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ABSTRACT

We consider the generalization S, of the Schatten classes S, obtained in
correspondence with opportune continuous, strictly increasing, sub-additive
functions ¢ such that ¢©(0) = 0 and ¢(1) = 1. The purpose of this note
is to study the spaces S, of the @-nuclear operators and to compare their
properties to those of the by now well-known space S1 of nuclear operators.

Let £(£%) be the space of all bounded linear operators on £2. As well known, every
compact operator T on £? has a representation of the form

T=Z§n£n®fn, (1)

where (e, ) and (f,) are orthonormal systems in £2 and the sequence (£,) can always
be taken to be non-increasing, non-negative and such that £, — 0. For p > 0, it
is customary to denote by S, the space of all operators T" as in (1) for which the
quantity

op(T) = Z 34

is finite [5, §15.5]. Thus, for 1 < p < oo, the S, are the Schatten classes, while
for 0 < p < 1 the elements of S, are the so-called p-nuclear operators [5, Theorem
18.5.2].
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Now, following [3, §II.2], we consider the set ®' of all continuous, strictly in-
creasing, sub-additive functions ¢ : [0,00) — [0, 00) such that ¢(0) = 0. For any
function ¢ € ®' and any scalar sequence 7 = (7,) we put

ao(n) =Y @(Inal)

and
Lo ={n: o4(n) < 0o}

and we observe that, because of sub-additivity, £, is a linear space of sequences on
which o, is a metric generating a topology under which (£, 0,) becomes a complete,
metrizable, topological vector space. Since each ¢ € @' is equivalent to a concave
function @ € ®' and since pp € ® whenever ¢ € ® and p > 0, we may always
assume that ¢ is concave and satisfies

p(1) =1, _ (2)

so that
p(t)y>t forall tel0,1]. (3)

Then, we denote by ® the set of all such functions and, from now on, we always
assume that ¢ € ®.

An operator T € £(¢?) admitting the representation (1) with (&,) € £, is called
@-nuclear and the set of all such operators is denoted by S,. We observe that, when
@(t) =1tP (0 < p < 1), then £, = I” and hence S, = S,, showing that the p-nuclear
operators are a generalization of the p-nuclear ones.

The purpose of this note is to study the spaces S, and to compare their prop-
erties to those of the by now well-known space S; of nuclear operators. If T € S,
we put 0,(T) = 0,(€) if £ = (€,) is the sequence in the representation (1) of T'.

Theorem 1

S, is an operator ideal and o, is a translation-invariant metric on it generating
a topology under which S, becomes a complete, metrizable, topological vector space
in which the finite-rank operators are dense. Moreover, the inclusion map (S,,0,) —
(81,01) is continuous.
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Proof. The ideal properties of S, are evident from the hypoteses on ¢ and so is the
fact that o, is a translation-invariant metric on S,. Thus (S, 0,) is a metrizable
topological vector space and it is also clear that the finite-rank operators are dense

in it. Suppose now that T € Sy; then 0,(T) = Y, ¢(£n) < oo and hence there
exists a k such that ¢(§,) < 1 for all » > k. Because of (3) and the fact that ¢ is
increasing, we must have 0 < §, < 1 for n > k and hence &, < ¢(§,) again by (3).

But then -
D<) plbn) < o0
n>k n>k

and T € S;. This argument shows at the same time that S, C S; and that the in-
clusion map (Sy,0,) — (S1,01) is continuous. Finally the completeness of (S, 0,)
follows from that of (S1,01) and of (£,,0,) by a standard argument. O

Now we put
B,={T €S8,:0,(T)<1}

and
B, = {T € S 20’1(T) < 1}.

Then we have the following

Lemma

B is the closure in (Sy,0y) of the absolutely convex hull of B,,.

Proof. Let T = 3, énen ® frn € S1 be such that 01(T) < 1. Then 3, & < 1.
Moreover, by (2),

01(en ® fa) = 1= (1) = 0y(en ® frn),
hence e, ® f, € B, for all n and the lemma follows. O

Denote by S/, the topological dual of (S,,0,) and put
|All, = sup {|{T,A)| : T € B,}
for A € S,. Then we have

Theorem 2

(S5, - llo) is a Banach space isometric to L(£?).
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Proof. By the lemma, S/, = (Sy,01)' = S; and
14l = sup {(T, A)| : T € B1}.
Hence (85, - lle) = (Si, Il - l1) = £(¢%) by [6]. O
Turning now our attention to the extreme points of B, we find

Theorem 3

Let T € B,. Then the following assertions are equivalent:
(i) T is an extreme point;
(i) T = e® f, with |le]| = || f|| = 1.

