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ABSTRACT
A Banach space which is a Cech-analytic space in its weak topology has
fourteen measure-theoretic, geometric and topological properties. In a dual

Banach space with its weak-star topology essentially the same properties are
all equivalent one to another.

1. Introduction

The development of the theory of properties like the Radon-Nikodym property has
been complex and many mathematicians have made major contributions. Here we
only highlight some of the developments that are most relevant to our work.

A Banach space X is said to have the Radon-Nikodym property if for each
probability space (Q,F,u) and for each countably additive vector valued measure
£ : F — X that is absolutely continuous with respect to u and of bounded variation,

there is a function z : § — X that is Bochner-integrable with respect to u and such
that

&E) = [ 2y
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for all Fin F.

In 1967, Rieffel [29] introduced the concept of a dentable set in a Banach space
and showed that a Banach space has the Radon-Nikodym property, if each of its
bounded sets is dentable. Rather later, a series of papers by Maynard [24, 25], Davis
and Phelps [3] and Huff [18] established the converse that, if a Banach space has the
Radon-Nikodym property, then each of its bounded subsets is dentable.

We turn to consider a dual Banach space X*. Below we list a number of con-
ditions known to be equivalent to the condition that X* has the Radon-Nikodym
property. The equivalence of () with (f) is contained in the work of Rieffel, May-
nard, Davis and Phelps, and Huff, referred to above. Schwartz [30] gives an explicit
proof of the equivalence of (o) and (). Stegall proves the equivalence of (&) and (6)
in [33, Proposition 1.10]. The equivalence of () and () follows from work of Stegall
[32] and of van Dulst and Namioka [5]. Edgar [8, Theorem 1.5 and Proposition 1.7]
using results of Stegall [32], proves the equivalence of () and (7).

Let X* be the dual of a Banach space X. Then the following conditions (a) to

(n) are equivalent in that each implies the others.

(a) X* has the Radon-Nikodym property.

(B) Each closed bounded convex subset of X* is dentable.

(v) Each Radon measure on the weak-star Borel subsets of X* is supported by a
countable union of norm compact sets.

(6) For all weak-star compact convex sets K in X*, for all separable Banach spaces
Y, and for all bounded linear maps T : Y — X, the image T*(K) of K under
the dual map is norm separable in Y*.

(¢) X™ contains no e-tree.

(n) The subsets of X* that are measurable for all Radon measures on the weak-star
Borel subsets of X* coincide with the subsets of X* that are measurable for all
Radon measures on the norm Borel subsets of X*.

A closed bounded convex set K in a Banach space X is said to have the Radon-
Nikodym property (see, for example, [5, p. 15], or [4]), if for each probability space
(2, F,p) and for each countably additive vector-valued measure £ : F — X that is
absolutely continuous with respect to u with §(F)/u(E) € K for all E in F with
u(E) > 0, there is a function z : @ — K that is Bochner-integrable with respect to
u and such that

68) = [ odn
E
for all £ in F.



Norm fragmented weak* compact sets 135

As in the Banach space case, the conditions () and (§) remain equivalent when
X ™ is replaced by any closed bounded convex set K in any Banach space. In [33,
Proposition 1.10], Stegall proves that a weak-star compact convex set K in the dual
Banach space X* has the Radon-Nikodym property, if, and only if, the condition
(6) holds for the particular set K, rather than for all such sets in X*.

More recently Radon-Nikodym compact spaces have been studied by Reynov
[31] and Namioka [27, 28]; see [27, 28] where more information about their origin
may be found. A compact Hausdorff space is said to be Radon-Nikodym compact,
or RN compact, if it is homeomorphic to a weak-star compact set in a dual Banach
space that has the Radon-Nikodym property. To explain some of this work we need
several definitions.

A metric p on a topological space K is lower semi-continuous, if p is lower
semi-continuous as a real-valued function on K X K, i.e., if the set

{(z,9) : p(z,y) > t}

is open in K X K for each real ¢ > 0. For example, if K is a dual Banach space with
its weak-star topology, the norm metric on K is lower semi-continuous.

Let p be a metric on a topological space K. The space K is said to be fragmented
by the metric p, if, for each € > 0, and for each non-empty subset H of K, there
is a non-empty relatively open subset of H that has p-diameter less than €. This
concept, introduced in [20], is modelled on Rieffel’s concept of a “dentable” set.
When K is p-complete, it is easy to verify that K is fragmented by p, if, and only
if, K has the Point of Continuity Property [20], that is, for each non-empty closed
subset H of K, the identity map from H as a subset of K to H with its p-topology
has a point of continuity. For a discussion of the elementary relationships of these
and other similar concepts see [10] and [20]. Note that when we use topological
notions without any qualifications we are always referring to the original topology
on K (or later on Z); when we use the topology corresponding to the metric p we
will always qualify the topological terms, and talk, for example, of a p-compact set
or a p-open set.

The following characterizations of RN compact spaces are due to Namioka
(27, 28], using results of Stegall [33].

Let K be a compact Hausdorff space. The following conditions are equivalent.
(1) K is RN compact.

(2) K is homeomorphic to a norm-fragmented weak-star compact subset of a dual
Banach space.

(3) K is fragmented by some lower semi-continuous metric on K.
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At a seminar in Paris in the spring of 1986, Namioka outlined a proof of the
equivalence of (2) and (3). At the end of the talk, Nassif Ghoussoub mentioned the
possibility of using the ideas of Ghoussoub-Maurey in [16, Theorem VII.1] to prové
this equivalence. '

Theorem (Ghoussoub-Maurey [16, Theorem VII.1))

Let K be a compact metric space with metric d, and let d' be another bounded
complete metric on K such that d' is lower semi-continuous on K X K. There exists
a Banach space Y and a map 6 : K — Y™ such that

(i) 6 is a homeomorphism of K onto §( K) with the relative weak-star topology on
Y™,
(ii) There exists o > 0 such that for any (z,y) € K x K we have

[[6(z) = 6(W)|| < d'(=,y) < a||6(z) - 6(y)]|-

The space Y is the space of all continuous real-valued functions on Kwhich are
d'-Lipschitz with the norm

I = 11fllip ar + 1l flloo

where || f||Lip & is the least constant C such that |f(z) — f(y)| < Cd'(z,y) for all
2,y € K, and [|f|oo = sup,ex |£(2)I.

