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The p-adic differential equation ' = wy in the closed unit disk
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ABSTRACT

Let K be a complete ultrametric algebraically closed field. When D is a set
in K, we denote by H(D) (resp. Hy(D)) the set of the analytic elements
in D (resp. the bounded analytic elements in D). Let B = (by)nen be a
sequence in K such that 1 < |by41| < |b,| and lim, oo |by| = 1 and let

Ap(B) = K\ (UnZ1d(bn,p7))

First we characterize the elements f € N,50Hy(A,(B)) which are
Meromorphic Products [S2] in the form H;’ozl(x — an/z — by). Next, we
translate the results of analytic extension through a T'-filter [S3] into terms of
Meromorphic Products. We then apply that to the extension of a differential
equation y' = wy defined in the disk d(0,1) (|z| < 1) to K \ B; y has an
extension in the form A [[°> ,(z — an/z — b, ) while w has the extension
Yomei((l/z = an —1/z = by)).

As a consequence we can characterize the w € H(d(0,1)) such that
the equation ¥’ = wy has solutions in H(d(0,1)): these w are the series
Yoo ((1/z — an) — (1/z — bs)). When K = C,, such a series may be
equal to a constant A € C,, in d(0,1) if and only if [A| < p~1/P~1,
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Introduction and results

Let (K,|-|) be a complete ultrametric algebraically closed field.
For a € K and r > 0, we denote

d(a,r)={z€K:|z—a| <7},

dla,r")={z €K:|z —a| <1},

and
Cla,r)={z€K:|z—a|=r}.

For a € K and r,s € Ry with 0 < 7 < s, we denote
I'(a,r,s)={z€K:r<|z—a| < s}

Let A be a closed non necessarily bounded set in K and let Ry(A) be the algebra
of the rational functions h with no pole in A, such that |h(z)| has a finite upper
bound in A. The algebra Ry(A) admits the norm || - || 4 of the uniform convergence
on A as a norm of K-algebra and its completion denoted by H,(A) is the Banach
algebra of the bounded analytic elements on A. If A is bounded, then R,(A) is the
set of all the rational functions with no pole in A and H,(A) is the algebra H(A) of
all the analytical elements on A [E;, E,].

If A has a hole T = d(a,p~) and if A’ is the image of A by an inversion of
center a, it is easily seen that H(A) is isometrically isomorphic to H(A' U {a}) [E.].
Therefore, we may apply to the algebras Hy(A) most of the results already known
for the Banach algebras H(D) (with D closed and bounded). If w € Hy(A) we will
denote by £(w) the equation y’' = wy with y € Hy(A).

In all of the following, we will denote by B an injective sequence (b, )nen- in K
such that 1 < |bp41| < |by| for all n and lim |b,| = 1; we will denote

B: {blv-"ybn,"'}a

and for every p €]0, 1[ we will denote

A, (B) =K\ (U d(bn,p-)>

n=1

and denote by F, the pierced decreasing filter of center 0, of diameter 1 [E3].
If F, is a T-filter on A,(B) for some p €]0,1[, then F, is a T-filter on A,(B) for
every p €]0,1[, [E4, 51].
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Let f € M,50 Hs(Ap(B)). A pole b, of f will be called a pole of order g if
(z — by)?f(z) has a limit | # 0 when = approaches b, (¢ € N*). Then b, will be
called a simple pole if ¢ = 1. '

We call a Meromorphic Product associated to the sequence B a function f
defined in K \ B in the form

where (an)nex is a sequence in K such that

lim (an - bn) =0 [Sz, Ss]

n—oo

Then we know that such a Meromorphic Product belongs to Hy(A,(B)) when-
ever p > 0 [Sl, Sz]
When 7 is the Meromorphic Product

[o0)
T = ,
oot z—b,

for every p > 0 there is an integer ¢(p) such that d(an,p™) = d(bn,p~) for every
n > ¢(p); we will denote

a(p)
M,(1) = Ay(B) \ (U d(an,p_))

and then 7 is invertible in Hy(M,(7)).
As B is an injective sequence we can easily characterize the Meromorphic Prod-
ucts among the functions defined in K\ {b1,...,bs,...}.

Theorem 1

Let f be a function defined in K \ B. The following conditions a) and 3) are
equivalent.
a) i) f belongs to Hy(A,(B)) for all p > 0,
ii) each by, is a simple pole for f,
iii) lim|g o f(2) = 1,
iv) f is not identically null on d(0,1).
B) f is a Meromorphic Product associated to B.
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Theorem 1 enables us to translate the analytic extension through a T-filter
made in [S3] in terms of Meromorphic Products.

