The *p*-adic differential equation $y' = \omega y$ in the closed unit disk

ALAIN ESCASSUT

Université Blaise Pascal, Mathématiques Pures, F-63177 Aubière Cedex, France

MARIE-CLAUDE SARMANT

Université Pierre et Marie Curie, Mathématiques, Tour 45-46, Sème, 4 Place Jussieu, F-75230 Paris 05, France

Received 15/SEPT/89

ABSTRACT

Let \mathbb{K} be a complete ultrametric algebraically closed field. When D is a set in \mathbb{K} , we denote by H(D) (resp. $H_b(D)$) the set of the analytic elements in D (resp. the bounded analytic elements in D). Let $\mathcal{B}=(b_n)_{n\in\mathbb{N}}$ be a sequence in \mathbb{K} such that $1<|b_{n+1}|<|b_n|$ and $\lim_{n\to\infty}|b_n|=1$ and let

$$\Lambda_{\rho}(\mathcal{B}) = \mathbb{K} \setminus \left(\bigcup_{n=1}^{\infty} d(b_n, \rho^-) \right)$$

First we characterize the elements $f\in \cap_{\rho>0} H_b(\Lambda_\rho(\mathcal{B}))$ which are Meromorphic Products $[S_2]$ in the form $\prod_{n=1}^\infty (x-a_n/x-b_n)$. Next, we translate the results of analytic extension through a T-filter $[S_3]$ into terms of Meromorphic Products. We then apply that to the extension of a differential equation $y'=\omega y$ defined in the disk d(0,1) $(|x|\leq 1)$ to $K\setminus \mathcal{B}; y$ has an extension in the form $\lambda\prod_{n=1}^\infty (x-a_n/x-b_n)$ while ω has the extension $\sum_{n=1}^\infty ((1/x-a_n-1/x-b_n))$.

As a consequence we can characterize the $\omega \in H(d(0,1))$ such that the equation $y' = \omega y$ has solutions in H(d(0,1)): these ω are the series $\sum_{n=1}^{\infty} ((1/x - a_n) - (1/x - b_n))$. When $\mathbb{K} = \mathbb{C}_p$ such a series may be equal to a constant $\lambda \in \mathbb{C}_p$ in d(0,1) if and only if $|\lambda| < \rho^{-1/p-1}$.

Introduction and results

Let $(\mathbb{K}, |\cdot|)$ be a complete ultrametric algebraically closed field.

For $a \in \mathbb{K}$ and r > 0, we denote

$$d(a,r) = \{x \in \mathbb{K} : |x-a| \le r\},\$$

$$d(a, r^{-}) = \{ x \in \mathbb{K} : |x - a| < r \},\$$

and

$$C(a,r) = \{x \in \mathbb{K} : |x-a| = r\}.$$

For $a \in \mathbb{K}$ and $r, s \in \mathbb{R}_+$ with 0 < r < s, we denote

$$\Gamma(a,r,s) = \big\{ x \in \mathbb{K} : r < |x-a| < s \big\}.$$

Let A be a closed non necessarily bounded set in \mathbb{K} and let $R_b(A)$ be the algebra of the rational functions h with no pole in A, such that |h(x)| has a finite upper bound in A. The algebra $R_b(A)$ admits the norm $||\cdot||_A$ of the uniform convergence on A as a norm of \mathbb{K} -algebra and its completion denoted by $H_b(A)$ is the Banach algebra of the bounded analytic elements on A. If A is bounded, then $R_b(A)$ is the set of all the rational functions with no pole in A and $H_b(A)$ is the algebra H(A) of all the analytical elements on A $[E_1, E_2]$.

If A has a hole $T=d(a,\rho^-)$ and if A' is the image of A by an inversion of center a, it is easily seen that H(A) is isometrically isomorphic to $H(A' \cup \{a\})$ [E₂]. Therefore, we may apply to the algebras $H_b(A)$ most of the results already known for the Banach algebras H(D) (with D closed and bounded). If $\omega \in H_b(A)$ we will denote by $\mathcal{E}(\omega)$ the equation $y'=\omega y$ with $y\in H_b(A)$.

