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ABSTRACT

In this paper we study an integral transformation introduced by E. Kratzel in
spaces of distributions. This transformation is a generalization of the Laplace
transform. We employ the usually called kernel method. Analyticity, bound-
edness, and inversion theorems are established for the generalized transfor-
mation.

1. Introduction

E. Kratzel [6] introduced a generalization of the well known Laplace transformation
by the integral

F(z) = LM {f}(z) = /00o A (zt)f(t)dt,  forz >0, (1)

where

)\E}n)(z) — (271-)(11—1)/2 (a;/n)nur T f(l/n)) /loo(tn _ 1)u—(1/n)e—zt dt,

(

forz>0,vr>-141/n and n=1,2,....
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The £ transformation reduces to the Laplace transformation when n = 1.
Moreover the K, transformation [16] is obtained from £ by taking n = 2.

E. Kratzel studied the main propierties of the function /\S,n)(a:) and the £{”
transformation in a series of papers [6-10]. Later G. L. N. Rao and L. Debnath
[12] investigated the integral transformation (1) in a certain space of distributions.
More recently, the authors have completed in some aspects the study of E. Kratzel
and established real inversion formulas [1] and integrability theorems [2] for the ci
transformation.

In this paper we define the Kratzel integral transforms of distributions by using
the known kernel method. We firstly introduce a Fréchet space of functions denoted
by A and constituted by the infinitely differentiable functions ¢(t), 0 < ¢ < oo, such
that

sup
1/m<t<oo

< 00, for every m,k € N.

The generalized EE,") transform Ef,”)f of f € A’ is defined in section 3 by
(£ @) = (F,ND @), fora >0,

We establish analyticity, boundedness and inversion theorems for the generalized
£ transformations.

In Section 4 we define the generalized L’E,") transformation of distributions with
compact support. A new inversion formula for Eg,") is obtained.

We now list some properties of the function AY”(z) due to E. Kratzel [6] that
will be useful in the sequel.

The behaviour of (dk/dzk)(AE,")(z)), k € N, near the origin and the infinity is
as follows:

k
@) =06, ass — 0%, forw >0, ?

d*
:1;:-1;(/\5,”)(3;)) = O(z(”_l)"ﬂl/")_le‘r), as ¢ — oo, forv>-1+41/n. (3)
From (2) and (3) it deduces that there exists M > 0 for which

dk
T 0| < M (15 R)ar eI (4

for £ > 0 and with 0 < v < 1/n.
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Moreover, /\g,")(z) satisfies the differential equation

(Bun = (-1)")y =0 (5)
where
dn-1 d
— anv—1 1-nv_7
Byn=2 dzn—1°" dz’

If the Mellin integral transformation is defined by

M) = [ " o f(a) do

then

(s + nv)I'(s/n)
L((s/n)+v+1~(1/n))’

M{ND(2)}(s) = (2m)(m=D/2p=n0=0/2 (6)
for Rs > max{0, —nv}.
Thoughout this paper, I denotes the real interval 0 < z < co. D(I), E(I), D'(I)

and E'(I) denote well known spaces of functions and distributions encountered in
[13] and [18].

2. The function space A and its dual

We introduce the function space A consisting of all infinitely differentiable functions
¢(t), 0 < t < 0o, such that

Ymx($) = sup
1/m<t<oo

k
% ¢(t)| < 00, for every m,k € N.

A is endowed with the weak topology generated by the family of seminorms
{¥mk}mren. Thus A is a Fréchet space. Furthermore, as it is easy to see,
D(I)C A C E(I) and the inclusions are continuous.

Proposition 1

The operator B, , defines a continuous linear mapping from A into itself.
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Proof. It is sufficient to note that for every m,k € N there exists M > 0 such that

Y k(Bun®) < MY Ympsi(¢),  foreach ¢ € A. O
J=1

The dual space of A is denoted as usual by A’. A is equipped with the weak
topology. '

*
v,n

We define the generalized operator B}, on A’ as the adjoint of the classical

operator B, ,. More specifically,
(Bynfi¢) = (f,Bund), for fe A'and ¢ € A

Hence, by virtue of Proposition 1, B}, is a continuous linear mapping from A’

into itself.

The following proposition allows to define some members of A’.

Proposition 2

Let f(t) be a locally integrable function on (0,00). If there exists a > 0 such
that f(t) =0, for t < a, and faoo |f(t)'dt < 00, then F defines a regular generalized
function in A’ through

(f,¢) = /0 f(t)e(t) dt, for every ¢ € A.