Theorem 2

Let g belong to H(d(0,1)). Assume that F, is a T-filter on A,(B). There exists
a Meromorphic Product g associated to B whose restriction to d(0, 1) is equal to g.

In Theorems 3 and 4 K is supposed to have characteristic zero. These results
will be generalized to infraconnected sets in a further article [S;].

Now Theorem 2 applied to a solution g of a differential equation y’ = wy in
d(0,1) provides a § and a @ so that £(w) extends to A,(B).

Theorem 3

Let w € H(d(0,1)) and assume that the equation £(w) y' = wy has a non
identically null solution g € H(d(0,1)). Assume that F, is a T-filter on A,(B) and

let -
o= 11 (3=32)

n=1

be a Meromorphic Product associated to B whose restriction to d(0,1) is equal to g,
as obtained in Theorem 2.

The series -
1 1
w(z):Z(z_an B a:—bn)

n=1
converges in Hy(M,(g)) and it satisfies @(z) = w(z) for all z € d(0,1).
The space of the solutions y of the equations

Ew)y' =y
defined in Hy(M,(g)) is generated by g, and these solutions belong to Hy(A,(B)).
On the other hand, thanks to Theorem 3 we can characterize the w € H(D)
such that the equation £(w) has solutions g in H(D).
Theorem 4

Let D be d(0,1) and let w € H(D). The following assertions are equivalent:

a) There exist sequences (a, )nen~ and (bp)nex in K\ d(0,1) with lim, o |b,| =1
and lim,—  |@a, — by| = 0, such that

= 1 1
w:Zw T z—b,"

—-a
n=1 n

b) The equation £(w) has solution g in H(D), different from zero.
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Corollary
Let A € C,. The following assertions a) and b) are equivalent.

a) There exist sequences (a,) and (b,) in C, \ (0,1) with lim,_. o |bn| = 1 and
limy— o0 |@an — bn| = 0 such that

(o]

1 1
Z::ls—an_a:—bnzl\’

n=1

whenever z € d(0,1).
b) |M| < p~1/(rD.

Proof of the Theorems

Let “Log” be a logarithm function of base @ > 1 and let v be the valuation of K
defined by v(z) = — Log |z|.

When D is a closed infraconnected set of diameter R € [0,+0o0], for g € H(D),
a € D and p > — Log R, we define

va(gaw) = v(lxi)IE»u. ’l)(g(il?)) [E37 G, El]
v(z)#£p
z€eD

When a = 0 we only write v(g, 1) instead of vo(g, ). The properties of the functions
va(9g, p) were given in [E3,G] and recalled in many papers like [Eg]. Also the increas-
ing and decreasing filters were defined in [E3] and recalled in [Eg]. The T-filters were
defined in [E4].

The proof of Theorem 1 will use the following Proposition that is an obvious

application of the properties of the Mittag-Leffler series for an analytic element
[A, R].

Proposition 1

The two following conditions are equivalent.

a) f belongs to Hy(A,(B)) for all p > 0, each b, is a simple pole for f and
limz| o f(z) = a.
b)

with lim,,_, . o, = 0.
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Proof of Theorem 1. Suppose first that §) is true and let us show it that implies
a). We already know that f € Hy(A,(B)) for all p > 0 and each b, is a simple pole.
Finally, it is easily seen that limg|—o f(z) = 1. [S2].

Suppose now that ) is true and let us show g).

Since lim|z|— f(2) = 1, we know that there exists R > b1 such that [f(z)| =1
for all z € K\ d(0, R), and then f has no zero and no pole in K d(0, R).

Since f is not identically null in d(0,1) f is not anulled by the only pierced filter
of A,(B), hence f is quasi-invertible in H(d(0, R) N A,(B)) [E3].

Let D, = d(0, R) N A,(B). Suppose first that f has no zero in d(0,1). |f(z)]| is
then equal to a constant C # 0 in d(0,1).

Actually we will prove that the relation |f(z)| = C remains true in a set in the
. form d(0,7) N A,(B) with r > 1. Indeed let h € R(D,) be such that

(1). If=hlp, <C

|h(z)| is clearly equal to C in d(0,1). Since h has neither any zero nor any pole
in d(0,1) it does exist 7 > 1 such that it still has no zero and no pole in d(0,7) and
then |h(z)| = C does hold in d(0,r) N A,(B).

Let t(p) be an integer such that |by,)| < 7. Since f has no zero in A,(B)Nd(0,7)
it is easily seen that for every n > t(p), d(b,,p) contains as many zeros as many
poles of f (the zeros are counted according to their multiplicity order).