In all of the following, we will denote by \mathcal{B} an injective sequence $(b_n)_{n\in\mathbb{N}^*}$ in \mathbb{K} such that $1<|b_{n+1}|\leq |b_n|$ for all n and $\lim |b_n|=1$; we will denote

$$\hat{\mathcal{B}} = \{b_1, \ldots, b_n, \ldots\},\$$

and for every $\rho \in]0,1[$ we will denote

$$\Lambda_{
ho}(\mathcal{B}) = \mathbb{K} \setminus \left(\bigcup_{n=1}^{\infty} d(b_n,
ho^-) \right)$$

and denote by \mathcal{F}_{ρ} the pierced decreasing filter of center 0, of diameter 1 [E₃].

If \mathcal{F}_{ρ} is a T-filter on $\Lambda_{\rho}(\mathcal{B})$ for some $\rho \in]0,1[$, then \mathcal{F}_{ρ} is a T-filter on $\Lambda_{\rho}(\mathcal{B})$ for every $\rho \in]0,1[$, $[\mathrm{E}_4,\mathrm{S}_1]$.

Let $f \in \bigcap_{\rho>0} H_b(\Lambda_{\rho}(\mathcal{B}))$. A pole b_n of f will be called a pole of order q if $(x-b_n)^q f(x)$ has a limit $l \neq 0$ when x approaches b_n $(q \in \mathbb{N}^*)$. Then b_n will be called a simple pole if q=1.

We call a Meromorphic Product associated to the sequence $\mathcal B$ a function f defined in $\mathbb K\setminus\hat{\mathcal B}$ in the form

$$f = \prod_{n=1}^{\infty} \left(\frac{x - a_n}{x - b_n} \right),\,$$

where $(a_n)_{n\in\mathbb{N}}$ is a sequence in \mathbb{K} such that

$$\lim_{n\to\infty} (a_n - b_n) = 0 \qquad [S_2, S_3].$$

Then we know that such a Meromorphic Product belongs to $H_b(\Lambda_\rho(\mathcal{B}))$ whenever $\rho > 0$ [S₁, S₂].

When τ is the Meromorphic Product

$$\tau = \prod_{n=1}^{\infty} \frac{x - a_n}{x - b_n},$$

for every $\rho > 0$ there is an integer $q(\rho)$ such that $d(a_n, \rho^-) = d(b_n, \rho^-)$ for every $n > q(\rho)$; we will denote

$$M_
ho(au) = \Lambda_
ho(\mathcal{B}) \setminus \left(igcup_{n=1}^{q(
ho)} d(a_n,
ho^-)
ight)$$

and then τ is invertible in $H_b(M_o(\tau))$.

As \mathcal{B} is an injective sequence we can easily characterize the Meromorphic Products among the functions defined in $\mathbb{K} \setminus \{b_1, \ldots, b_n, \ldots\}$.

Theorem 1

Let f be a function defined in $\mathbb{K} \setminus \mathcal{B}$. The following conditions α) and β) are equivalent.

- α) i) f belongs to $H_b(\Lambda_{\rho}(\mathcal{B}))$ for all $\rho > 0$,
 - ii) each b_n is a simple pole for f,
 - $iii) \lim_{|x| \to \infty} f(x) = 1,$
 - iv) f is not identically null on d(0,1).
- β) f is a Meromorphic Product associated to β .

Theorem 1 enables us to translate the analytic extension through a T-filter made in $[S_3]$ in terms of Meromorphic Products.

Theorem 2

Let g belong to H(d(0,1)). Assume that \mathcal{F}_{ρ} is a T-filter on $\Lambda_{\rho}(\mathcal{B})$. There exists a Meromorphic Product \bar{g} associated to \mathcal{B} whose restriction to d(0,1) is equal to g.

In Theorems 3 and 4 \mathbb{K} is supposed to have characteristic zero. These results will be generalized to infraconnected sets in a further article [S₅].