Proof. The linearity of the mapping is clear. Moreover F is a continuous mapping

because
[o.¢]

l(f,¢>|s'/ F@ldt sup 18(1)],  for ¢ € A,

a 1/m<t<oo

where M € Nand 1/m < a. O
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3. The generalized £{™ transformation in A'.

Let v > -1+ 1/n and n € N. For f € A, define its generalized Ef,") transform by
the relation

F(z) = (£0f)(@) = (70, X7 (@D), = >0. ™

Note that (7) is well defined and if follows from the asymptotic behaviour easily
that AL (xt) is in A for fixed z > 0. Moreover if f is a function satisfying the
requlrements in Proposition 2, the generalized [,,, ") transform of F reduces to the
classical E,, transform of f.

We now establish several properties of the generalized £ transformation.

Proposition 3

Let f € A'. If F(z) denotes the generalized £ transform of f then F(z) is
infinitely differentiable on (0,00) and

dT aT‘
i P = (0,507

>, forz >0 and r € N.

Proof. Let h be an arbitrary increment in z > 0. Without any loss of generality
assume 0 < |h| < z/2.
As it is easy to see

HEd PO - (fm (000G +m) - AP @) ®)

We will prove that

on(@0) = 3 Oz + 1) = X(12) - = (1) — 0, as h— 0,

in the sense of convergence in A. Our result for £ = 1 will then follow from (8) and
the continuity of f(t).
For every r € N, we can write

8t7‘ ¢h (z,t) =7 /I+h/ (at"r (")(ty))) dydu
z+h
= E/z ' /z 3_y2( Td(ty)r< )(ty))) dy du
%/:M /Iu (r(" )y d(‘: 5 (/\E,n)(ty))

dr+1 dr+2
r—=1, * (n) rg2_ %00 (n)
+ 2ry td(ty)r'*‘l (z\,, (ty)) +y"t RS (,\V (ty)))dydu.
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By virtue of (3) for each m € N there exists a positive constant M such that
drti

R (/\f/") (ty))

fort>1/m,y>z/2and j=0,1,2.
Hence

T z+h ru
¢h(x,t)‘ < Mlt(n—l)u-i-(l/n)—le—t:c/? %/ / (yr—Z + yr—lt + yrt2) dy du

otr
S M2e—t27/4

for every t > 1/m and 0 < |h| < z/2. Here M; < 0, for ¢ = 1,2.
Therefore, if € > 0 then there exists o > 1/m such that

T
z,t
otr ¢’h(7’7 )
Moreover, for every t € (1/m,ty) one has

ar 1 (L‘+h u 9 1
ool mft [ [0 o o)

M3 being a positive constant. Hence (07/0t")¢p(z,h) — 0, as h — 0, uniformly
inte(1/m,t). '

Therefore we conclude that v, ., (¢n(z,t)) — 0, as h — 0.

By proceeding inductively the proof can be completed. O

< M(yt)(n—l)u+(1/n)—1e—tr/Z,

<€, fort>t0and0<|h|<§.

< Mj

¢h(x’t)

Propositi.on 4
Let 0 < v < 1/n. If F(z) denotes the generalized £ transform of f € A then
|F(z)] < P(z)g(nDv+A/n)=1 g=z/r x>0,

for a certain polynomial P and some r € N.

Proof. According to [18, Theorem 1.8-1] there exists 7 € N and m > 0 for which
|F(z)| <M max ik (/\E,”)(xt)) , for every z > 0.
1<UZr
Therefore, from (4) one deduces
dk
K2 [a\(n)
MFTENY: (¥ (“)M

< M; max  sup ‘a;k 1+ (2t)7%) (xt)(m~DvFA/m)-1 -t
0<k<T 1/r<it<oo ( ( ) (at)
< P(z)w("'_l)”+(l/”)"le_i/r, for = > 0,

where My > 0 and P(z) is a suitable polynomial. O

|F(z)| < M max sup
PSEST 1 /r<t<oo
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In the following proposition we show an operatlonal formula for the generalized
E( ™) transformation involving the operator B} .

