A Kratzel's integral transformation of distributions

J.A. BARRIOS

Dpto. de Economía Aplicada, Universidad de La Laguna, La Laguna, Spain

J. J. BETANCOR

Dpto. de Análisis Matemático, Universidad de La Laguna, La Laguna, Spain

Received 25/ MAY/90

ABSTRACT

In this paper we study an integral transformation introduced by E. Kratzel in spaces of distributions. This transformation is a generalization of the Laplace transform. We employ the usually called kernel method. Analyticity, boundedness, and inversion theorems are established for the generalized transformation.

1. Introduction

E. Kratzel [6] introduced a generalization of the well known Laplace transformation by the integral

$$F(x) = \mathcal{L}_{\nu}^{(n)}\{f\}(x) = \int_{0}^{\infty} \lambda_{\nu}^{(n)}(xt)f(t) dt, \quad \text{for } x > 0,$$
 (1)

where

$$\lambda_{\nu}^{(n)}(x) = (2\pi)^{(n-1)/2} \left(x/n\right)^{n\nu} \frac{\sqrt{n}}{\Gamma(\nu+1-(1/n))} \int_{1}^{\infty} (t^{n}-1)^{\nu-(1/n)} e^{-xt} dt,$$

for x > 0, $\nu > -1 + 1/n$ and n = 1, 2, ...

The $\mathcal{L}_{\nu}^{(n)}$ transformation reduces to the Laplace transformation when n=1. Moreover the K_{ν} transformation [16] is obtained from $\mathcal{L}_{\nu}^{(n)}$ by taking n=2.

E. Kratzel studied the main propierties of the function $\lambda_{\nu}^{(n)}(x)$ and the $\mathcal{L}_{\nu}^{(n)}$ transformation in a series of papers [6–10]. Later G. L. N. Rao and L. Debnath [12] investigated the integral transformation (1) in a certain space of distributions. More recently, the authors have completed in some aspects the study of E. Kratzel and established real inversion formulas [1] and integrability theorems [2] for the $\mathcal{L}_{\nu}^{(n)}$ transformation.

In this paper we define the Kratzel integral transforms of distributions by using the known kernel method. We firstly introduce a Fréchet space of functions denoted by \mathcal{A} and constituted by the infinitely differentiable functions $\phi(t)$, $0 < t < \infty$, such that

$$\sup_{1/m < t < \infty} \left| \frac{d^k}{dx^k} \phi(t) \right| < \infty, \quad \text{for every } m, k \in \mathbb{N}.$$

The generalized $\mathcal{L}_{\nu}^{(n)}$ transform $\mathcal{L}_{\nu}^{(n)}f$ of $f \in \mathcal{A}'$ is defined in section 3 by

$$(\mathcal{L}_{\nu}^{(n)}f)(x) = \left\langle f(t), \lambda_{\nu}^{(n)}(xt) \right\rangle, \quad \text{for } x > 0.$$

We establish analyticity, boundedness and inversion theorems for the generalized $\mathcal{L}_{\nu}^{(n)}$ transformations.

In Section 4 we define the generalized $\mathcal{L}_{\nu}^{(n)}$ transformation of distributions with compact support. A new inversion formula for $\mathcal{L}_{\nu}^{(n)}$ is obtained.

We now list some properties of the function $\lambda_{\nu}^{(n)}(x)$ due to E. Kratzel [6] that will be useful in the sequel.

The behaviour of $(d^k/dx^k)(\lambda_{\nu}^{(n)}(x)), k \in \mathbb{N}$, near the origin and the infinity is as follows:

$$\frac{d^k}{dx^k} \left(\lambda_{\nu}^{(n)}(x) \right) = O(x^{-k}), \quad \text{as } x \longrightarrow 0^+, \quad \text{for } \nu > 0, \tag{2}$$

$$\frac{d^k}{dx^k} (\lambda_{\nu}^{(n)}(x)) = O(x^{(n-1)\nu + (1/n) - 1} e^{-x}), \quad \text{as } x \to \infty, \quad \text{for } \nu > -1 + 1/n.$$
 (3)

From (2) and (3) it deduces that there exists M > 0 for which

$$\left| \frac{d^k}{dx^k} \left(\lambda_{\nu}^{(n)}(x) \right) \right| \le M \left(1 + x^{-k} \right) x^{n-1)\nu + (1/n) - 1} e^{-x}, \tag{4}$$

for x > 0 and with $0 < \nu < 1/n$.

Moreover, $\lambda_{\nu}^{(n)}(x)$ satisfies the differential equation

$$(B_{\nu,n} - (-1)^n)y = 0 (5)$$

where

$$B_{\nu,n} = x^{n\nu-1} \, \frac{d^{n-1}}{dx^{n-1}} \, x^{1-n\nu} \frac{d}{dx} \, .$$

If the Mellin integral transformation is defined by

$$M\{f\}(s) = \int_0^\infty x^{s-1} f(x) dx$$

then

$$M\{\lambda_{\nu}^{(n)}(x)\}(s) = (2\pi)^{(n-1)/2} n^{-n\nu - (1/2)} \frac{\Gamma(s+n\nu)\Gamma(s/n)}{\Gamma((s/n) + \nu + 1 - (1/n))}, \tag{6}$$

for $\Re s > \max\{0, -n\nu\}$.

Thoughout this paper, I denotes the real interval $0 < x < \infty$. D(I), E(I), D'(I) and E'(I) denote well known spaces of functions and distributions encountered in [13] and [18].

2. The function space A and its dual

We introduce the function space A consisting of all infinitely differentiable functions $\phi(t)$, $0 < t < \infty$, such that

$$\gamma_{m,k}(\phi) = \sup_{1/m < t < \infty} \left| \frac{d^k}{dx^k} \phi(t) \right| < \infty, \quad \text{for every } m, k \in \mathbb{N}.$$

 \mathcal{A} is endowed with the weak topology generated by the family of seminorms $\{\gamma_{m,k}\}_{m,k\in\mathbb{N}}$. Thus \mathcal{A} is a Fréchet space. Furthermore, as it is easy to see, $D(I)\subset\mathcal{A}\subset E(I)$ and the inclusions are continuous.

Proposition 1

The operator $B_{n,\nu}$ defines a continuous linear mapping from A into itself.

Proof. It is sufficient to note that for every $m,k\in\mathbb{N}$ there exists M>0 such that

$$\gamma_{m,k}(B_{\nu,n}\phi) \leq M \sum_{j=1}^{n} \gamma_{m,k+j}(\phi), \quad \text{for each } \phi \in \mathcal{A}. \ \Box$$

The dual space of A is denoted as usual by A'. A is equipped with the weak topology.