Now Theorem 2 applied to a solution g of a differential equation $y' = \omega y$ in d(0,1) provides a \overline{g} and a $\overline{\omega}$ so that $\mathcal{E}(\omega)$ extends to $\Lambda_{\rho}(\mathcal{B})$.

Theorem 3

Let $\omega \in H(d(0,1))$ and assume that the equation $\mathcal{E}(\omega)$ $y' = \omega y$ has a non identically null solution $g \in H(d(0,1))$. Assume that \mathcal{F}_{ρ} is a T-filter on $\Lambda_{\rho}(\mathcal{B})$ and let

$$g(x) = \prod_{n=1}^{\infty} \left(\frac{x - a_n}{x - b_n} \right)$$

be a Meromorphic Product associated to \mathcal{B} whose restriction to d(0,1) is equal to g, as obtained in Theorem 2.

The series

$$\omega(x) = \sum_{n=1}^{\infty} \left(\frac{1}{x - a_n} - \frac{1}{x - b_n} \right)$$

converges in $H_b(M_\rho(\bar{g}))$ and it satisfies $\bar{\omega}(x) = \omega(x)$ for all $x \in d(0,1)$.

The space of the solutions y of the equations

$$\mathcal{E}(\bar{\omega}) \ y' = \bar{\omega} y$$

defined in $H_b(M_\rho(\bar{g}))$ is generated by \bar{g} , and these solutions belong to $H_b(\Lambda_\rho(\mathcal{B}))$.

On the other hand, thanks to Theorem 3 we can characterize the $\omega \in H(D)$ such that the equation $\mathcal{E}(\omega)$ has solutions g in H(D).

Theorem 4

Let D be d(0,1) and let $\omega \in H(D)$. The following assertions are equivalent:

a) There exist sequences $(a_n)_{n\in\mathbb{N}^*}$ and $(b_n)_{n\in\mathbb{N}}$ in $\mathbb{K}\setminus d(0,1)$ with $\lim_{n\to\infty}|b_n|=1$ and $\lim_{n\to\infty}|a_n-b_n|=0$, such that

$$\omega = \sum_{n=1}^{\infty} \frac{1}{x - a_n} - \frac{1}{x - b_n}.$$

b) The equation $\mathcal{E}(\omega)$ has solution g in H(D), different from zero.

Corollary

Let $\lambda \in \mathbb{C}_p$. The following assertions a) and b) are equivalent.

a) There exist sequences (a_n) and (b_n) in $\mathbb{C}_p \setminus (0,1)$ with $\lim_{n\to\infty} |b_n| = 1$ and $\lim_{n\to\infty} |a_n - b_n| = 0$ such that

$$\sum_{n=1}^{\infty} \frac{1}{x - a_n} - \frac{1}{x - b_n} = \lambda,$$

whenever $x \in d(0,1)$.

b) $|\lambda| < p^{-1/(p-1)}$.

Proof of the Theorems

Let "Log" be a logarithm function of base a > 1 and let v be the valuation of \mathbb{K} defined by $v(x) = -\log |x|$.

When D is a closed infraconnected set of diameter $R \in [0, +\infty]$, for $g \in H(D)$, $a \in D$ and $\mu \geq -\operatorname{Log} R$, we define

$$v_a(g,\omega) = \lim_{\substack{v(x) \to \mu \\ v(x) \neq \mu \\ x \in D}} v(g(x)) \qquad [E_3, G, E_1].$$

When a=0 we only write $v(g,\mu)$ instead of $v_0(g,\mu)$. The properties of the functions $v_a(g,\mu)$ were given in $[E_3,G]$ and recalled in many papers like $[E_6]$. Also the increasing and decreasing filters were defined in $[E_3]$ and recalled in $[E_6]$. The T-filters were defined in $[E_4]$.

The proof of Theorem 1 will use the following Proposition that is an obvious application of the properties of the Mittag-Leffler series for an analytic element [A, R].

