_(1,1/\1 + ... +a"n’\n)

a1,-.,a,=1 po’

P 7 m . , k f(j;y)
x> JTAl@) JT Awlr@)) I e e
T1,..,cj=1v=1 v=j3+1 v=m+1

where A,[f(2,)], AL[f(x,)] are given in Lemma 1.
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Proof. Let (&y,...,2)eS(p"), then xq,...,x; are taken over a complete set of
residues modulo p® and the solutions of the congruences

vixi = Pi(mod p*); g.ed. (7, p")=p", ri<a,Vi=j+1,...,m
are &; +p*~ ", ..., &+ p"p“~ 7. Moreover each @1,...,2;(mod p®), can be written

uniquely in the from py; + x;, with 1 < z; < p, 1 < y; < p*~!. Hence from (2.2)
with ¢ = p“ we have (2.8). O

3. Proof of theorems

Proof of Theorem 1. 1) By the symmetry of the system we can suppose that
T1,...,2y are different mod p and we write the system in the form

{4+ ...+ = - (e, + ... +a)(modp), v=1,...,n ,(x1,...,2k)eS1(p)

For j < n, the terms of the right side take the unique value 67,...,d,. Thus, we
have a system of congruences of Linnik type (see [2,p-44] or [3,p-83]) and therefore

Je(A1y o A0 p) = Ju(61,. . 00;p) < gt if j<n

For j > n, obviously, Jx(A1,.--,An;p) = 97" Jn(b1,...,6n;p) < nlp?~™. and so,
(1.3) follows. If k=n, we have Ji(A1,...,Au;p) = 3! for j < n.

2) This case is deduced in a similar manner to above when n < j = k. If
g.c.d.(yi,p) = 1, Vi = 1,...,k being the system solvable then Ji(A1,...,Az;p) = 1.
O

Proof of Theorem 2. Since ¢ = p“, by (2.2), we have

pQ
] . nin
Ji(A1y A p) = pl 7o Z . (_"1)\1 + +a )

a1,..,0ny =1 [)0'
P J pe2 k 2
: f(wu +P!/u) f(-ru)
X H ép[f (I‘,,)] Z C_( pe H € p
(:Blv'--1$j)(n—s) v=1 Yo =1 v=j+1

For the sake of brevity we shall write, Ji(Ay,..., A, p%) = pP =" {3, + 3, } where
Y, is the sum over the n-tuples (a1,...,a,) such that g.c.d.(a;,p) = 1 for some
i =1,...,n, and ), is the sum over the n-tuples (ay,...,a,) such that pla; for
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eacht =1,...,n. As n—s < j, it follows that f(z) is a polynomial of degree at
least (n-s+1). Hence,

(1) | zl < (n — 1)jpa(n~s)(pas _ p(a—l)S)p(a—z)(l_l/n)j
1
and
@) Y =TIy Ani )
2

From (1), (2) we deduce (1.5). O

Proof of Theorem 3. Now, we observe that f'(z) is a polynomial of degree at

most (n-1). Moreover, if p fd = g.c.d.(ay,...,a,) there are no regular solutions.
Therefore
e M+t an)
—an a o ta
Te(A1y -0y An;p®) = pRF=er Z € (— - pa—R - ")

a1,..,ap=1

X MT o(fetm) [T (fetr )

(z1,..,z;) v=1 wpn=1 v=j+1 y,=1

when pR|d and Ji(M1,...,An;p%) = 0 otherwise. From this and (2.8) we deduce
(1.7). O

Proof of Theorem 4. 1) If £ > n, from ( 2.8) and (2.4) we have

pﬂ
o —a1A] — ... —ax A,
Jk(’\lw--v’\n;pa):p o Z (5( — pa—l - )

al,...,an-l

P m
Xy H Alf@)] ] véols'(@)]
T1,..,7;=1v=1 v=3+1
(LGt T, (£
xz_:le< P )_H e(l’“)
Y= v=m+1
and from (2.3), (2.6) we deduce
pa—-l
—on aA ... Faph,
Jk(Als"'v’\n;pa)zp o Z €<— - pa—l )

Q1440 q =1

- k -
< 3 Mraetnea I pzitnen 1 e(fl(xu))

pa—l
z1,..,r;=1v=1 v=3+1 v=m+1

(3.1)
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Using Lemma 2 we deduce the required conclusion.
2) Now, let £ < n. Since &;41,...,&., are roots of f'(z), the coefficients of f'(z)
must satisfy the following system of £ linear congruences

14 n
(3.2) Y kapdft=— > kardf M (modp)Vi=1,...,¢
k=1 k=f+1

where {t1,...,%} C {j+1,...,m} &;,...,&; are noncongruent mod p, and its
determinant V is

V=20 [] (& - i) # 0(modp)

ir(‘i,
It follows that the system (3.2) has a unique solution for each fixed value of

Ggg1,--- 0. Suppose then, that a; = @;(agr1,-..,a,) + pbi, bieZ[/p* 1Z,i =
1,...,£. Now, making a partition in the sum over asy1,....d,, we have