Our version, which follows their ideas, removes unnecessary hypotheses and
slightly improves their theorem in that by changing the norm on Y we are able to
obtain equality between the metric distance of two points and the norm distance of
their images, rather than inequalities. We give full details of the proof here.

Theorem 2.1 (Ghoussoub-Maurey)

Let Z be a compact Hausdorff space and let p be a bounded lower semi-
continuous metric on Z. Then there is a dual Banach space X* and a homeo-
morphism ¢ mapping Z onto a subset of X* taken with its weak-star topology,
with

[[£($) = (¢ = (¢, ¢")

forall (, (" in Z.
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Our next objective is to obtain a series of equivalences like the equivalences of
the conditions () to (n) that hold in much more general circumstances. We need to
introduce a modified form of fragmentability [19]. Let p be a lower semi-continuous
metric on a Hausdorff space Z. We say that Z is o-fragmented by the metric p, if,
for each € > 0, it is possible to express Z as a countable union of sets, each with
the property that each non-empty subset has a non-empty relatively open subset of
p-diameter less than €. We shall also need an apparently much weaker (although
equivalent [19]) concept. Although the terminology may not seem very apt, we say
that Z is o-separable with respect to p, if, for each € > 0, it is possible to express
Z as a countable union of sets, each with the property that each non-empty subset
has a non-empty relatively open subset that can be covered by a countable family
of sets each of p-diameter less than . '

Since we are to prove the equivalence of a large number of apparently very
different conditions we need to explain many concepts, some rather unfamiliar, some
so common that they are used by different authors in different ways.

For us, a Borel measure on a topological space Z will be a real-valued function
1, taking only finite non-negative values, defined initially on the Borel sets of Z and
then extended to the u-measurable sets of Z, that is to the sets E of Z for which
there are Borel sets By, By with By C E C B; and pu(B;) = u(B2). A Radon
measure on Z will be a Borel measure u on Z, with the property that, for each
pu-measurable subset M of Z and each € > 0, there is a compact subset H of M with
w(H) > u(Z)—e. A measure p is said to be carried by a u-measurable subset M of
Z if py(M) = u(Z). A closed set § is said to be the support of the Borel measure p
if S is minimal among the closed sets that carry p.

We shall say that a set in Z is an ¢-tree for the metric p, if it is a countable set
{z(s)} of points of Z, indexed by the finite sequences s of 0’s and 1’s, and for each
I > 0 and each sequence s of length [ the sets

c{z(t): ¢}l + 1 = 5,0 and has length >+ 1}

and
cl{z(t):t|l+1=s,1 and has length >+ 1}

are separated by p-distance ¢, where “cl” denotes topological closure. Here we allow
s to be the empty sequence of length zero. Note that this concept of an e-tree differs
significantly from the concept, used in the condition (¢) above, a concept that only
exists in a normed linear space.

A set B in the space Z is said to have the Baire property if, for some open set G

(G\B)U(B\G)
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is a countable union of nowhere dense sets.
If A is a family of sets in a topological space Z, the Souslin-A sets are the sets

of the form
U{ﬂ{A(aln):nz 1} ;(,ENN}’

with each set A(co|n) in A, using o|n to denote
01,02y...,0n,

when
g=01,02,03...

belongs to NN, with N = {1,2,3,...}. We use F and G to denote the families of
closed sets in Z and of open sets in Z. The family of Souslin-(F U G) sets includes
the family B of all Borel sets in Z and indeed coincides with the family of Souslin-B
sets.

Following Fremlin [14], we say that a space Z is Cech-analytic if it is a Souslin-
(F UG) set in some compact Hausdorff space (see also [19]). In particular, a Cech-
complete space, that is, a Gs-set in a compact Hausdorff space, is Cech-analytic.
Further, if Z is a dual Banach space with its weak-star topology, any Souslin-(FUG)
set in Z is Cech-analytic, since Z is a countable union of compact sets in its Stone-
Cech compactification.

These definitions enable us to state the main theorem.

Theorem 4.1

Let p be a lower semi-continuous metric on a Hausdorff space Z. Then the
implications (a) <= (b) and (b) = (c) and the equivalence of each of (c) to
(n), hold among the following conditions. Further, if Z is Cech-analytic, all the
conditions are equivalent.

(a) Z is o-fragmented by p.

(b) Z is o-separable with respect to p.

(¢) Each compact subset of Z is fragmented by p.

(d) For each Radon measure p on Z with u(Z) > 0, and for each § > 0, there isa
compact subset H of Z with u(H) > 0 and p-diam H < é.

(e) For each Radon measure p on Z with u(Z) > 0, there is a p-compact subset C
of Z with u(C) > 0.

(f) For each Radon measure p on Z and each € > 0, there is a p-compact subset C
of Z with u(C) > p(Z) — e.
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(g) The Radon measures on Z coincide with those Radon measures on Z taken with
its p-topology that are carried by o-compact sets of Z taken with its original
topology. '

(h) The subsets of Z that are measurable for every Radon measure on Z coincide
with the subsets of Z that are measurable for those Radon measures on Z
taken with its p-topology that are carried by o-compact sets of Z taken with
its original topology. :

(i) Each p-closed subset of Z is measurable with respect to each Radon measure
on Z.

(j) For noe > 0 does Z contain a compact set H that admits a continuous map p
onto the Cantor set 2~ with the inverse images of distinct points of 2 separately
by p-distance €.

(k) For no e > 0 does Z contain a relatively compact e-tree for p.

(1) For each compact set K in Z, the points of continuity of the identity map from
K to K with its p-topology are dense in K.

(m) For cach compact set K in Z, the topology of K coincides with the p-topology
of K on some dense Gs set of K.

(n) For each compact set K in Z, each p-Borel set of K has the Baire property in
K.

It is natural to enquire whether or not a set that is o-fragmented by a lower
semi-continuous metric p can always be expressed as a countable union of sets that
are fragmented by p. In [19], we give two examples, one an F,s-set in a compact
metric space, the other the unit ball of ¢y taken with its weak topology, showing
that such a decomposition is not always possible.

In connection with conditions (e) and (f) we should remark that a p-compact set
C' is necessarily closed and so is y-measurable. Conditions (g) and (h) derive from
work of Edgar [8, 9] and condition (n) derives from work of Talagrand [38, Proposi-
tion 10].