Proposition 1

The two following conditions are equivalent.

a) f belongs to $H_b(\Lambda_\rho(\mathcal{B}))$ for all $\rho > 0$, each b_n is a simple pole for f and $\lim_{|x| \to \infty} f(x) = a$.

b)

$$f(x) = a + \sum_{n=1}^{\infty} \frac{\alpha_n}{x - b_n},$$

with $\lim_{n\to\infty} \alpha_n = 0$.

Proof of Theorem 1. Suppose first that β) is true and let us show it that implies α). We already know that $f \in H_b(\Lambda_\rho(\mathcal{B}))$ for all $\rho > 0$ and each b_n is a simple pole. Finally, it is easily seen that $\lim_{|x| \to \infty} f(x) = 1$. [S₂].

Suppose now that α) is true and let us show β).

Since $\lim_{|x|\to\infty} f(x) = 1$, we know that there exists $R > |b_1|$ such that |f(x)| = 1 for all $x \in \mathbb{K} \setminus d(0, R)$, and then f has no zero and no pole in $\mathbb{K} \setminus d(0, R)$.

Since f is not identically null in d(0,1) f is not anulled by the only pierced filter of $\Lambda_{\rho}(\mathcal{B})$, hence f is quasi-invertible in $H(d(0,R) \cap \Lambda_{\rho}(\mathcal{B}))$ [E₃].

Let $D_{\rho} = d(0,R) \cap \Lambda_{\rho}(\mathcal{B})$. Suppose first that f has no zero in d(0,1). |f(x)| is then equal to a constant $C \neq 0$ in d(0,1).

Actually we will prove that the relation |f(x)| = C remains true in a set in the form $d(0,r) \cap \Lambda_{\rho}(\mathcal{B})$ with r > 1. Indeed let $h \in R(D_{\rho})$ be such that

|h(x)| is clearly equal to C in d(0,1). Since h has neither any zero nor any pole in d(0,1) it does exist r > 1 such that it still has no zero and no pole in d(0,r) and then |h(x)| = C does hold in $d(0,r) \cap \Lambda_{\rho}(\mathcal{B})$.

Let $t(\rho)$ be an integer such that $|b_{t(\rho)}| < r$. Since f has no zero in $\Lambda_{\rho}(\mathcal{B}) \cap d(0, r)$ it is easily seen that for every $n \geq t(\rho)$, $d(b_n, \rho)$ contains as many zeros as many poles of f (the zeros are counted according to their multiplicity order).

As we may take ρ as small as we want, it is easily seen that

$$\lim_{n\to\infty}(b_n-a_n)=0$$

and then the product

$$\prod_{n=1}^{\infty} \left(\frac{x - a_n}{x - b_n} \right)$$

converges in $H(\Lambda_{\rho}(\mathcal{B}))$.

On the other hand, since f is bounded and f has no zero and no pole in $\mathbb{K} \setminus d(0,R)$, we see that $v(f,\mu)$ is definitively constant for $\mu \leq -\log R$. As it is already constant for $\mu \geq -\log r$, we see that f has as many zeros as poles in $\Gamma(0,r,R)$.

The poles are $b_1, \ldots, b_{t(\rho)-1}$. Hence we may write the zeros $a_1, \ldots, a_{t(\rho)-1}$ (in repeating q times a zero of order q) and we see the Meromorphic Product

$$h(x) = \prod_{n=1}^{\infty} \left(\frac{x - a_n}{x - b_n} \right)$$

has exactly the same zeros and the same poles as f. But then it is easily seen that f/h is a constant.