We define the generalized operator $B_{\nu,n}^*$ on \mathcal{A}' as the adjoint of the classical operator $B_{\nu,n}$. More specifically,

$$\langle B_{\nu,n}^* f, \phi \rangle = \langle f, B_{\nu,n} \phi \rangle, \quad \text{for } f \in \mathcal{A}' \text{ and } \phi \in \mathcal{A}.$$

Hence, by virtue of Proposition 1, $B_{\nu,n}^*$ is a continuous linear mapping from \mathcal{A}' into itself.

The following proposition allows to define some members of \mathcal{A}' .

Proposition 2

Let f(t) be a locally integrable function on $(0,\infty)$. If there exists a>0 such that f(t)=0, for t< a, and $\int_a^\infty \big|f(t)\big|dt<\infty$, then F defines a regular generalized function in \mathcal{A}' through

$$\langle f, \phi \rangle = \int_0^\infty f(t)\phi(t) dt, \quad \text{for every } \phi \in \mathcal{A}.$$

Proof. The linearity of the mapping is clear. Moreover F is a continuous mapping because

$$\left| \langle f, \phi \rangle \right| \le \int_a^\infty \left| f(t) \right| dt \sup_{1/m < t < \infty} \left| \phi(t) \right|, \quad \text{for } \phi \in \mathcal{A},$$

where $M \in \mathbb{N}$ and 1/m < a. \square

3. The generalized $\mathcal{L}_{\nu}^{(n)}$ transformation in \mathcal{A}' .

Let $\nu > -1 + 1/n$ and $n \in \mathbb{N}$. For $f \in \mathcal{A}'$, define its generalized $\mathcal{L}_{\nu}^{(n)}$ transform by the relation

$$F(x) = \left(\mathcal{L}_{\nu}^{(n)}f\right)(x) = \left\langle f(t), \lambda_{\nu}^{(n)}(xt) \right\rangle, \qquad x > 0.$$
 (7)

Note that (7) is well defined and if follows from the asymptotic behaviour easily that $\lambda_{\nu}^{(n)}(xt)$ is in \mathcal{A} for fixed x>0. Moreover if f is a function satisfying the requirements in Proposition 2, the generalized $\mathcal{L}_{\nu}^{(n)}$ transform of F reduces to the classical $\mathcal{L}_{\nu}^{(n)}$ transform of f.

We now establish several properties of the generalized $\mathcal{L}_{\nu}^{(n)}$ transformation.

Proposition 3

Let $f \in \mathcal{A}'$. If F(x) denotes the generalized $\mathcal{L}_{\nu}^{(n)}$ transform of f then F(x) is infinitely differentiable on $(0, \infty)$ and

$$\frac{d^r}{dx^r} F(x) = \left\langle f(t), \frac{\partial^r}{\partial x^r} \lambda_{\nu}^{(n)}(xt) \right\rangle, \quad \text{for } x > 0 \text{ and } r \in \mathbb{N}.$$

Proof. Let h be an arbitrary increment in x > 0. Without any loss of generality assume 0 < |h| < x/2.

As it is easy to see

$$\frac{F(x+h) - F(h)}{h} = \left\langle f(t) m \frac{1}{h} \left(\lambda_{\nu}^{(n)} (t(x+h)) - \lambda_{\nu}^{(n)} (tx) \right) \right\rangle. \tag{8}$$

We will prove that

$$\varphi_h(x,t) = \frac{1}{h} \left(\lambda_{\nu}^{(n)}(t(x+h)) - \lambda_{\nu}^{(n)}(tx) \right) - \frac{\partial}{\partial x} \left(\lambda_{\nu}^{(n)}(tx) \right) \longrightarrow 0, \quad \text{as } h \longrightarrow 0,$$

in the sense of convergence in A. Our result for k = 1 will then follow from (8) and the continuity of f(t).

For every $r \in \mathbb{N}$, we can write

$$\begin{split} \frac{\partial^r}{\partial t^r} \, \phi_h(x,t) &= \frac{1}{h} \int_x^{x+h} \int_x^u \frac{\partial^2}{\partial y^2} \left(\frac{\partial^r}{\partial t^r} \left(\lambda_{\nu}^{(n)}(ty) \right) \right) \, dy \, du \\ &= \frac{1}{h} \int_x^{x+h} \int_x^u \frac{\partial^2}{\partial y^2} \left(y^r \frac{d^r}{d(ty)^r} \left(\lambda_{\nu}^{(n)}(ty) \right) \right) \, dy \, du \\ &= \frac{1}{h} \int_x^{x+h} \int_x^u \left(r(r-1) y^{r-2} \frac{d^r}{d(ty)^r} \left(\lambda_{\nu}^{(n)}(ty) \right) \right. \\ &\quad + 2r y^{r-1} t \, \frac{d^{r+1}}{d(ty)^{r+1}} \left(\lambda_{\nu}^{(n)}(ty) \right) + y^r t^2 \frac{d^{r+2}}{d(ty)^{r+2}} \left(\lambda_{\nu}^{(n)}(ty) \right) \right) dy \, du. \end{split}$$

By virtue of (3) for each $m \in \mathbb{N}$ there exists a positive constant M such that

$$\left| \frac{d^{r+j}}{d(ty)^{r+j}} \left(\lambda_{\nu}^{(n)}(ty) \right) \right| \le M(yt)^{(n-1)\nu + (1/n) - 1} e^{-tx/2},$$

for t > 1/m, y > x/2 and j = 0, 1, 2.

Hence

$$\left| \frac{\partial^r}{\partial t^r} \phi_h(x,t) \right| \le M_1 t^{(n-1)\nu + (1/n) - 1} e^{-tx/2} \frac{1}{h} \int_x^{x+h} \int_x^u \left(y^{r-2} + y^{r-1} t + y^r t^2 \right) dy du$$

$$< M_2 e^{-tx/4}$$

for every t > 1/m and 0 < |h| < x/2. Here $M_1 < 0$, for i = 1, 2.

Therefore, if $\varepsilon > 0$ then there exists $t_0 > 1/m$ such that

$$\left| \frac{\partial^r}{\partial t^r} \phi_h(x,t) \right| < \varepsilon, \quad \text{for } t > t_0 \text{ and } 0 < |h| < \frac{x}{2}.$$

Moreover, for every $t \in (1/m, t_0)$ one has

$$\left| \frac{\partial^r}{\partial t^r} \phi_h(x,t) \right| \le M_3 \left| \frac{1}{h} \int_x^{x+h} \int_x^u \left(y^{r-2} + y^{r-1} + y^r \right) dy du \right|,$$

 M_3 being a positive constant. Hence $(\partial^r/\partial t^r)\phi_h(x,h) \longrightarrow 0$, as $h \longrightarrow 0$, uniformly in $t \in (1/m, t_0)$.

Therefore we conclude that $\gamma_{r,m}(\phi_h(x,t)) \longrightarrow 0$, as $h \longrightarrow 0$.