Proposition 5
Let P be a polynomial. If f € A’ then

(6P (B;,) £) @) = P((-2)") (£57F) (2),  fora > 0.
Proof. By virtue of (5) and according to Proposition 1, we can write

(P (B;,) £) (=) = (P (B )f(t A (zt))
(£(1), P (B},) XV (at))
(f(t) P(( X)”)/\(”)(-’Et))

P((=z)") ( (")f) (z), forz > 0.0

Il

Il

Il

We now establish an inversion theorem for the generalized £ transformation.
To prove the inversion formula we use a procedure similar to the one employed
by S. P. Malgonde and R. K. Saxena [11]. We need previously to show some results.

Lemma 1
Let fe A" and 0 < v < 1/n. Then

/Ooo (1), 207(21)) da <f(t)/ "f\(un)(wt)dw>

provided that s < (n — 1)y + 1/n — 1.

Proof. Let N € N. We will see firstly that

N N
| a0 at) do = <f(t>, / Rl da:>. (9)
0 0

If {z-.}._, is a partition of the interval [0, N] being d; = ; — z,_1, for every
r=1,2,...,1, we can write

l

N
[ = O e0) e = tim 3 277502 )

r=0
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and ‘
dIZa: f(t), /\(")(zrlt < dlz.’l:_s/\(n zrt >
Hence (9) will be proved when we derive

¢ N
lim d, Z 2 AN (z,t) = / 27 A (2t) dx (10)
l—oo —o ! 0

in the sense of convergence in A.
For every k € N, according to (4), we get

o l (n) N (m)
d T A (Tt / z AV (zt)dz
atk lrz—:o ( l ) o ( )
Z pork| d* N Rs+k (n)
<d z" s+ +/ T~ stk __,\Vn rt
’ 0 d(zt)* (=)

< M(¢7F 4 1)t t/m)- 1<f’ DDA CI I
r=0

k
) (2, 18) d

v d.’l?
QJT lt)

N
"|‘/ z—?Rs+(n—1)u+(l/n)—l(mk + l)dz)
0

Therefore
o* : (n) AR
- . s TS\ —
Jim = d,;m,_jm (aT,,t)—/O =AM (zt)dz p = 0.
Then, since the function

dlc

postk (n) (g . . an
g(t,z) = { d(:l?t)k (/\u ( t)) , ift € [a,b] and z € (0, N]
0,

ift € [a,b] and z =0,

with 0 < @ < b < o0, is uniformly continuous on (¢,z) € [a,b] x [0, N], if ¢ > 0 and
m € N there exists [y € N such that

ok ! N
Bk {d,Zx;:f/\E,”)(mT,,t) - / 2™ A (zt)dz
0 .

r=0

sup
1/m<t<oo

<E¢
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for I > lp. Thus (10) is shown.
On the other hand, by invoking again (4), for every m,k € N,

dk (n)
—_— z AV (zt)dz
diF / (zt)

< Mt(n—l)u+(1/n)-1(1 + t-—k) /oo z-&s+(n—1)u+(l/n)—l (:Ek + 1)e—zt dz
N

and hence

k [eo]
%/ 2= MM (zt)dz — 0, as N — oo, (11)
N

uniformly in t € (1/m, 00).
Moreover, by virtue of Proposition 4, for certain P polynomial and r € N

7 a0 @) o

N

< /-oo P(z)x_éﬁ.s-i-(n—l)u+(1/n)_1e_z/rdx.
N

Hence
o0

lim z7*(f(t), NV (at)) dz = 0. (12)
N—oo JN

From (9), (11) and (12) we can conclude that
0

/Ow 2=*( 5(t), ) (2t)) dee = <f(t),/ a:‘s/\f,")(zt)d:c> .0

Lemma 2
Let ¢ € D(I) and denote

W) = | "y e(y) dy.

Then
R ‘ R :
/ <f(u),u”+“""‘>w(a+iw)dw=<f(u), / u”+'w-l¢(a+m)dw>
-R

-R

with o < 1 and R > 0.
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is continuous for every u > 0 and ¢ # 0. Moreover

d
il (o— l)t
o e uet) )
Hence the function defined by
H(t,u), ift#0and u>0
G(t,u) { 0 olo- l)t
% (¢(U6 )

is continuous for t € R and u > 0. Furthermore there exists a positive constant M
such that |G(t,u)| < M for every t € [—4,6] and u > 0, because ¢ € D([).
Therefore if € > 0 then

k k
= tim 1 {02 (3ae) - 2 (60}

t=0

, ift=0and u>0

t=0

<e,

6
—1-/ G(t,u)sin(Rt)dt
TJ-s

for some § > 0 and for each R > 0.
Write now

-5 k dk sin
l/ { . l)taauk( $(ue™")) - duk( (u))} (th) 4t = J1.p(w) = J2,p{u),

T J-

being

1 [~ ., 0* _s Sin(Rt)
T = 3 [ dr o (oue) B

oo

and

k RS gin 2
Jo r(u) = l —d—(qb(u)) /_ dz.