Proof. (ii) = (i): Any T = e® f, with ||e|| = || f|| = 1, belongs to B, and hence to
B;. By [2, Theorem 3.1], T is then an extreme point of By and hence of B, since
BLP C B;.

(i) = (ii): Let T € B, be an extreme point and write, as in (1),

T =) &nen® fr,

with
Y ele) <1 (4)

Suppose that there are two integers j and k, with j # k, for which &; # 0 and
€ # 0. Then, by (4),

0<p(€)+er)=p< L

Thus, in the two dimensional zy-plane the point (£;,£x) helongs to the set

Co = {(z,9) : ¢(l2]) + ¢ (ly]) < p}

and is not an extreme point for such a set, since ¢ is concave and both §; and &
are non-zero. It follows that there are scalars @ > 0, 8 > 0 and ¢, with 0 < t < 1,
such that

(Ej,gk) = t(a,O) + (1 - t)(O,ﬁ) = (taa(l - t)ﬁ)

and that the segment

{s(a,0) + (1 -5)(0,8): 0< s < 1}
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is contained in C,. In particular,

max {p(a), p(8)} < p = @(&;) + #(&k)- (5)
If we now put

Ty=0e;® fi+  £nen® fn,
n#j,k

Ty =Bex® fr+ ) £nen ® fn,
n#j,k
then T = tTy + (1 — t)T. Moreover,

oo(T1) = (@) + Y ¢(én) <1

n#jk

by (4) and (5), showing that Ty € B,. Since the same is true for T3, we conclude
that such a T cannot be an extreme point. O

Finally, we investigate the isometries of (S,,0,), i.e. the linear bijections J :

S, — S, such that o,[J(T)] = 0,(T). We find that the results of [1] can be
extended to the following

Theorem 4
Let J: S, — S, be linear and onto. The following assertions are equivalent:
(i) J is an isometry;
(ii) There exist two unitary maps U,V on £2? such that J=U® V.

Proof. (ii) = (i): If T € S, has the representation (1), then

J(T) =" £.U(en) ® V(fa)- (6)

Because U and V are unitary on ¢%, the sequences (U(e,)) and (V(f,)) are or-
thonormal systems in ¢* and hence, from (6),

oo [I(T)] = D plén) = 0u(T),
i.e. J is an isometry.
(i) = (ii): If J is an isometry, then so is J' : S;, — S;, and hence also
J" : 8 — SJ. But, by Theorem 2 and [6], S) = L(£2)' = S}, hence the restriction
Jo of J" to &1 C 57 is an isometry of S; onto S; (because J maps S, onto S,) and
(ii) follows by the theorem in [1]. O
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Remark. One may also define an operator ideal 7, as follows: T € 7, if T has a
representation of the form

T= Z E'n.un@vna (7)

where (£,) € £, and (un), (vn) C €% with ||un|| = ||va]] = 1 for all n. Recalling
[4, §3], we see that 7, is the ideal of pseudo-p-nuclear operators, which may be
defined between arbitrary Banach spaces E, F and not just on £2. Endowed with
the metric

ve(T) = inf Y ¢(€n),

where the infimum is taken over all representations of the form (7), 7, becomes a
complete, metrizable, topological vector space for which all the results proved above
for S, continue to hold. In particular, if ¢ belongs to the class &, of [3, § IL.2],
then £, is idempotent, hence £, = £! - £, and, therefore, , = S, by [4, Theorem 3].
In this case the metrics v, and o, are equivalent, in the sense that they generate
the same topology on 7, = S, (use the open mapping theorem and the fact that
vo(T) < 0,(T) always).

References

. J. Arazy, The isometries of C), Israel J. Math. 22 (1975), 247-256.

. J. R. Holub, On the metric geometry of ideals of operators on Hilbert space, Math. Ann. 201
(1973), 157-163.

3. V. B. Moscatelli, On the existence of universal A-nuclear Fréchet spaces, J. Reine Angew.

Math. 301 (1978), 1-26.

4. V. B. Moscatelli and M. A. Simées, Operator ideals on Hilbert space having a unique extension
to Banach spaces, Math. Nachr. 118 (1984), 69-87.

. A. Pietsch, Operator Ideals, North-Holland, Amsterdam, 1980.

. R. Schatten, A Theory of Cross Spaces, Annals of Mathematical Studies, Vol. 26, Princeton
University Press, Princeton, 1950.

N =

A W