By proceeding inductively the proof can be completed. \Box

Proposition 4

Let $0 < \nu < 1/n$. If F(x) denotes the generalized $\mathcal{L}_{\nu}^{(n)}$ transform of $f \in \mathcal{A}'$ then $|F(x)| \le P(x) x^{(n-1)\nu + (1/n) - 1} e^{-x/r}, \qquad x > 0,$

for a certain polynomial P and some $r \in \mathbb{N}$.

Proof. According to [18, Theorem 1.8-1] there exists $r \in \mathbb{N}$ and m > 0 for which

$$|F(x)| \leq M \max_{\substack{0 \leq k \leq r \\ 1 \leq l \leq r}} \gamma_{l,k} \left(\lambda_{\nu}^{(n)}(xt) \right), \qquad \text{for every } x > 0.$$

Therefore, from (4) one deduces

$$\begin{aligned} |F(x)| &\leq M \max_{p \leq k \leq r} \sup_{1/r < t < \infty} \left| x^k \frac{d^k}{d(xt)^k} \left(\lambda_{\nu}^{(n)}(xt) \right) \right| \\ &\leq M_1 \max_{0 \leq k \leq r} \sup_{1/r < t < \infty} \left| x^k \left(1 + (xt)^{-k} \right) (xt)^{(n-1)\nu + (1/n) - 1} e^{-xt} \right| \\ &\leq P(x) x^{(n-1)\nu + (1/n) - 1} e^{-x/r}, \quad \text{for } x > 0, \end{aligned}$$

where $M_1 > 0$ and P(x) is a suitable polynomial. \square

In the following proposition we show an operational formula for the generalized $\mathcal{L}_{\nu}^{(n)}$ transformation involving the operator $B_{\nu,n}^*$.

Proposition 5

Let P be a polynomial. If $f \in \mathcal{A}'$ then

$$\left(\mathcal{L}_{\nu}^{(n)}P\left(B_{\nu,n}^{*}\right)f\right)(x)=P\left((-x)^{n}\right)\left(\mathcal{L}_{\nu}^{(n)}f\right)(x),\qquad\text{for }x>0.$$

Proof. By virtue of (5) and according to Proposition 1, we can write

$$\left(\mathcal{L}_{\nu}^{(n)}P\left(B_{\nu,n}^{*}\right)f\right)(x) = \left\langle P\left(B_{\nu,n}^{*}\right)f(t), \lambda_{\nu}^{(n)}(xt)\right\rangle
= \left\langle f(t), P\left(B_{\nu,n}^{*}\right)\lambda_{\nu}^{(n)}(xt)\right\rangle
= \left\langle f(t), P\left((-X)^{n}\right)\lambda_{\nu}^{(n)}(xt)\right\rangle
= P\left((-x)^{n}\right)\left(\mathcal{L}_{\nu}^{(n)}f\right)(x), \quad \text{for } x > 0. \ \square$$

We now establish an inversion theorem for the generalized $\mathcal{L}_{\nu}^{(n)}$ transformation. To prove the inversion formula we use a procedure similar to the one employed by S. P. Malgonde and R. K. Saxena [11]. We need previously to show some results.

Lemma 1

Let $f \in \mathcal{A}'$ and $0 < \nu < 1/n$. Then

$$\int_0^\infty x^{-s} \langle f(t), \lambda_{\nu}^{(n)}(xt) \rangle \, dx = \left\langle f(t), \int_0^N x^{-s} \lambda_{\nu}^{(n)}(xt) \, dx \right\rangle$$

provided that $\Re s \leq (n-1)\nu + 1/n - 1$.

Proof. Let $N \in \mathbb{N}$. We will see firstly that

$$\int_0^N x^{-s} \langle f(t), \lambda_{\nu}^{(n)} x t \rangle dx = \left\langle f(t), \int_0^N x^{-s} \lambda_{\nu}^{(n)} (x t) dx \right\rangle. \tag{9}$$

If $\{x_{r,l}\}_{r=0}^l$ is a partition of the interval [0,N] being $d_l=x_{r,l}-x_{r-1,l}$ for every $r=1,2,\ldots,l$, we can write

$$\int_0^N x^{-s} \langle f(t), \lambda_{\nu}^{(n)}(xt) \rangle dx = \lim_{l \to \infty} d_l \sum_{r=0}^l x_{r,l}^{-s} \langle f(t), \lambda_{\nu}^{(n)}(x_{r,l}t) \rangle$$

and

$$d_l \sum_{r=0}^l x_{r,l}^{-s} \langle f(t), \lambda_{\nu}^{(n)}(x_{r,l}t) \rangle = \left\langle f(t), d_l \sum_{r=0}^l x_{r,l}^{-s} \lambda_{\nu}^{(n)}(x_{r,l}t) \right\rangle.$$

Hence (9) will be proved when we derive

$$\lim_{l \to \infty} d_l \sum_{r=0}^{l} x_{r,l}^{-s} \lambda_{\nu}^{(n)}(x_{r,l}t) = \int_0^N x^{-s} \lambda_{\nu}^{(n)}(xt) dx$$
 (10)

in the sense of convergence in A.

For every $k \in \mathbb{N}$, according to (4), we get

$$\left| \frac{\partial^{k}}{\partial t^{k}} \left\{ d_{l} \sum_{r=0}^{l} x_{r,l}^{-s} \lambda_{\nu}^{(n)}(x_{r,l}t) - \int_{0}^{N} x^{-s} \lambda_{\nu}^{(n)}(xt) dx \right\} \right|$$

$$\leq d_{l} \sum_{r=0}^{l} x_{r,l}^{-\Re s+k} \left| \frac{d^{k}}{d(x_{r,l}t)} \lambda_{\nu}^{(n)}(x_{r,l}t) \right| + \int_{0}^{N} x^{-\Re s+k} \left| \frac{d^{k}}{d(xt)^{k}} \lambda_{\nu}^{(n)}(xt) \right| dx$$

$$\leq M \left(t^{-k} + 1 \right) t^{(n-1)\nu + (1/n) - 1} \left(d_{l} \sum_{r=0}^{l} x_{r,l}^{-\Re s + (n-1)\nu + (1/n) - 1}(x_{r,l}^{k} + 1) + \int_{0}^{N} x^{-\Re s + (n-1)\nu + (1/n) - 1}(x^{k} + 1) dx \right)$$

Therefore

$$\lim_{t\to\infty} \frac{\partial^k}{\partial t^k} \left\{ d_l \sum_{r=0}^l x_{r,l}^{-s} \lambda_{\nu}^{(n)}(x_{r,l}t) - \int_0^N x^{-s} \lambda_{\nu}^{(n)}(xt) dx \right\} = 0.$$

Then, since the function

$$g(t,x) = \begin{cases} x^{-s+k} \frac{d^k}{d(xt)^k} \left(\lambda_{\nu}^{(n)}(xt)\right), & \text{if } t \in [a,b] \text{ and } x \in (0,N] \\ 0, & \text{if } t \in [a,b] \text{ and } x = 0, \end{cases}$$

with $0 < a < b < \infty$, is uniformly continuous on $(t, x) \in [a, b] \times [0, N]$, if $\varepsilon > 0$ and $m \in \mathbb{N}$ there exists $l_0 \in \mathbb{N}$ such that

$$\sup_{1/m < t < \infty} \left| \frac{\partial^k}{\partial t^k} \left\{ d_l \sum_{r=0}^l x_{r,l}^{-s} \lambda_{\nu}^{(n)}(x_{r,l}t) - \int_0^N x^{-s} \lambda_{\nu}^{(n)}(xt) dx \right\} \right| < \varepsilon$$

for $l > l_0$. Thus (10) is shown.