Indeed, h is invertible in $H_b(M_\rho(h))$ so that f(x)/h(x) has a Mittag-Leffler series in the infraconnected set $M_{\rho}(h)$ [R]. But f/h has no pole in K and then its Mittag-Leffler series is reduced to a constant α . Finally $\alpha = 1$, because

$$\lim_{|x|\to\infty} f(x) = \lim_{|x|\to\infty} h(x) = 1.$$

Now let us consider the general case when f has a finite number of zeros in d(0,1). Then f factorizes in the form P(x)g(x) where P is a monic polynomial (of degree q), all the zeros of which are in d(0,1) and g is an element of $H_b(\Lambda_{\rho}(\mathcal{B}))$ such that $g(x) \neq 0$ for all $x \in d(0,1)$ and

$$\lim_{|x|\to\infty} x^q g(x) = 1.$$

Let Q be a q-degree monic polynomial whose zeros belong to $\mathbb{K} \setminus d(0,1)$. Obviously we have

$$\lim_{|x| \to \infty} Q(x)g(x) = 1$$

again. Then Q(x)g(x) is a Meromorphic Product associated to \mathcal{B} . Since P and Q have the same degree,

$$Q$$
 have the same degree,

$$f(x) = \frac{P(x)}{Q(x)} (Q(x)g(x))$$

is also a Meromorphic Product associated to \mathcal{B} and that ends the proof of Theorem 1.

Proof of Theorem 2. Since \mathcal{F}_{ρ} is a T-filter, the Theorem 8 of $[S_4]$ shows that there exists $h \in H_b(\Lambda_{\rho}(\mathcal{B}))$ in the form

$$h = \sum_{j=1}^{\infty} \frac{\theta_j}{x - b_j}$$

whose restriction to d(0,1) is equal to g and $\Lambda_{\rho}(\mathcal{B})$ has a T-filter \mathcal{F}_{ρ} . The sequence of holes $T_n = d(b_n, \rho^-)$ then makes an idempotent T-sequence $(T_n, 1)_{n \in \mathbb{N}^*}$ [S₁]. Now Theorem 5 of [S₃] shows there exists $\bar{g} \in H_b(\Lambda_{\rho}(\mathcal{B}))$ whose restriction to d(0,1) is also equal to g, whose poles are simple, and whose limit is equal to 1 when |x| goes to ∞ .

By proposition 1, q is in the form

$$g=1+\sum_{n=1}^{\infty}\frac{a_n}{x-b_n};$$

and by Theorem 1, g is then a Meromorphic Product associated to \mathcal{B} . \square

Proof of Theorem 3. By Theorem 2 there exists a Meromorphic Product \bar{g} associated to \mathcal{B} , in the form

$$\bar{g} = \prod_{n=1}^{\infty} \left(\frac{x - a_n}{x - b_n} \right)$$

whose restriction to d(0,1) is equal to g.

Since $\lim_{n\to\infty} (a_n - b_n) = 0$, it is easily seen that the series

$$\sum_{n=1}^{\infty} \left(\frac{1}{x - a_n} - \frac{1}{x - b_n} \right) = \sum_{n=1}^{\infty} \frac{b_n - a_n}{(x - a_n)(x - b_n)}$$

is convergent in $H_b(M_{\rho}(g))$.

Consider now the sequence

$$g_n = \prod_{j=1}^n \frac{x - a_j}{x - b_j}$$

that converges to \bar{g} in $H_b(\Lambda_\rho(\mathcal{B}))$. By Corollary of [E₅] we know that the sequence \bar{g}'_n , converges to g'.

But

$$g'_{n} = g_{n} \sum_{j=1}^{n} \left(\frac{1}{x - a_{j}} - \frac{1}{x - b_{j}} \right)$$

and therefore at the limit, $\bar{g}' = \bar{g}\bar{w}$. In particular, in d(0,1), $\bar{\omega}(x) = \omega(x)$.

In addition, \bar{g} is invertible in each algebra $H_b(\Lambda_{\rho}(\mathcal{B}))$ hence by results of $[E_6]$, \bar{g} generates the linear space of the solutions of the equation $\mathcal{E}(\bar{\omega})$ in $H_b(\Lambda_{\rho}(\mathcal{B}))$ and that completes the poof of Theorem 3. \square

Proof of Theorem 4. First let us assume a) is satisfied and let g(x) be the Meromorphic Product

$$\prod_{n=1}^{\infty} \left(\frac{x - a_n}{x - b_n} \right).$$

It belongs to H(d(0,1)) and it is a solution of the equation $\mathcal{E}(\omega)$ different from zero, hence b) is true. Now, we suppose b) is true, and let g be a solution of $\mathcal{E}(\omega)$ (different from zero) that belongs to H(D).