We do not require the phrase ‘that are carried by o-compact sets of Z taken
with its original topology’ in parts (g) and (h) of Theorem 4.1 when the p-topology
is finer than the original topology, which is the case when the original topology is a
weak or weak-star topology on a Banach space and p is the norm metric, since then
p-compact sets are compact in the original topology. This is not the case in general,
for if I denotes the closed unit interval with the discrete topology and p(z,y) = |z—y|
is the usual metric on the interval, then I is p-compact without being compact in
the original discrete topology, p fragments I, and I is Cech-analytic.

In considering the implication that (¢) == (a), there seems to be little scope for
removing or weakening the hypothesis that Z is Cech-analytic. In [19], we show that
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it is consistent with the usual axioms of set theory (Z F'C) that there is a co-analytic
subset of 2N, with each compact subset fragmented by the discrete metric, but not
itself o-fragmented by this metric. Again, in [19], we show that although each
compact subset of the Banach space [*°, taken with its weak topology, is fragmented
by the norm metric, the space itself is not o-fragmented by the norm metric. A
further example in [19] shows that there is a Banach space such that the unit ball
with its weak topology is not o-fragmented by any lower semi-continuous metric.

Let p and p’ be two lower semi-continuous metrics on Z giving the same metric
topology. It is by no means obvious from the definitions that the properties of being
o-fragmented by p or of being o-separable with respect to p are equivalent to the
corresponding properties for p’; however, this is the case when Z is a Cech analytic
space, since the condition (f) is stated in terms of the topology determined by p.

We note that Theorem 4.1 gives information about the subsets of Banach spaces
taken with their weak topologies. This is because the norm is weakly lower semi-
continuous, and because the weakly compact sets of a Banach space are fragmented
by the norm. This latter fact canbe deduced from Troyanski’s renorming work [42]
(see [27] for a more elementary proof). Consequently, we have

Corollary 4.2
Let Z be a set in a Banach space taken with its weak topology. Take

p(¢; <N =1l = ¢l
for all (,{" in Z. Then Z and p also satisfy the conditions (c) to (n) of Theorem

4.1. If, in addition, Z is Cech-analytic, then Z and p also satisfy the conditions (a)
and (b) of Theorem 4.1.

Many Banach spaces taken with their weak topologies are Cech-analytic, or at
least o-fragmented. Before describing these we recall some terminology. A Banach

space is said to admit a Kadec norm if it has an equivalent norm || - || such that the
weak and the norm topologies coincide on the set {z : ||z|| = 1}. A norm || -|| is
said to be locally uniformly convex if for every sequence zg,z1,Z3,... of points with

norm one for which |z, 4+ z¢|/2 — 1 we have |z, — 29| — 0. A Banach space is
said to be weakly compactly generated if it is the norm closure of the linear span
of one of its weakly compact sets. A space Z is said to be K-analytic (respectively,

K-countably determined) if it is a Hausdorff space and has a representation in the
form

Z = U{K(a):a € A}
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where K(o) is compact for each ¢ in A = NN (respectively, A is a subset of N¥) and
K is upper semi-continuous, in that, the set

{0:0€ Aand K(c) C G}

is open in A for each open set G in Z. A Banach space F is said to be K-analytic
(respectively, K-countably determined) if F taken with its weak topology has this
property.

We remark that a Banach space F taken with its weak topology and its norm
metric p is o-fragmented by p, and so E satisfies conditions (a) to (n) of Theorem
4.1, in the following two cases.

(i) E has the Point of Continuity (PC) Property. From the dentability char-
acterization of Radon-Nikodym Property it follows immediately that such a space
has the (PC) Property, and, indeed, it is easy to verify that the (PC) Property is
equivalent to the unit ball in E, taken with its weak topology, being fragmented
by the norm [20, pp. 54-55]. Bourgain and Rosenthal [2] have given an example of
a Banach space with the (PC) Property, which fails to have the Radon-Nikodym
Property. '

(ii) E is Cech-analytic. This is the case if E admits a Kadec norm, and then,
as W. Schachermayer has noted, F is even a Borel subset of its second dual E**,
and so is a Borel subset of its Stone-Cech compactification (see [8, p. 676] and
[9, Cor. 2.3]). It is also the case that every weakly compactly generated Banach space
is K-analytic [36] (see also [19, p. 51]), and it is immediate that every K-analytic
space is K-countably determined. Now L. Va§ék [43, Cor. 3(b)] has shown, among
other things, that every K-countably determined Banach space admits an equivalent
locally uniformly convex norm. It is not difficult to see that a locally uniformly
convex norm is a Kadec norm. Thus not only all K-analytic Banach spaces, but
also all K-countably determined Banach spaces are Cech-analytic. Consequently any
Banach space which is K-countably determined, but not K-analytic, is an example
of a Banach space which is Cech-analytic but not K-analytic; Talagrand [4] has given
such an example. M. Fabian and G. Godefroy [12] have recently shown that every
dual Banach space with the Radon-Nikodym Property has an equivalent locally
uniformly convex norm; and so such dual Banach spaces are Cech-analytic.

As we have already mentioned, the space £*°, taken with its weak topology, is
not o-fragmented by the norm metric, and so, by Corollary 4.2, £ is not Cech-
analytic in its weak topology. Thus £* is not a Souslin-(F U G) set in its second
dual with its weak-star topology. This improves on a result of Talagrand [37] who
shows that £°° is not a Borel set in its second dual with its weak-star topology. Note,
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however, that A. Tortrat has shown that, when a Banach space, taken with its weak
topology, is regarded as a subset of its second dual, with its weak-star topology, it
is measurable there for all Radon measures [31, 40]. '

2. Compact spaces that admit lower semi-continuous metrics

In this section we consider a compact Hausdorff space Z that admits a bounded
lower semi-continuous metric p. After proving some simple lemmas we use ideas
from a paper by Ghoussoub and Maurey [16] to show that it is possible to embed Z
in a dual Banach space with its weak-star topology and ensure that p coincides with
the norm distance on the Banach space.

Lemma 2.1

Let p he a lower semi-continuous metric on a Hausdorff space Z. Then each
compact subset of Z is p-closed and p-complete in the p-metric. Further, each
p-compact set in Z is closed.

We give an example to show that closed sets in Z are not necessarily p-closed.
Take Z to be the set of numbers {0,1/2,1/3,...} with the discrete topology. Take
p to be the modulus of the differences between the numbers. Then p is a continuous
metric on Z. The set {1/2,1/3,...} is closed in Z but is not p-closed.