On the other hand, by invoking again (4), for every $m, k \in \mathbb{N}$,

$$\left| \frac{d^k}{dt^k} \int_N^\infty x^{-s} \lambda_{\nu}^{(n)}(xt) dx \right| \\ \leq M t^{(n-1)\nu + (1/n) - 1} (1 + t^{-k}) \int_N^\infty x^{-\Re s + (n-1)\nu + (1/n) - 1} (x^k + 1) e^{-xt} dx$$

and hence

$$\frac{d^k}{dt^k} \int_N^\infty x^{-s} \lambda_{\nu}^{(n)}(xt) dx \longrightarrow 0, \quad \text{as } N \longrightarrow \infty,$$
 (11)

uniformly in $t \in (1/m, \infty)$.

Moreover, by virtue of Proposition 4, for certain P polynomial and $r \in \mathbb{N}$

$$\left| \int_N^\infty x^{-s} \left\langle f(t), \lambda_{\nu}^{(n)}(xt) \right\rangle dx \right| \leq \int_N^\infty P(x) x^{-\Re s + (n-1)\nu + (1/n) - 1} e^{-x/\tau} dx.$$

Hence

$$\lim_{N \to \infty} \int_{N}^{\infty} x^{-s} \langle f(t), \lambda_{\nu}^{(n)}(xt) \rangle dx = 0.$$
 (12)

From (9), (11) and (12) we can conclude that

$$\int_0^\infty x^{-s} \langle f(t), \lambda_{\nu}^{(n)}(xt) \rangle dx = \left\langle f(t), \int_0^\infty x^{-s} \lambda_{\nu}^{(n)}(xt) dx \right\rangle. \square$$

Lemma 2

Let $\phi \in D(I)$ and denote

$$\psi(s) = \int_0^\infty y^{-s} \phi(y) \, dy.$$

Then

$$\int_{-R}^{R} \left\langle f(u), u^{\sigma+iw-1} \right\rangle \psi(\sigma+iw) dw = \left\langle f(u), \int_{-R}^{R} u^{\sigma+iw-1} \psi(\sigma+iw) dw \right\rangle$$

with $\sigma < 1$ and R > 0.

is continuous for every u > 0 and $t \neq 0$. Moreover

$$\left. \frac{\partial}{\partial t} \left\{ e^{(\sigma - 1)t} \frac{\partial^k}{\partial u^k} \left(\phi(ue^{-t}) \right) \right\} \right|_{t=0} = \lim_{t \to 0} \frac{1}{t} \left\{ e^{(\sigma - 1)t} \frac{\partial^k}{\partial u^k} \left(\phi(ue^{-t}) \right) - \frac{d^k}{du^k} \left(\phi(U) \right) \right\}$$

Hence the function defined by

$$G(t,u) = \left\{ \left. \begin{aligned} H(t,u), & \text{if } t \neq 0 \text{ and } u > 0 \\ \frac{\partial}{\partial t} \left\{ e^{(\sigma-1)t} \frac{\partial^k}{\partial u^k} \left(\phi(ue^{-t}) \right) \right\} \right|_{t=0}, & \text{if } t = 0 \text{ and } u > 0 \end{aligned} \right.$$

is continuous for $t \in \mathbb{R}$ and u > 0. Furthermore there exists a positive constant M such that $|G(t,u)| \leq M$ for every $t \in [-\delta,\delta]$ and u > 0, because $\phi \in D(I)$.

Therefore if $\varepsilon > 0$ then

$$\left|\frac{1}{\pi}\int_{-\delta}^{\delta}G(t,u)\sin(Rt)\,dt\right|<\varepsilon,$$

for some $\delta > 0$ and for each R > 0.

Write now

$$\frac{1}{\pi} \int_{-\infty}^{-\delta} \left\{ e^{(\sigma-1)t} \frac{\partial^k}{\partial u^k} \left(\phi(ue^{-t}) \right) - \frac{d^k}{du^k} \left(\phi(u) \right) \right\} \frac{\sin(Rt)}{t} dt = J_{1,R}(u) - J_{2,R}(u),$$

being

$$J_{1,R}(u) = \frac{1}{\pi} \int_{-\infty}^{-\delta} e^{(\sigma-1)t} \frac{\partial^k}{\partial u^k} (\phi(ue^{-t})) \frac{\sin(Rt)}{t} dt,$$

and

$$J_{2,R}(u) = \frac{1}{\pi} \frac{d^k}{du^k} (\phi(u)) \int_{-\infty}^{-R\delta} \frac{\sin z}{z} dz.$$

By partial integration in $J_{1,R}(u)$ we get

$$J_{1,R}(u) = \frac{1}{R\pi} \left\{ -e^{(\sigma-1)t} \frac{\partial^{k}}{\partial u^{k}} (\phi(ue^{-t})) \frac{\cos(Rt)}{t} \right\}_{t=-\infty}^{t=-\delta}$$

$$+ \int_{-\infty}^{-\delta} \cos(Rt) \frac{\partial}{\partial t} \left(\frac{1}{t} e^{(\sigma-1)t} \frac{\partial^{k}}{\partial u^{k}} (\phi(ue^{-t})) \right) dt \right\}$$

$$= e^{(\sigma-1)\delta} \frac{d^{k}}{du^{k}} (\phi(ue^{-\delta})) \frac{\cos(R\delta)}{\pi R\delta}$$

$$+ \frac{1}{R\pi} \int_{-\infty}^{-\delta} \cos(Rt) \frac{\partial}{\partial u} \left(\frac{1}{t} e^{(\sigma-1)t} \frac{\partial^{k}}{\partial u^{k}} (\phi(ue^{-t})) \right) dt.$$

Since $d^k/du^k(\phi(ue^{-t}))\cos(Rt)$ is bounded for $u \in (0,\infty)$ and $R \in \mathbb{R}$, it can be easily deduced that the first term of the last sum converges to zero as $R \to \infty$ uniformly for u > 0.