By Theorem 4, there exist sequences (b_n) and (a_n) in $\mathbb{K} \setminus d(0,1)$ with

$$\lim_{n\to\infty}|b_n|=1,\qquad \lim_{n\to\infty}a_n-b_n=0,$$

such that

$$\prod_{n=1}^{\infty} \left(\frac{x - a_n}{x - b_n} \right) = g(x)$$

whenever $x \in D(0,1)$, and then

$$\frac{g'(x)}{g(x)} = \sum_{n=1}^{\infty} \left(\frac{1}{x - a_n} - \frac{1}{x - b_n} \right),$$

hence a) is satisfied. \square

Proof of the Corollary. We know that the solutions of the differential equation $y' = \lambda y$ in the disk d(0,r) are in the form $A \exp(\lambda x)$ and then the series

$$\sum_{n \in \mathbb{N}} \frac{(\lambda x)^n}{n!}$$

is convergent if and only if $|x| < |\lambda|^{-1} p^{-1/(p-1)}$. But then, $\exp(\lambda x) \in H(d(0,1))$ if and only if $|\lambda| < p^{-1/(p-1)}$.

Now by Theorem 4, $\mathcal{E}(\lambda)$ has solutions if and only if a) is satisfied hence a) and b) are equivalent. \square

References

- [A] Y. Amice, Les nombres p-adiques, P.U.F., Paris, 1975.
- [D] B. Dwork, Lectures on p-adic Differential Equations, Springer, New York-Heildelberg-Berlin, 1982.
- [E₁] A. Escassut, Algèbres de Krasner, C.R.A.S. Paris 272 (1971), 598-601.
- [E₂] A. Escassut, Algbres d'éléments analytiques en analyse non archimdienne, *Indagationes Mathematicae* 36 (1974), 339-351.
- [E₃] A. Escassut, Éléments analytiques et filtres percs sur un ensemble infraconnexe, Annali di Mat. Pura ed Appl. Bologna 110 (1976), 335-352.
- [E₄] A. Escassut, T-filtres, ensembles analytiques et transformation de Fourier p-adique, Ann. Inst. Fourier, Grenoble 25 (1975), 45-80.
- [E₅] A. Escassut, Derivative of Analytic Elements on Infraconnected Clopen Sets, *Indagationes Mathematicae* 51 (1989), 63-70.
- [E₆] A. Escassut and M. C. Sarmant, The differential equation y' fy in the algebras H(D), Collect. Math. 39 (1988), 31-40.
- [G] G. Garandel, Les semi-normes multiplicatives sur les algèbres d'éléments analytiques au sens de Krasner, *Indagationes Matematicae* 37 (1975), 327-341.

- [K] M. Krasner, Prolongement analytique uniforme et multiforme dans les corps valus complets, in Les tendances gomtriques en algère et thorie des nombres, pp. 97-141, Colloque Internationaux du C.N.R.S. Paris, Vol. 143, Centre National de la Recherche Scientifique, Clermont-Ferrand, 1964.
- [R] Ph. Robba, Fonctions analytiques sur les corps valu és ultramétriques complets, Ast érisque 10 (1973), 109-220.
- [S₁] M. C. Sarmant and A. Escassut, T-suites idempotentes, Bull. Sc. Math. 106 (1982), 289-303.
- [S₂] M. C. Sarmant, Produits M éromorphes, Bull. Sc. Math. 109 (1985), 155-178.
- [S₃] M. C. Sarmant and A. Escassut, Fonctions analytiques et Produits Croulants, Collect. Math. 36 (1985), 199-218.
- [S₄] M. C. Sarmant and A. Escassut, Prolongement analytique travers un T-filtre, Studia Sc. Math. Hung. 22 (1987), 407-444.
- [S₅] M. C. Sarmant and A. Escassut, The equation $y' = \omega y$ and the Meromorphic Products, Marcel Dekker, New York, to appear.