Proof of Lemma 2.1. The first statement is proved in [19, Lemma 3.3].

Now suppose that C is p-compact in Z. Let e be a point of Z not in C. For
each ¢ in £ write

Vo= {22 lz0) < Joter0)}.

U= {z:0(2.0) > 3ple0)}.

Then V, is a p-open neighbourhood of ¢, and, since p is lower semi-continuous,
U. is an open neighbourhood of e. Further U, NV, = @. Since C is p-compact
it is covered by a finite family of the sets V., ¢ € C. Now the intersection of the
corresponding finite family of the sets U, is an open neighbourhood of e that does
not meet C. Hence C is closed. []

If Ais any set in Z and € > 0, we use
B(A,e) = {z€ A:inf{p(z,a):a € A} <€}

to denote the e-neighbourhood of the set A.
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Lemma 2.2

Let Z be a compact Hausdorff space and let p be a lower semi-continuous metric.
on Z. If A is a non-empty closed set in Z and € > 0, then the e-neighbourhood
B(A,¢) is closed in Z.

Proof. Consider any point e not in B(A,¢). Then we can choose 7 with
inf {p(e,a):a € A} > n>e.
By the lower semi-continuity of p, for each point a of A, we can choose open sets
U(a), V(a) with
a € U(a), e€V(a),

so that
p(u,v) >n  for u € U(a), v € V(a).

Since A is compact, we can choose points aj,as,...,a, in A so that

AC LnJ U(a,-).

If there were a point v common to the sets

V=(]V(e) and B=B (U U(ai),e) ,
=1 =1
we could find a v in .
U=|]JU(a)
. i=1

with p(u,v) < 7. For at least one i, 1 < i < n this would contradict the choice of
U(a;i) and V(a;). Thus V is an open set containing e that does not meet the set

B (0 U(ai),«e)

that contains B(A,¢). Hence B(A,¢) is closed in Z. O

Lemma 2.3

Let Z be a compact Hausdorff space and let p be a lower semi-continuous metric
on Z. If Fy and F; are non-empty closed subsets of Z, the function p attains its
infimum on Fy X F3.
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Proof. Write
6 = inf {p(Zo,Zl) 120 € Fy, 21 € Fl}

Then, for each integer n > 1, the set

K = {(20,21) : p(20,21) £ 6+ (1/n)} N (Fo x F)

in a non-empty subset of Z x Z. Since p is a lower semi-continuous metric, each set
K, is compact in Z X Z. Hence

is non-empty and p attains its infimum § at each point of this set. O

The next lemma improves a lemma of Ghoussoub and Maurey [16, Lemma
VII.2]. The proof, which is modelled as in [16] on that of Urysohn’s Lemma (see,
for example, [21, pp. 114-115], is a bit simpler than that given in [16].

Lemma 2.4

Let Z be a compact Hausdorff space and let p be a lower semi-continuous metric
on Z. If Fy and Fy are disjoint non-empty closed subsets of Z, with

p(z0,21) > 1 for z9 € Fy and 2, € Fi,

then there is a continuous function f : Z — [0, 1], taking the value 0 on Fy and the
value 1 on Fy, and satisfying

| £() = ()] < p(¢5¢N

for all {, (' in Z.

Proof. Let @ be the set of all the rational numbers in [0,1]. We construct a family

{Ur :r € Q} of open sets in Z such that:

(a) Fo C Up and Uy = Z\Fi; and

(b) if s, t belong to @ and s < t, then p((,{") > |s — t|, whenever { € clU; and
("¢ Us. '
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Using Lemmas 2.2 and 2.3, the closed set Fy does not meet the closed set
B(Fy,1). Since Z is normal, there is an open set Up in Z with

Fy Cc Up and cl Uo) N B(F,1) = 0.

Take Uy = Z\F;. This ensures that the condition (a) is satisfied. Further, since

p(2,2z1) > 1 whenever z € clUy and 2; € Fj, it is clear that the condition (b) is
satisfied when s = 0 and ¢t = 1.

Enumerate @ as o =0, 71 = 1, r2, .... Suppose that for some n > 1, the sets
Ur;, 0 <1 < n, have been chosen so that Uy, U; satisfy (a) and so that (b) holds for
all choices of s, t from {r9,71,...,7,}. We describe how the next set Uy, ,, is to be

chosen. Write 7 = 7,41 and
S={rj:0<j<n, r;<r},
T={rj:0<j<n, r<rj}.
Notethat 0 € S and 1 € T. Now, ifs€ S,¢t € T and

CedU,, ¢' € Z\Us,

the condition (b) ensures that

p((, (") > s —tl=(r—s)+(t—1),
so that

B(clUs, 7 — s) N B(Z\Us,t — 1) = 0.
Thus the sets

U B(clUs,r—.s)

sES
U B(2\Us,t-7)
teT

are disjoint closed sets. Since Z is normal, there is an open set U, = U, ,, with

U B(dUs,r—s) C Uy,
sEeS

(dU,)n |J B(Z2\Us,t —1) = 0.
teT
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These last two conditions are equivalent to the condition (b) when s € {r; : 0 < ¢ <

n} and t = 7,41 and when s = r,43 and t € {r; : 0 < ¢ < n}. The construction now

follows by induction. »
We now define a function f on Z by taking f to be 1 on Fj, and

f(z)=inf {r:2z€ U, and r € Q},

when z € Z\F; = U;. Just as in the proof of Urysohn’s Lemma (see, for example,
[21, p. 114]), it follows that f is a continuous map from Z to [0,1]. Clearly f takes
the values 0 and 1 on Fp and on Fj. Finally, suppose that (, ¢’ belong to Z and
that f(¢) = a < b = f(¢'). Then for any s,t in Q with a < s < t < b, we have
¢ € Us and (' ¢ Uy, so that, by (b), p(¢,{") > |s — t|. Hence

1F(Q) = F({N =b-a < p(¢,¢'). O

Theorem 2.1

Let Z be a compact Hausdorff space and let p be a bounded lower semi-
continuous metric on Z. Then there is a dual Banach space X* and a homeo-
morphism ¢ mapping Z onto a subset of X* taken with its weak-star topology,
with

[|£(¢) = (]| = p(¢,¢") (2.1)
forall ¢, (' in Z.