Moreover, one has

$$\frac{\partial}{\partial t} \left(\frac{1}{t} e^{(\sigma - 1)t} \frac{\partial^{k}}{\partial u^{k}} (\phi(ue^{-t})) \right)
= \frac{1}{t} e^{(\sigma - 1)t} \left((\sigma - 1 - \frac{1}{t}) \frac{\partial^{k}}{\partial u^{k}} (\phi(ue^{-t})) + \frac{\partial}{\partial t} \frac{\partial^{k}}{\partial u^{k}} (\phi(ue^{-t})) \right).$$

Also $\phi(ue^{-t}) = 0$ provided that $ae^t \le u \le be^t$ for some $0 < a < b < \infty$. Hence if u > 1/m then there exist $t_0 < -\delta$ such that

$$\frac{\partial}{\partial t} \left(\frac{1}{t} e^{(\sigma - 1)t} \frac{\partial^k}{\partial u^k} (\phi(ue^{-t})) \right) = 0 \quad \text{for } t \le t_0.$$

Then

$$\left| \int_{-\infty}^{-\delta} \cos(Rt) \frac{\partial}{\partial t} \left(\frac{1}{t} e^{(\sigma - 1)t} \frac{\partial^k}{\partial u^k} (\phi(ue^{-t})) \right) dt \right| \le M_1$$

for every u > /m and for a certain $M_1 > 0$.

Thus we can conclude that $J_{1,R}(u) \longrightarrow 0$ as $R \longrightarrow \infty$ uniformly in u > 1/m. On the other hand, since

$$\int_{-\infty}^{0} \frac{\sin z}{z} \, dz$$

is convergent and $\phi \in D(I)$, it follows that $\lim_{R\to\infty} J_{2,R}(u) = 0$, uniformly in u > 1/m.

By proceeding in a similar way we can also prove that

$$\lim_{R \to \infty} \int_{\delta}^{\infty} \left(e^{(\sigma - 1)t} \frac{\partial^{k}}{\partial u^{k}} (\phi(ue^{-t})) - \frac{\partial^{k}}{\partial u^{k}} (\phi(u)) \right) \frac{\sin(Rt)}{t} dt \longrightarrow 0$$

as $R \longrightarrow \infty$, uniformly in u > 1/m, provided that $\sigma < 1$.

Therefore the desired result is established. \square

As a consequence of the three previous Lemmas we can now prove the following inversion formula.

Theorem 1

Let $f \in \mathcal{A}'$, $\phi \in D(I)$, $0 < \nu < 1/n$ and $\sigma < (n-1)\nu + 1/n - 1$. Then

$$\left\langle \lim_{R \to \infty} \int_{\sigma - iR}^{\sigma + iR} \frac{1}{K(s)} y^{-s} \int_0^\infty x^{-s} F(x) dx \, ds, \phi(y) \right\rangle = \left\langle f(t), \phi(t) \right\rangle,$$

where

$$F(x) = (\mathcal{L}_{\nu}^{(n)} f)(x), \quad \text{for } x > 0,$$

and

$$K(s) = (2\pi)^{(n-1)/2} n^{-n\nu - (1/2)} \frac{\Gamma(1+n\nu-s)\Gamma((1-s)/n))}{\Gamma(\nu+1-(s/n))}.$$

Proof. Let $f \in \mathcal{A}'$ and denote $F(x) = \langle f(t), \mathcal{L}_{\nu}^{(n)}(xt) \rangle$, for x > 0. It can be easily seen that the function

$$\varphi_R(y) = \frac{1}{2\pi i} \int_{\sigma - iR}^{\sigma + iR} \frac{1}{K(s)} y^{-s} \int_0^\infty x^{-s} F(x) dx ds$$

is continuous for y > 0, for every R > 0. Hence $\varphi_R(y)$ defines a regular distribution in D'(I) being

$$\left\langle \varphi_R(y), \phi(y) \right\rangle = \frac{1}{2\pi i} \int_0^\infty \phi(y) \int_{\sigma - iR}^{\sigma + iR} \frac{1}{K(s)} y^{-s} \int_0^\infty x^{-s} F(x) \, dx \, ds \, dy,$$

for $\phi \in D(I)$.

By applying Fubini's theorem we can interchange the order of integration and we get

$$\langle \varphi_R(y), \phi(y) \rangle$$

$$= \frac{1}{2\pi i} \int_{\sigma - iR}^{\sigma + iR} \frac{1}{K(s)} y^{-s} \left\{ \int_0^\infty x^{-s} \langle f(t), \mathcal{L}_{\nu}^{(n)}(xt) \rangle dx \right\} \int_0^\infty \phi(y) y^{-s} dy ds.$$

By invoking now Lemma 1, it follows that

$$\left\langle \varphi_{R}(y), \phi(y) \right\rangle = \frac{1}{2\pi i} \int_{\sigma - iR}^{\sigma + iR} \frac{1}{K(s)} \left\langle f(t), t^{s-1} \int_{0}^{\infty} u^{-s} \mathcal{L}_{\nu}^{(n)}(u) \, du \right\rangle \int_{0}^{\infty} \phi(y) \, y^{-s} \, dy \, ds,$$

and accordingly to (6),

$$\langle \varphi_R(y), \phi(y) \rangle = \frac{1}{2\pi i} \int_{\sigma - iR}^{\sigma + iR} \langle f(t), t^{s-1} \rangle \int_0^\infty \phi(y) y^{-s} dy ds.$$

Lemma 2 leads to

$$\langle \varphi_R(y), \phi(y) \rangle = \left\langle f(t), \frac{1}{2\pi i} \int_{\sigma - iR}^{\sigma + iR} t^{s-1} \int_0^\infty \phi(y) y^{-s} dy ds \right\rangle.$$

Finally, by interchanging again the order of integration and by using Lemma 3 we can establish

$$\left\langle \varphi_R(y), \phi(y) \right\rangle = \left\langle f(t), \frac{1}{\pi} \int_0^\infty \phi(y) \left(\frac{u}{y} \right)^\sigma \frac{\sin(R \log(u/y))}{u \log(u/y)} \, dy \right\rangle \longrightarrow \left\langle f(t), \phi(t) \right\rangle,$$

as $R \longrightarrow \infty$. Thus our theorem is proved. \square

From Theorem 1 the following uniqueness theorem can be immediately proved:

Theorem 2

Let f and g be in \mathcal{A}' . If $(\mathcal{L}_{\nu}^{(n)}f)(x) = (\mathcal{L}_{\nu}^{(n)}g)(x)$, for x > 0, then f = g in the sense of equality in D'(I), provided that $0 < \nu < 1/n$.