T duk o 2

By partial integration in J1 p(u) we get

t=—
Jl,R(U) = %{ elo-1) tOOUk (¢(ue“t)) COSiRt)
-6 B
+ /_oo cos(Rt) gt (1 elo= l)taauk (6(u e—t)))dt}
_ o1 4 (é(u _5))cos(R6)

duF
-6

+ % cos(Rt) 06u<1 (o l)t 0" (d)(ue"t)))
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Since d*/du*(¢(ue?))cos(Rt) is bounded for u € (0,00) and R € R, it can
be easily deduced that the first term of the last sum converges to zero as B — oo
uniformly for v > 0.

Moreover, one has

(G (o)

k k
—le“’ (0 1= D (ue™) + o1 e (Bue™) ).

t

Also ¢(ue~?) = 0 provided that ae* < u < be' for some 0 < a < b < co. Hence
if u > 1/m then there exist tp < —§ such that

0

! (1 (o— 1)t (¢(ue ))) =0 for t < to.

Then
< M,

’/__6cos(Rt)a (1 (o= ”taauﬂ (ue't)))dt

[e o]

for every u > /m and for a certain M; > 0.
Thus we can conclude that J; g(u) — 0 as R — oo uniformly in u > 1/m.

On the other hand, since
0 .
/ sin z iz
o 2

is convergent and ¢ € D(I), it follows that limgr—c J2,rR(2) = 0, uniformly in
u>1/m.
By proceeding in a similar way we can also prove that

. (o1 t o* sin(Rt)
lim ; ( (-1t __ (qS(ue )) - W(d)(u)))_t_-dt — 0

R— o0

as R — oo, uniformly in v > 1/m, provided that o < 1.
Therefore the desired result is established. OO

As a consequence of the three previous Lemmas we can now prove the following
inversion formula.



24 BARRIOS AND BETANCOR

Theorem 1
Let fe A, pe D(I),0<v<1l/nando < (n—1)wv+1/n—1. Then

o+iR 0o
<,%Lmoo | s w‘sF(w)dwds,é(y)>=<f(t),¢(t)),

where

F(z) = (Ef,")f)(z), for z > 0,

and
1+nv—s)T((1- s)/n))

C(s) = (90)(n=1)/2—nv—(1/2) I(
K(s) = (2r) (ot 1-(s/m))

Proof. Let f € A’ and denote F(z) = (f(t),ﬁg,n)(zt)), for z > 0. It can be easily
seen that the function

1 oc+iR 1 0o
L= ——y [ 2 F(x)ded
er(y) omi /;_m K(s)y /0 ¢ °F(z)dzds

is continuous for y > 0, for every R > 0. Hence ¢gr(y) defines a regular distribution
in D'(I) being

. 0 oc+iR o)
(er(y),9(y)) = L/0 $(y) ——I—Ty”/o ¢~ F(z) dz ds dy,

271 o—irn K(s

for ¢ € D(I).
By applying Fubini’s theorem we can interchange the order of integration and
we get

(er(y), 6(v))

1 0‘+‘iR 1

By invoking now Lemma 1, it follows that

(vr(y),6(y))

1 o+iR 1

= — =1 [T msp(m) * s
T Jyoin E(5) <f(t)’t 1/0 vy (u)dU>/0 S(y)y~*dyds,
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and accordingly to (6),

__1_ R s—1 00 -8 s
(or(y), 8(v)) = / (F(), 1) / o(y) y~*dy ds.

2w o—iR

Lemma 2 leads to

o+iR ]
(er(y),9(y)) = <f(t),2—:r—z./_,R t"‘/O ¢(y)y"dyds>.

Finally, by interchanging again the order of integration and by using Lemma 3 we
can establish

(on0).00) = (0. [ o) (%) ZERECID 4y} — (500000

as R — oco. Thus our theorem is proved. O
From Theorem 1 the following uniqueness theorem can be immediately proved:

Theorem 2

Let f and g be in A’. If(ﬁf,n)f)(z) = ([,f,")g)(x), for z > 0, then f = g in the
sense of equality in D'(I), provided that 0 < v < 1/n.