Proof. We suppose, as we may after a change of scale, that 1 is a bound for p. Let
X be the space of all continuous real-valued functions f on Z that satisfy a uniform
Lipschitz condition of order 1 with respect to p. Then || f||Lip, defined to be the least
constant K such that

|f(zl)—f(22)| SI\’p(Zl,Zg), for all 21, 29 € Z,
is a semi-norm on X. It is easy to verify that the function p, defined by

p(f) = max {||fllip, | flleo},  [Iflleo = sup 17 (2)1,

is a norm on X and that X is a Banach space with this norm. We define a map
¢p:Z — X*. For each zin Z, let ¢(z) be the linear functional ¢(z): X — R in X*
defined by ¢(z)(f) = f(z) for each f in X. Note that ¢(z) does belong to X*, since

le()]| = sup {If(2)] : p(f) < 1} < 1.
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By Lemma 2.4, applied to a rescaled p, the space X separates the points of Z. Hence
¢ maps distinct points of Z to distinct points of X*. Clearly ¢ is continuous as a
function from Z to X* with its weak-star topology. Since Z is compact, ¢ maps Z
homeomorphically to ¢(Z) taken with its weak-star topology in X*. Now consider
distinct points ¢, ¢’ of Z. Write 7 = p((,{’). On one hand
[|0(€) = w(¢)]| = sup {I£(¢) = F(¢)] : f € X and p(f) < 1}
< sup {|f(¢) — f(¢): f € X and || fllLip < 1}
< p(¢, ¢ (2.2)
On the other hand, for any ¢ > 0, we can apply Lemma 2.4, with the rescaled
lower semi-continuous metric 771(1 + €)p, to construct a continuous function g on
Z with g(()=0,9(¢")=1,0< g <1, and
|l9(z1) = 9(22)| < v7H(1 +€) p(21,22)

for all 2y, 29 in Z. Thus

p(rg) = rp(g)
= 7 max {||g||Lip |9]loo }
< rmax {r"}(1+¢),1}
= max {1 +¢,r}
= max {1+¢,p(C,¢")}
=1+e¢.

Hence

p(¢,¢") = |rg(¢) = rg(¢")]

= [(O)(rg) ~ #(¢')(rg)]

< le(€) = #(¢")||p(rg)

< (1 +8)][e(¢) = (SN
On letting ¢ tend to zero, we obtain

p(¢,¢") < () = #(¢N]]- (2.3)

Now (2.2) and (2.3) yield (2.1). O
Remark. The equivalence of the conditions (2) and (3), discussed in the Introduction,

follows immediately from Theorem 2.1, since the norm distance in a dual Banach
space is lower semi-continuous for the weak-star topology.
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3. Measure-theoretic arguments

In this section we develop some measure-theoretic arguments and prove some of the
implications needed to establish Theorem 4.1. We prove a number of lemmas.

Lemma 3.1

Let Z and W be compact Hausdorff spaces and let p be a continuous map of Z
onto W. Then, for any Radon measure u on W, there is a Radon measure v on Z
with v(p~1(B)) = p(B) for each Borel subset B of W.

Proof. Let C(Z) be the Banach space of continuous real-valued functions on Z, with
the supremum norm. Let C(Z)* be the Banach space dual of C(Z), regarded as
the space of signed measures of the form v; — v; with v1,v; Radon measures on Z.
In particular, for each z in Z the Dirac measure §, assigning measure 1 to {z} and
measure 0 to Z\{z} belongs to C(Z)*. The map § : z — §, embeds Z topologically

in C(Z)* taken with its weak-star topology. We use similar concepts and notation
for W.

Tet T : C(W) — C(Z) be continuous linear map defined by T'(f) = f op for
each f in C(W). Let T* : C(Z)* — C(W)* be the adjoint map with T*(v) = p
characterized, for each v in C(Z)*, by the formula

/fopdu:/ fdu,  forall f € C(W).
z w

These relations are summarized in the following diagram
p: Z — W z — p(2),
T: CW) — C(2): f — fop,
T*: C(Z) — CW): v — .
Here T is weak-star to weak-star continuous and
T(62) = bp(z)

for each z in Z.
Let M;t(Z) be the space of all non-negative measures v with »(Z) = 1 in

C(Z)*, and let M;t (W) be the corresponding subset of C(W)*. Then M; (Z) is the
weak-star closed convex hull of

§(2)={6.:2¢€ 2}
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and M (W) is the weak-star closed convex hull of §(W). Since T* is weak-star to
weak-star continuous and linear it maps weak-star compact convex sets to weak-
star compact convex sets. Since T*(6(Z)) = §(W), if follows that T*(Mi (Z)) =
M (W). Now, if p is any Radon measure on W, with u(W) > 0, then (u(W))~!p
belongs to M; (W) and there is a A in M;t(Z) with T*()\) = (p(W))"'p. Take
v = u(W)A. Then T*(v) = u so that

/szpdv=/Wfd#

for all f in C(W). This ensures that

v(p~'(B)) = u(B)

for each Borel set B in W. O

Throughout the rest of this section, Z will be a Hausdorff space and p will
be a lower semi-continuous metric on Z. Under this assumption we prove lemmas
establishing a chain of implications (see page 23) between the following conditions.

(c) Each compact subset of Z is fragmented by p.

(d) For each Radon measure p on Z with u(Z) > 0, and for each § > 0, there is a
compact subset H of Z with u(H) > 0 and p-diam H < §.

(e) For each Radon measure p on Z with u(Z) > 0, there is a p-compact subset C
of Z with u(C) >0

(f) For each Radon measure p on Z and each € > 0, there is a p-compact subset C
of Z with u(C) > p(Z) — e.

(g) The Radon measures on Z coincide with those Radon measures on Z taken with
its p-topology that are carried by o-compact sets of Z taken with its original
topology.

(h) The subsets of Z that are measurable for every Radon measure on Z coincide
with the subsets of Z that are measurable for those Radon measures on Z
taken with its p-topology that are carried by o-compact sets of Z taken with
its original topology.

(i) Each p-closed subset of Z is measurable with respect to each Radon measure
on Z.

(j) For no € > 0 does Z contain a compact set H that admits a continuous map
p onto the Cantor set 2N with inverse images of distinct points of 2N separated
by p-distance €. '
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Lemma 3.2

(c) = (d).