As we may take p as small as we want, it is easily seen that

n—oo

and then the product

ﬁ (x - an)
oy \Z— b,
converges in H(A,(B)).

On the other hand, since f is bounded and f has no zero and no pole in
K \ d(0,R), we see that v(f,u) is definitively constant for u¢ < —LogR. As it
is already constant for 4 > — Logr, we see that f has as many zeros as poles in
r(o,r,R).

The poles are by,...,by,)—1. Hence we may write the zeros ay,...,as,)-1 (in
repeating ¢ times a zero of order ¢) and we see the Meromorphic Product

=11 (555)

n=1
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has exactly the same zeros and the same poles as f. But then it is easily seen that
f/h is a constant.

Indeed, h is invertible in Hy(M,(h)) so that f(z)/h(z) has a Mittag-Leffler
series in the infraconnected set M,(h) [R]. But f/h has no pole in K and then its
Mittag-Lefller series is reduced to a constant a. Finally a = 1, because

lllim f(z) = I l|im h(z) = 1.

Now let us consider the general case when f has a finite number of zeros in
d(0,1). Then f factorizes in the form P(z)g(z) where P is a monic polynomial (of
degree ¢), all the zeros of which are in d(0,1) and g is an element of Hy(A,(B)) such
that g(z) # 0 for all z € d(0,1) and

lim z%(z)=1.

|z| =00

Let @ be a g-degree monic polynomial whose zeros belong to K \ d(0,1). Obvi-
ously we have

i Q(z)g(z) =1

again. Then Q(z)g(z) is a Meromorphic Product associated to B.
Since P and @ have the same degree,

P(z)
z) = —=(Q(z)g(z
1) = 5 (@@)(@)
is also a Meromorphic Product associated to B and that ends the proof of Theorem 1.
a

Proof of Theorem 2. Since ¥, is a T-filter, the Theorem 8 of [S4] shows that there
exists h € Hy(A,(B)) in the form

(o) 0‘
_ j
Jj=1
whose restriction to d(0,1) is equal to g and A,(B) has a T-filter F,. The sequence
of holes T, = d(bn, p™) then makes an idempotent T-sequence (T, 1)nex+ [S1]- Now
Theorem 5 of [S3] shows there exists g € Hy(A,(B)) whose restriction to d(0,1) is

also equal to g, whose poles are simple, and whose limit is equal to 1 when |z| goes
to oo.

By proposition 1, g is in the form

o0
an
=1 :
g +n2=:1x_bn’

and by Theorem 1, g is then a Meromorphic Product associated to B. O
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Proof of Theorem 3. By Theorem 2 there exists a Meromorphic Product g associated

to B, in the form
-—oo T — an
9= H (x_bn)

n=1

whose restriction to d(0,1) is equal to g.
Since limpoo(an — by) = 0, it is easily seen that the series

— 1 1 >_°° bn — an
;(z—an z — by, ;(z—an)(z—bn)

is convergent in Hy(M,(g)).
Consider now the sequence

that converges to g in Hy(A,(B)). By Corollary of [Es] we know that the sequence
gr,, converges to g'.
But

In = Gn a:—aj :L‘—bj

j=1

and therefore at the limit, ' = gw. In particular, in d(0,1), ®(z) = w(z).

In addition, g is invertible in each algebra H,(A,(B)) hence by results of [Eg],
g generates the linear space of the solutions of the equation £(@) in Hy(A,(B)) and
that completes the poof of Theorem 3. O

Proof of Theorem 4. First let us assume a) is satisfied and let g(z) be the Meromor-

phic Product
(o]
H T — an
<x - bn> '

n=1

It belongs to H(d(0,1)) and it is a solution of the equation £(w) different from zero,
hence b) is true. Now, we suppose b) is true, and let g be a solution of £(w) (different
from zero) that belongs to H(D).

By Theorem 4, there exist sequences (b,) and (a,) in K\ d(0,1) with

lim |b,] =1, lim a, — b, =0,

n—oo n— 00
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such that

hence a) is satisfied. O

Proof of the Corollary. We know that the solutions of the differential equation
y' = Ay in the disk d(0,r) are in the form Aexp(Az) and then the series

Az)"
S

n€N

is convergent if and only if |z| < |A|~1p~1/(P=1). But then, exp(Az) € H(d(0,1)) if
and only if || < p~1/(»-1),

Now by Theorem 4, £()) has solutions if and only if a) is satisfied hence a) and
b) are equivalent. [J
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