Proof. Tt is sufficient to see that for every ¢ € D(I)

oc+iR
(£(6) - (0),8(8)) = < im o [

R—oo 271
X /Ooo z = {(L5Y f)(z) = (LSVg)(2) }de ds,¢(y)>
=0

where o and K (s) are as in Theorem 1. O
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4. The generalized £{™ transform of E'(I)

As it was mentioned in Section 2, A is contained in E(I) and the topology of A is
stronger than the one induced in it by E(I). Hence, if f € E(I), then the restriction
of f to A is also in A’ and we can define the generalized Ls,n) transform EE,")f of f
by

(L)) = ([, A (at)),  forz >0,

with » > -1+ 1/n and n € N.

By proceedin§ as in Section 3 we can establish the following properties for
the generalized £Y” transformation in E'(I). Notice that now we remove some
restrictions for the parameter v.

Proposition 6
Let f € E'(I). If F(z) = (Es,n)f)('z) for z > 0, then F(z) is infinitely differen-
tiable on x > 0 and p o
= = _Am)(g
e F(a) = (1), 30 X060

forx > 0 and r € N.

Proposition 7 -

If f € E'(I) and F(z) = ([,(y")f)(z), for z > 0, then there exist two positive
numbers M and a such that

|F(z)] < Me™?7, for z > 0,
provided that v > 0.

Proposition 8
Let P be a polynomial. If f € E'(I) then

(E(u")P(Bi,n)f)(w) = P((-z)") (Ef,")f)(a:), forz > 0.

Theorem 3
Let f € E'(I), ¢ € D(I),v >0 and o > 0. Then

) 1 o+iR 1 . o . B
Rlimoo<m | [ F(x)dxds,¢(y)>-<f(t>,¢<t)>,

oc—iR

where F(z) = (Eg,")f)(x), z >0 and K(s) is defined as in Theorem 1.



A Kratzel's integral transformation of distributions 27

Theorem 4
Let f and g be in E'(I) and v > 0. If(Ef,")f)(:c) = (Es,")g)(x), for z > 0, then
f=g

In a prev1ous paper [1] we establish a real inversion of the formula for the
classical £{™ transformation as follows.

Theorem 5
Let 0 < v < 1/n, and f(t), for 0 < t < 00, a real or complex function satisfying

i) f(t) € Ly([R', R)), for every R > 1,

ii) f(t)e=°* € L1(1,0), for some ¢ > 0,

iii) f(t)t" € L1(0,1), for somer > 1/n+ (n — 1)y — 2,
and

iv)

/ 17,(0) = fy@®)]du=0(ls 1), ast—s,
t

where

fylw) = [P () - y DAL ) fory > 0.

Then
hm A,,nkF( ) f(z), forz >0
where F(z) = [,E,n){f}(m) and

nu+(1/2)(nk)2 (n— 1)V—(1/n)r(k+_+_ ;15_*_1) ke 1Ak
@O Tk 1240 - DTG- (5 - & +5)

d\" ! d
— W1-nv 2 7 nv+l 2%
An=2 (:c dz) z Iz

v,n,k =

being

We now prove a distributional version of the above inversion formula.

Theorem 6

Let f € E'(I) andv > —1+1/n. If F(z) denotes the generalized L' transform
of f then

lim <A,,n o (2 ) ,¢(z>> = ((f@), 6(0)»

k— 00

for ¢ € D(I), where A, ,  is defined as in Theorem 5.
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Proof. Let f € E'(I) and denote F(z) = (f(t),/\g,n)(xt)), for z > 0.
By virtue of Proposition 3 and by (5) we can write

Au n, F (77;::) = Mu,n,kz_l_nk <%f(t), tnk+1/\£‘n) (TLTkt) >

where
'rLu+(1/2)(,n]C nk+2—(n-1)v—(1/n) F(k + _I/dn:l _ % + 1)
@r) "7 T(nk+2+v - DT (k- (L) — & + 2)

Mu,n,k =

for each k£ € N.
Also A, , r F(nk/z) defines a regular distribution in D'(I) by

(Aenar () 160)) = [ AvnsF (L) ol)ds,  for 6 € DD,

Moreover,

<A,nkr( ) b(z )> <%f(t),M,,,n,kt"k+1/Ooo:c"l""k/\f,") (2?1) ¢(a;)dx>

(13)
for every ¢ € D(I).