Proof. Let u be a Radon measure on Z with u(Z) > 0 and let § > 0 be given.
Then we can choose a compact set K in Z with u(K) > 0. Let u |k, defined by

mk(B) = u(Bn K), for B a Borel set,

be the restriction of 4 to K. Then y|x has compact support, say L, contained in K.
This support L is a compact subset of K with

pix (L) = px(K) = p(K) > 0,

and with
pr(LNG) >0,

whenever G is an open subset of Z with LN G # (. By our assumption (c),
L is fragmented by p and we can choose an open set G with LN G # 0 and p-
diam(LNG) < 8. Choose a point I in LNG. Since Z is a Hausdorff space and ! does

not lie in the compact set L\G, we can choose an open set U in Z, containing [, and
with the closure

H=cU

disjoint from L\G. Now LN H is a compact subset of Z contained in L N G and so
of p-diameter less than §. Further '

p(LNH)> pg(LNU) >0,
since U is an open set meeting the support L of u k. This proves the lemma. O

Lemma 3.3

(d) = (e).

Proof. Let u be a Radon measure on Z with p(Z) > 0. Fix a positive number 4.
Using condition (d), the set Z contains a compact set H with u(H) > 0 and p-
diam H < 6. Let ‘H be a maximal disjoint family of such compact subsets H of Z
with u(H) > 0 and p-diam H < §. Clearly H is non-empty but countable. Write

J=|\J{#:Hen}.
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We prove that u(J) = p(Z). Otherwise, we must have u(J) < p(Z) and Z\J is a
pu-measurable set of positive measure. Hence we can choose a compact subset L of
Z\J having positive u-measure. Applying (d) to the measure v defined on L by

v(E)=pn(LNE), E Borel,

we can choose a compact subset H' of L with u(H') = v(H') > 0, and p-diam H' < 6.
Now H' is a compact subset of Z disjoint from the union J of the family H, with
u(H') > 0 and p-diam H' < 6. This is contrary to the maximality of H. Hence
u(J) = u(Z) as required.

For each integer n > 1, we apply the result of the last paragraph with § = 1/n;
and, by taking a suitable finite sub-family from the family constructed, we obtain a
compact subset Cp, of Z such that

(1) p(Cn) > w(Z)(1-27"71),
and

(2) C,, is the union of a finite number of disjoint compact sets, each of p-diameter
less than 1/n.
Write

C= ﬁ Ch.
n=1

Then C is a compact subset of Z with u(C) > (1/2)u(Z) > 0. Since p is lower
semi-continuous, Lemma 2.1 shows that C is p-closed and indeed p-complete. The
condition (2) ensures that C is totally bounded in the metric p. Thus C is compact
in Z and p-compact and the condition (e) holds. O

Lemma 3.4

(e) = (1).

Proof. Let p be a Radon measure on Z and let ¢ > 0 be given. We assume, as
we may, that u(Z) > . Using condition (e) the space Z contains a set D that is
p-compact and has (D) > 0. Let D be a maximal disjoint family of such p-compact
subsets D of Z with pu(D) > 0. Clearly D is non-empty but countable. Just as in
the proof of Lemma 3.3, it follows that

u(U{D:DED}) = u(Z2).

ITence, by taking ' to be a suitable finite union of sets from D, we obtain a p-compact
set C' with p(C) > u(Z2)—¢e. O
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The next lemma will be a step towards the proof of the implication (f) => (g).

Lemma 3.5

Let S and 7 be two Hausdorff topologies on a space X. Let A be the family of
all subsets of X on which the topologies inherited from S and T coincide and are
compact. If p is a Radon measure for S carried by a countable union of sets.in A,
then p is also a Radon measure for 7.

Proof. Suppose that p is carried by a set C = (Jo, Cr, where C,, € A for each
n > 1. Let B and D be the S-Borel sets and the 7-Borel sets respectively. If F is
a T-closed set, then F N C, is S-closed, and so F N C € B. Therefore, ENC € B,
whenever E € D. Similarly ENC € D, whenever E € B.

If E € D, we have

EnCcEC(EnC)u(X\0),
with ENC € B, X\C € B and u(X\C) = 0. Hence E is y-measurable. Define a
7T -Borel measure by taking

a(E)=p(E)  for EeD,
and forming the completion. If F is a ji-measurable set, there are sets A and B in D
with A C E C B and i(B\A) = 0. But then pu(B\A) = 0. Hence E is y-measurable
and

A(E) = p(A) = p(A) = p(E).

Furthermore, given ¢ > 0, there is an S-compact set K C A with u(K) > p(A)—¢ =
a(E)—e. Now

p(K):p(CﬂI():u(G C’nnK).

n=1
Hence there is an m > 1 with

m
p (U C'nﬂK) > A(E) —e.
n=1

Each set C,, N K is T-compact. Thus L = |J)-,; C» N K is a T-compact subset of
E with a(L) = (L) > a(E) — €. This shows that j is a Radon measure for 7. To
prove that u = fi it remains to show that each u-measurable set is ji- measurable.
Suppose that F is u-measurable, so that A C E C B, with u(B\A) = 0, for some A
and B in B. Then

ANCCEC(BNC)U(X\O),
and ANC, BNC and X\C belong to D. Now
A(I(BNC)UX\CINANC)) = w((B\A)N CIU(X\C)) = 0.

Thus F is ji-measurable as required. O
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Lemma 3.6

(f) = (g)

Proof. Let A be the family of all compact subsets of Z that are also p-compact. If
A is any such set, it follows, by Lemma 2.1, that the p-topology on A coincides with
the topology inherited from Z. Thus A is just the family introduced in Lemma 3.5
for the space Z and its two topologies. ’

(1) Suppose that u is a Radon measure on Z. Then, by (f), for each ¢ > 0,
there is a p-compact subset C of Z with u(C) > u(Z) — €. Further, by Lemma
2.1, C is closed and so is p-measurable. Since p is a Radon measure, there is a
compact subset K of C with u(K) > u(Z) —e. By Lemma 2.1, K is p-closed and
so is p-compact as C is p-compact. Thus K, being compact and p-compact, belongs
to A. It follows that p is carried by a set that is a countable union of members of
A. By Lemma 3.5, 1 is a Radon measure for p carried by a o-compact set of Z.

(2) Suppose that j is a Radon measure for p carried by a o-compact set K
of Z. Write K = UZ‘;I K,, with each set K, compact. Note that each set K, is
p-closed by Lemma 2.1. Since [ is a Radon measure for p, it is also carried by a set
C = Uy -, Cm, with each set C,, p-compact. By Lemma 2.1 each set C,, is closed.
Now /i is carried on

KﬂC:U{I\’nﬂCm:nZI,mzl},

and each set K, N Cp,, being both compact and p-compact, belongs to .A. By
Lemma 3.6, it follows that j is a Radon measure on Z. O

Lemma 3.7

(8) = (h).