Jk(/\lv ERR /\n'ﬂ’a) = pm—ﬂ‘n{z + Z}
1 2

where

p p* 1A + .. agy,
; = 2 e (_ P )

b1vsybe=1 aeq1,..m0,=1
Jig.c.d.(o,p)=1

% i H 8, ()] Z ( I'Uu))

(.’1:1, [‘,)" LV— y=1
m -7 k :
YYu
Y (L) I ( )
v=j+1 =1 p s

(J’r,—_,,l,...,:i;k)L(IIlO(l P)

and by a similar argument to the one used in the proof of (1.5), we have

(3.3) Y =p I A AT
2

We suppose that L < £ + s is the number of Z,, » = 57+ 1,...,k, which are
noncongruent mod p. Then at least n — L z,, v =1,...,7 must be noncongruent
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mod p, that is (z1,...,2;;%41,...,2k)(n-L,1)(mod p). Since f'(z) is a polynomial
of degree at least (n-L), f(z) is of degree at least (n-L+1). Hence

|E | <(n- 1)]'[,(0’—1)24'0'([41—f)(pﬂ’(”'-[ll) _ p(ﬂ—l)("—Ll))p(f’-l)(l—l/")j
1

m
X H p(r., -1)(1-1/n)
v=j+1

where L; = max{{,n — L}, and 7j41,...,7, < a—1 The formula (1.10) is deduced
from this. O

If € > norf < nwecan apply (1.9) or (1.10) in an iterative way, as long as the
subsequent systems still satisfy this condition. Thus, successive applications of this
argument reduce the modulo to p.

Proof of Theorem 5. (1.11) and (1.12) follow directly from Theorem 3 bearing in
mind the multiplicative property of the number of solutions of a congruence system.
a

Proof of Theorem 6. We considerer the system of congruences
i+ ... +ai=A+qz(modg), 1<v<n (x1,...,2r)eS5(q)

where z1,..., z, are taken over a complete set of residues modulo q. Then by (1.11)
we can write

iy

1 d
(3.4) Te=—— Y J[Wn+ @z n+ gazaiph)

ECIR L i
Let z; = p\zi1 + ...+ p'** z;,(mod q), where p;&‘ = (p{*...pb )/pj‘ and the z;
are taken over a complete set of residues modulo pﬁ‘. Hence z; = p;f‘ z;e(mod pg‘)
and 1)'15‘ zip + ...+ p®v 2, are taken over a complete set of residues modulo q when
Zi1,- .-, 2iy are taken over a complete set of residues modulo pf‘ ,- -, PS respectively.
Then

v

5e
r pl
1
Jr = ;1'1——(;— H E Je(M + 1111";'21&- N (Inl”[6l an;l'gl)
o ln

=12z14y.-.20¢=1
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1) prg’|q,,“;\ﬁ =1, 1< <...<ny <n,{n1,...,ng, } C{1,2,...,n} and
g.c.d.(pi‘,q,,“) = 1,Vm;e{1,2,...,n}, m; # n;, then,
v ) 1 ‘ U )
Do T(Anys o A 505t ) € —— [ P8 Te(pgt)
1

7 1
A= ——
G .--4n (Il'-"]ne___l

=
2) Let pelqn;Vi=1,...5te, 1 <nyp < ... < my, <y {ny,...,me, 1 C {1,2,...,n}

and g.cd.(peyqm,) = 1,Vmie{l,2,...,n},m; # n; and set s = #{qn,,i =
1, te; phlgn.}, 0 < 8¢ <tg—1. Then

be
v P,

Se(te—s )
TR SO /X (TR IR /2
1 -

1
Jp = —m—
Q- ~
1T, =

(=
. 5 e .6
where fi,, = Ay, + Gn, Zng e A Pt funsand g = Ay, i pyten,. O

EXAMPLES : ‘ »
1.-In the particular case ¢; = pi’, = p‘;lpg?, cer G = pflpg'z coph =g
and (z1,...,%,)eS(q) then 1)2‘}(14,. ey and t,=n—£4 1,8 = 0 so we have

Jp = H Te(Xes- o Asp50)
=1

2-Leth=n q,=p"Vv=1,...,n,and let (x1,...,2,)eS5(p%) j<n=k,
then ¢ = p",v = 1,6, =, = n,s, = 1, by (1.15) and corollary 2 so we have
p"
J’Il- = 1,)714(71-—3)/2 Z ']71.(’\1 +I’Z7 SRR /\n—l +I'”—137 /\n;pn) S pn(1!-—3)/21)711.)(”—1)(]—77.),n!

z=1

Ju < 'n,!p(”‘l)(y'—u/z)

3-Leth=mn,q,=p" YWw=1,...,r,¢, =p",r<n,Yv=r+1,...,n and let
(xy,...,%,)€S9(p*) such that xq,...,x, hold the corollary 2 then ¢ = p",v =1,
6, =r,tg=mn,8 =n—r+1and by (1.15) and corollary 2 we obtain

p-r(r—l) P’ o )
= flr(n—-r)+7'(r+1)/2 Z J”(/\l TP, Ar-1+ P Zr=1,Ary /\T;p )

21y Zn—-r41=1

J" S n!pr(r—l)/2—('r—l)(*n—j) - n!p(r-l)(r/‘l—n—j)
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