Proof. It is sufficient to see that for every $\phi \in D(I)$

$$\langle f(t) - g(t), \phi(t) \rangle = \left\langle \lim_{R \to \infty} \frac{1}{2\pi i} \int_{\sigma - iR}^{\sigma + iR} \frac{1}{K(s)} y^{-s} \right.$$

$$\times \int_0^\infty x^{-s} \left\{ (\mathcal{L}_{\nu}^{(n)} f)(x) - (\mathcal{L}_{\nu}^{(n)} g)(x) \right\} dx \, ds, \phi(y) \right\rangle$$

$$= 0$$

where σ and K(s) are as in Theorem 1. \square

4. The generalized $\mathcal{L}_{\nu}^{(n)}$ transform of E'(I)

As it was mentioned in Section 2, \mathcal{A} is contained in E(I) and the topology of \mathcal{A} is stronger than the one induced in it by E(I). Hence, if $f \in E(I)$, then the restriction of f to \mathcal{A} is also in \mathcal{A}' and we can define the generalized $\mathcal{L}_{\nu}^{(n)}$ transform $\mathcal{L}_{\nu}^{(n)}f$ of f by

$$(\mathcal{L}_{\nu}^{(n)}f)(x) = \langle f(t), \lambda_{\nu}^{(n)}(xt) \rangle, \quad \text{for } x > 0,$$

with $\nu > -1 + 1/n$ and $n \in \mathbb{N}$.

By proceeding as in Section 3 we can establish the following properties for the generalized $\mathcal{L}_{\nu}^{(n)}$ transformation in E'(I). Notice that now we remove some restrictions for the parameter ν .

Proposition 6

Let $f \in E'(I)$. If $F(x) = (\mathcal{L}_{\nu}^{(n)} f)(x)$ for x > 0, then F(x) is infinitely differentiable on x > 0 and

$$\frac{d^r}{dx^r} F(x) = \left\langle f(t), \frac{\partial^r}{\partial x^r} \lambda_{\nu}^{(n)}(xt) \right\rangle,\,$$

for x > 0 and $r \in \mathbb{N}$.

Proposition 7

If $f \in E'(I)$ and $F(x) = (\mathcal{L}_{\nu}^{(n)} f)(x)$, for x > 0, then there exist two positive numbers M and a such that

$$|F(x)| \le Me^{-ax}, \quad \text{for } x > 0,$$

provided that $\nu > 0$.

Proposition 8

Let P be a polynomial. If $f \in E'(I)$ then

$$\left(\mathcal{L}_{\nu}^{(n)}P(B_{\nu,n}^*)f\right)(x) = P\left((-x)^n\right)\left(\mathcal{L}_{\nu}^{(n)}f\right)(x), \quad \text{for } x > 0.$$

Theorem 3

Let $f \in E'(I)$, $\phi \in D(I)$, $\nu > 0$ and $\sigma > 0$. Then

$$\lim_{R \to \infty} \left\langle \frac{1}{2\pi i} \int_{\sigma - iR}^{\sigma + iR} \frac{1}{K(s)} y^{-s} \int_0^\infty x^{-s} F(x) dx ds, \phi(y) \right\rangle = \left\langle f(t), \phi(t) \right\rangle,$$

where $F(x) = (\mathcal{L}_{\nu}^{(n)} f)(x), x > 0$ and K(s) is defined as in Theorem 1.

Theorem 4

Let f and g be in E'(I) and $\nu > 0$. If $(\mathcal{L}_{\nu}^{(n)}f)(x) = (\mathcal{L}_{\nu}^{(n)}g)(x)$, for x > 0, then f = g.

In a previous paper [1] we establish a real inversion of the formula for the classical $\mathcal{L}_{\nu}^{(n)}$ transformation as follows.

Theorem 5

Let $0 < \nu < 1/n$, and f(t), for $0 < t < \infty$, a real or complex function satisfying

i)
$$f(t) \in L_1([R^{-1}, R])$$
, for every $R > 1$,

ii)
$$f(t)e^{-ct} \in L_1(1,\infty)$$
, for some $c>0$,

iii)
$$f(t)t^r \in L_1(0,1)$$
, for some $r > 1/n + (n-1)\nu - 2$, and

iv)

$$\int_{t}^{s} |f_{y}(u) - f_{y}(t)| du = O(|s - t|), \quad \text{as } t \longrightarrow s,$$

where

$$f_y(u) = \left| u^{(n-1)\nu + (1/n)-1} f(u) - y^{(n-1)\nu + (1/n)-1} f(y) \right|, \quad \text{for } y > 0.$$

Then

$$\lim_{k \to \infty} A_{\nu,n,k} F\left(\frac{nk}{x}\right) = f(x), \quad \text{for } x > 0$$

where $F(x) = \mathcal{L}_{\nu}^{(n)}\{f\}(x)$ and

$$A_{\nu,n,k} = \frac{n^{n\nu+(1/2)}(nk)^{2-(n-1)\nu-(1/n)} \Gamma\left(k+\frac{\nu+1}{n}-\frac{1}{n^2}+1\right)}{(2\pi)^{(n-1)/2} \Gamma(nk+2+\nu-\frac{1}{n}) \Gamma\left(k-(\frac{n-1}{n})\nu-\frac{1}{n^2}+\frac{2}{n}\right)} x^{-nk-1} A_{\nu,n}^k,$$

being

$$A_{\nu,n} = x^{1-n\nu} \left(x^2 \frac{d}{dx} \right)^{n-1} x^{n\nu+1} \frac{d}{dx}.$$

We now prove a distributional version of the above inversion formula.

Theorem 6

Let $f \in E'(I)$ and $\nu > -1+1/n$. If F(x) denotes the generalized $\mathcal{L}_{\nu}^{(n)}$ transform of f then

$$\lim_{k \to \infty} \left\langle A_{\nu,n,k} F\left(\frac{nk}{x}\right), \phi(x) \right\rangle = \left\langle (f(t), \phi(t)) \right\rangle,$$

for $\phi \in D(I)$, where $A_{\nu,n,k}$ is defined as in Theorem 5.

Proof. Let $f \in E'(I)$ and denote $F(x) = \langle f(t), \lambda_{\nu}^{(n)}(xt) \rangle$, for x > 0. By virtue of Proposition 3 and by (5) we can write

$$A_{\nu,n,k}F\left(\frac{nk}{x}\right) = M_{\nu,n,k}x^{-1-nk}\left\langle \frac{1}{t}f(t), t^{nk+1}\lambda_{\nu}^{(n)}\left(\frac{nkt}{x}\right)\right\rangle$$

where

$$M_{\nu,n,k} = \frac{n^{n\nu+(1/2)}(nk)^{nk+2-(n-1)\nu-(1/n)}\Gamma(k+\frac{\nu+1}{n}-\frac{1}{n^2}+1)}{(2\pi)^{(n-1)/2}\Gamma(nk+2+\nu-\frac{1}{n})\Gamma(k-(\frac{n-1}{n})\nu-\frac{1}{n^2}+\frac{2}{n})}$$

for each $k \in \mathbb{N}$.