In effect, let ¢ € D(I). We choose 0 < a < b < oo such that ¢(z) = 0, for
every = € [a,b]. If {z, }}._o denotes a partition of [a,b] being dj = Ty | — Tm -1,
m=1,2,...,l, then we get

/OmA,,nkr( )qs(w)

= hm d,ZAunkF<$ >¢($ml)

=0

: n -n n nkt
:1112.10< f(t)t k+1MunkdlZ$ k- 1A( )(:E )¢($m[>

m=0 m,l

Hence we must show that

b
hm d Z e A (nkt ) H(Tm,) = / T k1A (Zkt) #(z)d

m=0 Tm i m,l

in the sense of convergence in E(I).
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Let K be a compact subset of (0,00) and r € N. One has

b
e (d: Zw'”" R (;’{%) $(@m.1) - / Z k-1 A (”kt) ¢(z)dx)
- 4 Z m—nk 107 ( (r) ("_’”)) $(2m)

Tm,l

b r
—/ Tonk-1 (gtT (/\&n) (nkt)) ¢(z) de.

Hence, since the function

. a(?tr (,\(n) <nkt)) 5@

is uniformly continuous for (z,y) € [a,b] x K, then

0 5 (0 (2)) o

Tm,l

b
=/ Tnk-1 gt" (’\E/n) (nkt)> ¢(z) dz

uniformly in 2 € K. Thus (13) is proved.
On the other hand by making single changes of variables we can write

[ AP (%) 01t = (a(0) Mt~ [ 30 (B2 wta)am* ),
0 z 0

where g(2) = (1/t)f(t) and ¢(z) = (1/z)f(1/).

To complete the proof we have to show that

Jim 3,7 [0 (22 (e 2" do = ) (14)

in the sense of convergence in E(I).
By using (6) we derive

dr 0
— (Mu,n,kt_nk—l/ )\gn) (n_kz) ¢(m)xnk dm _ ’Qp(t))
dir o ;
= M, stk /°° gk (n=1)y=(1/n)+1 )(n) (nkm>
0

1
y (x(n—l)u+(1/n)—1 (%)T d‘f; (¥(z)) — tr-Dv+A/m)- ldtT (w(t )))
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for every r € N.

Hence, according to (3), if K is a compact subset of (0,00), then there exists a
positive constant M > 0 such that

dr k
i (st [0 () oyt ot0) ‘
L (nk\™H e k . z\" d’
| == —nkzft, nk| (n=1)v+(1/n)-1 (=
<Man(F) [ ot OF=C0)

dz"
— ¢(n=1)v+(1/n)-1 d’ ( (t)) dz
dz™

for every t € K.
We divide the last integral as follows

1 (nk)nk+1 ) 1 nk nk+1 t(1-mn) t(1+7) oo
wom(F) L () L e L)
(nk)t\ ¢ 0 (nk)!\ t 0 H(1=7) t(14n)

= Il(tvk) + IZ(tak) + I3(tak)

with n > 0.
For every t € K,

L. W (Y A OSSP Py
< —'n T n n— v n
[t 5) M(kn)( ) /0 da:T ¥(2))|dz

H(1—-mn)
N / n —nk:c/t nk dr t(n 1)v+(1/n)-1 d - (’(,[)(t))’ }
0 t

<M (nk)nk+1 /1—7] e—nku unk du

for some My > 0. By invoking [15, (17)] we obtain
Ii(t,k) — 0  as k — oo, uniformly in t € K. (15)
By proceeding in a similar way we can prove that

I(t,k) — 0 as k — oo, uniformly in ¢t € K. (16)
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Finally we analize I,(¢,k). From the mean value Theorem we deduce

n—-1)v n)— z"dr n—1)v "—dr
H(n=1)u(1/n) 1(7) = (¥(a)) - €D (1)) | < My [t - 2]

for z,t € (0,00) and M; being a suitable positive constant.
Hence, by using [15, (16)], if z € (¢(1 — 7),t(1 + 1))

(nk)nk+1 1+
|Iz(t,k)| < Manw/ e ek du < My, for every k € N, (17)
. 1-19

for certain M; > 0, ¢ = 3,4.
Result (14) follows from (15)-(17).
Therefore we can conclude that

i (AuniF (2] ,6(0)) = (6(0,9(0) = (/0. 60),  for 6 € D(1).

k—oo

From Theorem 5 it is inmediately deduced the following uniqueness theorem

Theorem 6

Let f and g be in E'(I). If (LM f)(z) = (£ g)(z), for z > 0, then f = g,
provided that v > —1+ 1/n.
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