Proof. By (g) the family of Radon measures on Z coincides with the family of those
p-Radon measures on Z that are carried by some o-compact set in Z. Hence the
sets that are measurable for all measures of one family coincide with the sets that
are measurable for all measures of the other family. O

Lemma 3.8

(h) = (i).

Proof. (i) is just a very special case of (h). O
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Lemma 3.9

(i) = ()-

Proof. We suppose that (j) fails and seek a contradiction to (i). Since (j) fails we
can choose ¢ > 0 and a compact set H in Z and a continuous surjective map p
onto the Cantor set 2F with the inverse images of distinct points of 2¥ separated by
p-distance .

Take p to be the standard probability measure on 2N and let u* denote the
corresponding outer measure. By Lemma 3.1 we can choose a Radon measure v
on Z carried by H with v(p~(B)) = u(B) for each Borel subset B of 2¥. It follows
without difficulty, that

v(p~H(M)) = w(M),

for each p-measurable set M.
Now choose disjoint non-measurable sets P and @ in 2% with

pr(P) = p*(@Q) = pu(2") = 1.

Now p~!(P) and p~!(Q) are both unions of p-closed sets each separated by p-
distance ¢. Hence p~!(P) and p~!(Q) are disjoint p-closed sets in Z. Using the

condition (i) we conclude that p~!(P) and p~1(Q) are measurable for the Radon
measure v. Hence

v(p™'(P)) +v(p™H(Q)) < v(H) = u(2") =1,

and

either v(p~l(P)) < or v(p™(Q)) < %

We suppose that v(p~1(P)) < 1/2. Then v(H\p~!(P)) > 1/2 and we can choose a
compact set L in H\p~!(P) with v(L) > 1/4. Since p(L) is compact in 2N, we have

[ 3 e

p(p(L)) = v(p~top(L)) 2 v(L) > %-

Since L is contained in H\p~!(P), the set p(L) is contained in 2¥\P. Thus
P is contained in the p-measurable set 2¥\p(L) with u-measure at most 3/4. This
contradicts the choice of P with u*(P) = 1. The result follows. O '
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Note that we have now obtained the following implications contributing to the
proof of Theorem 4.1.

(¢) ()
Y T
(d) (%)
4 T

(e) = (/) = (@9 = (h)

At one stage we had hoped that, in proving some of these consequences of the
fragmentation of the compact sets by a lower semi-continuous metric, we would have
been able to work with non-negative inner regular Borel measures, that is, with Borel
measures satisfying

p(E) =sup {p(F): F C E and F is closed},

for all measurable sets E, rather than with Radon measures. We now describe an
example showing that this is not possible.

EXAMPLE 3.1. There is a compact Hausdorff space Z that is fragmented by a lower
semi-continuous metric p and an open subset Z of Z and a non-negative inner regular
Borel measure y on Z with u(Z) = 1 but with u(H) = 0 for all compact subsets H
of Z.

Construction. Let w; be the first uncountable ordinal and take Z to be its successor
w1 + 1 taken with its order topology. Then Zisa compact Hausdorff space. Take
Z = w,. Then Z is an open set in Z. Take p to be the trivial 0,1 metric on Z so
that the p-topology on Z is the discrete topology. Then p is lower semi-continuous
and Z is fragmented by p. Take pu to be the Dieudonné measure on w; [15, §5.5].
Then p is a non-negative inner regular Borel measure on Z. Further p(Z) = 1, but
p(H) = 0 for all compact subsets H of Z.
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4. Topological arguments

In this section we complete the proof of Theorem 4.1. Throughout we take p to
be a lower semi-continuous metric on Z. We prove lemmas giving implications (see
page 29) among the following conditions. In [19] we have proved that (a) <= (b)
= (c) = (j) and that when Z is Cech-analytic (j) = (a).
(a) Z is o-fragmented by p.
(b) Z is o-separable with respect to p.
(c) Each compact subset of Z is fragmented by p.
(j) For no e > 0 does Z contain a compact set H that admits a continuous map p
onto the Cantor set 2N with the inverse images of distinct points of 2~ separated
by p-distance .
(k) For no € > 0 does Z contain a relatively compact e-tree for p.
(1) For each compact set K in Z, the points of continuity of the identity map from
K to K with its p-topology are dense in K.
(m) For each compact set K in Z, the topology of K coincides with the p-topology
of K on some dense Gs-subset of K.
(n) For each compact set K of Z, each p-Borel set of K has the Baire property in
K.

Lema 4.1
(k) = (j)-

Proof. Suppose that (j) fails. Then we can choose € > 0, a compact set H contained
in Z and a continuous map p of H onto 2N with the inverse images of distinct points
of 2N separated by p-distance e. For each finite sequence

S = 81,82y...,39
of 0’s and 1’s let
0'(3) = 315327---,371,,0,0,...

be formed by adjoining an infinite sequence of zeros to s. Then o(s) € 2N and we
can choose a point z(s) in p~1(c(s)). It is easy to verify that {z(s)} is a e-tree
contained in the compact set H. Thus (k) fails. This proves the lemma. O

Lemma 4.2

(i) = (k).
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Proof. We suppose that (k) fails. Then, for some ¢ > 0, Z contains a relatively
compact e-tree. This means that we can choose ¢ > 0 and a countable set {z(s)} of
points of Z, indexed by the finite sequences s of 0’s and 1’s, and for each { > 0 and
each sequence s of length [ the sets

cl{z(t):t|l+ 1= 5,0 and ¢ has length >1+1}

and
cl{z(t): tll + 1 = s,1 and ¢ has length >+ 1}

are compact sets separated by p-distance €. Let I(s) denote the length of the se-
quence s. Write

H(s) = cl{z(t) : I(t) > I(s) and t|I(s) = s},

for each s. Note that z(s) € H(s) so that, for each s, H(s) is non-empty and
compact. Further, for each s, perhaps of zero length, the sets H(s,0) and H(s,1)
are separated by p-distance . Hence

H:ﬂ{U{H(s):l(s):l}:lZl}

is a compact subset of Z constructed by a generalized Cantor set construction.
Define a map p from H to 2N by taking p(h), for h € H, to be the unique

sequence in 28 for which
o0

h € ﬂ H (p(h)|r).

r=1

Then, for each o in 2%, the set
p~(o) =) H(alr)
r=1

is compact and non-empty. It follows, in particular, that p maps H onto 2N. To
prove that p is continuous, it suffices to prove that

p~ (I(alr))
is a relatively open set in H, whenever o|r € 2" and

I(olr) = {re2:r|r = o|r}.
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This set p~1(I(o]|r)) coincides with the compact set

ﬂ U {H(r|s):7|r = alr}.