Also $A_{\nu,n,k}F(nk/x)$ defines a regular distribution in D'(I) by

$$\left\langle A_{\nu,n,k}F\left(\frac{nk}{x}\right),\phi(x)\right\rangle = \int_0^\infty A_{\nu,n,k}F\left(\frac{nk}{x}\right)\phi(x)\,dx, \qquad \text{for } \phi\in D(I).$$

Moreover,

$$\left\langle A_{\nu,n,k} F\left(\frac{nk}{x}\right), \phi(x) \right\rangle = \left\langle \frac{1}{t} f(t), M_{\nu,n,k} t^{nk+1} \int_0^\infty x^{-1-nk} \lambda_{\nu}^{(n)} \left(\frac{nky}{x}\right) \phi(x) dx \right\rangle \tag{13}$$

for every $\phi \in D(I)$.

In effect, let $\phi \in D(I)$. We choose $0 < a < b < \infty$ such that $\phi(x) = 0$, for every $x \in [a,b]$. If $\{x_{m,l}\}_{m=0}^{l}$ denotes a partition of [a,b] being $d_{l} = x_{m,l} - x_{m,l-1}$, $m = 1, 2, \ldots, l$, then we get

$$\int_{0}^{\infty} A_{\nu,n,k} F\left(\frac{nk}{x}\right) \phi(x) dx =$$

$$= \lim_{l \to \infty} d_{l} \sum_{m=0}^{l} A_{\nu,n,k} F\left(\frac{nk}{x_{m,l}}\right) \phi(x_{m,l})$$

$$= \lim_{l \to \infty} \left\langle \frac{1}{t} f(t), t^{nk+1} M_{\nu,n,k} d_{l} \sum_{m=0}^{l} x_{m,l}^{-nk-1} \lambda_{\nu}^{(n)} \left(\frac{nkt}{x_{m,l}}\right) \phi(x_{m,l}) \right\rangle$$

Hence we must show that

$$\lim_{l\to\infty} d_l \sum_{m=0}^l x_{m,l}^{-nk-1} \lambda_{\nu}^{(n)} \left(\frac{nkt}{x_{m,l}}\right) \phi(x_{m,l}) = \int_a^b x_{-nk-1} \lambda_{\nu}^{(n)} \left(\frac{nkt}{x_{m,l}}\right) \phi(x) dx,$$

in the sense of convergence in E(I).

Let K be a compact subset of $(0, \infty)$ and $r \in \mathbb{N}$. One has

$$\frac{d^r}{dt^r} \left(d_l \sum_{m=0}^l x_{m,l}^{-nk-1} \lambda_{\nu}^{(n)} \left(\frac{nkt}{x_{m,l}} \right) \phi(x_{m,l}) - \int_a^b x_{-nk-1} \lambda_{\nu}^{(n)} \left(\frac{nkt}{x} \right) \phi(x) dx \right) \\
= d_l \sum_{m=0}^l x_{m,l}^{-nk-1} \frac{\partial^r}{\partial t^r} \left(\lambda_{\nu}^{(n)} \left(\frac{nkt}{x_{m,l}} \right) \right) \phi(x_{m,l}) \\
- \int_a^b x_{-nk-1} \frac{\partial^r}{\partial t^r} \left(\lambda_{\nu}^{(n)} \left(\frac{nkt}{x} \right) \right) \phi(x) dx.$$

Hence, since the function

$$x_{-nk-1} \frac{\partial^r}{\partial t^r} \left(\lambda_{\nu}^{(n)} \left(\frac{nkt}{x} \right) \right) \phi(x)$$

is uniformly continuous for $(x,y) \in [a,b] \times K$, then

$$\lim_{l \to \infty} d_l \sum_{m=0}^{l} x_{m,l}^{-nk-1} \frac{\partial^r}{\partial t^r} \left(\lambda_{\nu}^{(n)} \left(\frac{nkt}{x_{m,l}} \right) \right) \phi(x_{m,l})$$

$$= \int_a^b x_{-nk-1} \frac{\partial^r}{\partial t^r} \left(\lambda_{\nu}^{(n)} \left(\frac{nkt}{x} \right) \right) \phi(x) dx$$

uniformly in $x \in K$. Thus (13) is proved.

On the other hand by making single changes of variables we can write

$$\int_0^\infty A_{\nu,n,k} F\left(\frac{nk}{x}\right) \phi(x) dx = \left\langle g(t), M_{\nu,n,k} t^{-nk-1} \int_0^\infty \lambda_{\nu}^{(n)} \left(\frac{nkx}{t}\right) \psi(x) x^{nk} dx \right\rangle,$$

where g(t) = (1/t)f(t) and $\psi(x) = (1/x)f(1/x)$.

To complete the proof we have to show that

$$\lim_{k \to \infty} M_{\nu,n,k} t^{-nk-1} \int_0^\infty \lambda_{\nu}^{(n)} \left(\frac{nkx}{t} \right) \psi(x) x^{nk} dx = \psi(t), \tag{14}$$

in the sense of convergence in E(I).

By using (6) we derive

$$\begin{split} \frac{d^{r}}{dt^{r}} \left(M_{\nu,n,k} t^{-nk-1} \int_{0}^{\infty} \lambda_{\nu}^{(n)} \left(\frac{nkx}{t} \right) \psi(x) x^{nk} dx - \psi(t) \right) \\ &= M_{\nu,n,k} t^{-nk-1} \int_{0}^{\infty} x^{nk-(n-1)\nu-(1/n)+1} \lambda_{\nu}^{(n)} \left(\frac{nkx}{t} \right) \\ &\times \left(x^{(n-1)\nu+(1/n)-1} \left(\frac{\dot{x}}{t} \right)^{r} \frac{d^{r}}{dx^{r}} (\psi(x)) - t^{(n-1)\nu+(1/n)-1} \frac{d^{r}}{dt^{r}} (\psi(t)) \right) dx \end{split}$$

for every $r \in \mathbb{N}$.

Hence, according to (3), if K is a compact subset of $(0, \infty)$, then there exists a positive constant M > 0 such that

$$\left| \frac{d^{r}}{dt^{r}} \left(M_{\nu,n,k} t^{-nk-1} \int_{0}^{\infty} \lambda_{\nu}^{(n)} \left(\frac{nkx}{t} \right) \psi(x) x^{nk} dx - \psi(t) \right) \right|$$

$$\leq M \frac{1}{(nk)} \left(\frac{nk}{t} \right)^{nk+1} \int_{0}^{\infty} e^{-nkx/t} x^{nk} \left| x^{(n-1)\nu + (1/n) - 1} \left(\frac{x}{t} \right)^{r} \frac{d^{r}}{dx^{r}} (\phi(x)) \right|$$

$$- t^{(n-1)\nu + (1/n) - 1} \frac{d^{r}}{dx^{r}} (\psi(t)) \left| dx \right|$$

for every $t \in K$.

We divide the last integral as follows

$$M \frac{1}{(nk)!} \left(\frac{nk}{t}\right)^{nk+1} \int_0^\infty = M \frac{1}{(nk)!} \left(\frac{nk}{t}\right)^{nk+1} \left\{ \int_0^{t(1-\eta)} + \int_{t(1-\eta)}^{t(1+\eta)} + \int_{t(1+\eta)}^\infty \right\}$$
$$= I_1(t,k) + I_2(t,k) + I_3(t,k)$$

with $\eta > 0$.

For every $t \in K$,

$$\begin{aligned} \left| I_{1}(t,k) \right| &\leq M \frac{1}{(kn)} \left(\frac{nk}{t} \right)^{nk+1} \left\{ \int_{0}^{t(1-\eta)} e^{-nkx/t} x^{nk+(n-1)\nu+(1/n)-1} \left| \frac{d^{r}}{dx^{r}} (\psi(x)) \right| dx \right. \\ &+ \int_{0}^{t(1-\eta)} e^{-nkx/t} x^{nk} dx \left| t^{(n-1)\nu+(1/n)-1} \frac{d^{r}}{dt^{r}} (\psi(t)) \right| \right\} \\ &\leq M_{1} \frac{(nk)^{nk+1}}{(nk)!} \int_{0}^{1-\eta} e^{-nku} u^{nk} du, \end{aligned}$$

for some $M_1 > 0$. By invoking [15, (17)] we obtain

$$I_1(t,k) \longrightarrow 0$$
 as $k \longrightarrow \infty$, uniformly in $t \in K$. (15)

By proceeding in a similar way we can prove that

$$I_3(t,k) \longrightarrow 0$$
 as $k \longrightarrow \infty$, uniformly in $t \in K$. (16)

Finally we analyze $I_2(t,k)$. From the mean value Theorem we deduce

$$\left| x^{(n-1)\nu + (1/n) - 1} \left(\frac{x}{t} \right)^r \frac{d^r}{dx^r} (\psi(x)) - t^{(n-1)\nu + (1/n) - 1} \frac{d^r}{dt^r} (\psi(t)) \right| \le M_2 |t - x|$$

for $x, t \in (0, \infty)$ and M_2 being a suitable positive constant.

Hence, by using [15, (16)], if $x \in (t(1-\eta), t(1+\eta))$

$$|I_2(t,k)| \le M_3 \eta \frac{(nk)^{nk+1}}{(nk)!} \int_{1-n}^{1+\eta} e^{-nku} u^{nk} du \le M_4 \eta, \quad \text{for every } k \in \mathbb{N}, \quad (17)$$

for certain $M_i > 0$, i = 3, 4.

Result (14) follows from (15)-(17).

Therefore we can conclude that

$$\lim_{k \to \infty} \left\langle A_{\nu,n,k} F\left(\frac{nk}{x}\right), \phi(x) \right\rangle = \left\langle g(t), \psi(t) \right\rangle = \left\langle f(t), \phi(t) \right\rangle, \quad \text{for } \phi \in D(I). \ \Box$$

From Theorem 5 it is inmediately deduced the following uniqueness theorem

Theorem 6

Let f and g be in E'(I). If $(\mathcal{L}_{\nu}^{(n)}f)(x) = (\mathcal{L}_{\nu}^{(n)}g)(x)$, for x > 0, then f = g, provided that $\nu > -1 + 1/n$.

References

- 1. J. A. Barrios and J. J. Betancor, Fórmulas de inversión reales para la transformación integral de Kratzel, in Actas de las XIV Jornadas Hispano Lusas de Matemáticas, La Laguna, 1989.
- 2. J. J. Betancor and J. A. Barrios, Integrability theorems for a generalized Laplace transform, *Extracta Math.* 4 (1989), 96–98.
- 3. L. S. Dube and J. N. Pandey, On the Hankel tranform of distributions, *Tohoku Math. J.* 27 (1975), 337–354.
- 4. V. G. Joshi and R. K. Saxena, Complex inversion and uniqueness theorem for the generalized H-transform, *Indian J. Pure and Appl. Math.* 14 (1983), 322–329.
- 5. E. L. Koh and A. H. Zemanian, The complex Hankel and I-transformations of generalized functions, SIAM J. Appl. Math. 16 (1968), 945-957.
- 6. E. Kratzel, Eine verallgemeinerung der Laplace und Meijer tranformation, Wiss. Z. Univ. Jena Math. Naturw. Reihe 5 (1965), 369-381.

- 7. E. Kratzel, Bemerkungen zur Meijer Tranformationund Anwendungen, *Math. Nachr.* **30** (1965), 327–334.
- 8. E. Kratzel, Differentiationssatze der \mathcal{L} -transformation und differential gleichungen nach dem operator $d/dt \, t^{(1/n)-\nu} (t^{1-(1/n)} d/dt)^{n-1} t^{\nu+1-(1/n)}$, Math. Nachr. 8 (1967), 105-114.
- 9. E. Kratzel, Die faltung für L-transformation, Wiss. Z. Univ. Jena Math. Naturw. Reihe 5 (1965), 383-390.
- 10. E. Kratzel, Integral transformations of Bessel type, Generalized functions and operational calculus, *Varma* (1975), 148–155.
- 11. S. P. Malgoden, An inversion formula for the distributional H-transformation, *Math. Ann.* 258 (1982), 409–417.
- 12. G. L. N. Rao and L. Debnath, A generalized Meijir transformation, *Internat. J. Math. and Math. Sci.* 8 (1985), 359-365.
- 13. L. Schwartz, Théorie des distributions, I and II, Hermann, Paris, 1957 and 1959.
- 14. E. C. Titchmarsh, *Introduction to the Theory of Fourier Integrals*, Oxford University Press, London, 1959.
- 15. A. H. Zemanian, Inversion formulas for the distributional Laplace transformation, *J. SIAM Appl. Math.* 14 (1966), 159–166.
- 16. A. H. Zemanian, A distributional K-transformation, *SIAM J. Appl. Math.* 14 (1966), 1350–1365 and 15 (1967), 765.
- 17. A. H. Zemanian, Distributional Theory and Transform Analysis, McGraw Hill, New York, 1965.
- 18. A. H. Zemanian, Generalized Integral Transformations, Interscience, New York, 1968.