Hence p~!(I(o|r)) is the complement of H of the 2" — 1 compact subsets
p~t(I(r|r)), T|lr € 27, T|r # olr,

and so is relatively open in H. Thus p is a continuous map of H onto 2. Further,
if o and 7 are distinct points of 2¥, we can take r to be the least integer with
o|r # 7|r. Then p~!(o) and p~1(r) are subsets of H(co|r) and of H(r|r), which are
separated b p-distance €. This proves the lemma. O

Lemma 4.3

If K is a compact subset of Z that is fragmented by p, then the points of
continuity of the identity map from K to K with its p-topology are dense in K.
Further, (c) = (1).

Proof. Let Gy be any non-empty open subset of K. We construct a sequence
G1,Gs,. .. of non-empty open sets with

cdG, C Gr_q and p—diam G, < 1/n,

for n > 1. When n > 1 and G, -1 has been chosen, we use the assumption that K
is fragmented by p to choose an open set U, in K with

Gn1NU, #0 and p—diam G,_1 N U, < 1/n.
We then choose a point z,, in G,_; N U, and an open set G,, with
Tn €EGp CcdGr CGpo1 NU,.
That ensures that

0#G,, dG,CG,_; and p—diamclG, < 1/n.

The construction now follows by induction.
The sets
dG,, n=12,...

form a decreasing sequence of non-empty compact sets. Take z to be any point in
the intersection of these sets. Then, for each n > 1, the point z has a neighbourhood
G, in K of p-diameter less than 1/n. Thus the identity map from K to K with its
p-topology is continuous at z. Since z € Gy and Gy may be any open set, these
points of continuity are dense in K.

Now (I) follows from (c). OJ
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Lemma 4.4

Suppose that K is a compact set in Z and that the points of continuity of the.
identity map from K to K with its p-topology are dense in K. Then the topology
of K coincides with the p-topology of K on some dense Gs-set of K. Further (1) =

(m).

Proof. Let H be the set of all points of continuity of the identity map from K
to K with its p-topology. Then H is a Gs-set in K and it is dense in K by our
assumption. The identity map from H to H with its p-topology is clearly continuous,
and its inverse map is also continuous since the p-topology on K is stronger than
the original topology, by Lemma 2.1. Hence the p-topology on H coincides with the
topology induced on H by the original topology on K.

It is now clear that () = (m). O

Lemma 4.5

Let K be a compact set in Z and suppose that the topology of K coincides
with the p-topology of K on some dense Gs-set of K. Then each p-Borel set in K
has the Baire property in K. Further (m) = (n).

Proof. Let H be a dense Gs-set in K chosen so that the topology of H inherited from
K coincides with the p-topology on H. Then K\H is of the first category in K.

Consider any p-Borel set B in K. Then B N H is a p-Borel set in H. By the
coincidence of the topologies on H, the set BN H is a Borel set in H and so also
in K. Hence BN H has the Baire property in K. Since B\ H is of the first category
in K, it follows that

B =(BnH)U(B\H)

also has the Baire property in K.
It is now clear that (m) = (n). O

Lemma 4.6

Let K and H be compact Hausdorff spaces and let f be a continuous map of K
onto H. Suppose that K contains no compact subset L with

L#K but f(L)= f(K).

Then f maps each nowhere dense subset of K to a.nowhere dense subset of H.
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Proof. Tt suffices to suppose that N is a subset of K and that f(N) fails to be
nowhere dense in H and to prove that N cannot be nowhere dense in K. Then
cl f(N) = f(c1N) contains a nonempty open subset, say U, of H. Write L =
cd NU f~Y(H\U). Then L is closed and

f(L)D f(IN)U (H\U) = H.
Hence, by hypothesis, L = K. Thus cl N contains the non-empty open set
K\f~ (H\U) = f1(U),

and N is dense in this set. O

Lemma 4.7

(n) = (3)-

Proof. We suppose that (n) holds but that, for some ¢ > 0, there is a compact
subset H of K that admits a continuous map f onto 2~ with the inverse images of
distinct points of 2 separated by p-distance €.

By a Zorn’s lemma argument, there will be a minimal compact subset L of H
subject to the condition that f(L) = 2¥. We suppose, as we may without loss of
generality, that H is chosen to coincide with such a minimal set L.

Take V to be any subset of 2F that does not have the Baire property in 2N (see,
for example [23, p. 91]). Write W = f~1(V). For each v in V, the set f~1(v) is
compact in H and so is p-closed in H. As each pair of such sets f~1(v) are separated
by p-distance ¢, it follows that W is p-closed in H. By condition (n) this set W has
the Baire property in H. This enables us to choose a closed set F' in H with

W\F and F\W

both of the first category in H. Now f(F) is closed in 2N, and, by Lemma 4.6, the
sets

f(W\F)  and  f(F\W)
are of the the first category in 2N. Since V = f(W) we see that the sets

VAF(F) = fW\f(F) C F(W\F),

SNV = f(F)\f(W) C f(F\W)

are of the first category in 2%, and V has the Baire property in 2N.
This contradiction shows that K can contain no such set H. It follows that (5)
holds. O
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Lemma 4.8

(J) = (o)

Proof. We suppose that (c) fails. Then Z contains a compact set H that is not
fragmented by p. Since H, being compact, is Cech-analytic, it follows [19, Theorem
4.1] that for some £ > 0, H contains a compact set L that admits a continuous map
onto the Cantor set 28 with the inverse images of distinct points of 2N separated by
p-distance at least €. Thus (j) fails. This prove the lemma. O

Proof of Theorem 4.1. In Lemmas 3.2 to 3.10 and Lemmas 4.1 to 4.8 we have proved
all the implications in the following diagram.

(k)
g

@ = (& <+ @ <= @
4 fr f

Il ) =m= () (h)
f

(e) =  H = (9)

As we remarked at the beginning of this section the remaining implications in
Theorem 4.1 are proved in [19]. O
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