On the space of φ -nuclear operators on ℓ^2

Marilda A. Simões

Università di Napoli, Istituto di Matematica, Facoltà di Architettura, 80134 Napoli, Italy

Received 20/OCT/90

ABSTRACT

We consider the generalization \mathcal{S}_{φ} of the Schatten classes \mathcal{S}_{p} obtained in correspondence with opportune continuous, strictly increasing, sub-additive functions φ such that $\varphi(0)=0$ and $\varphi(1)=1$. The purpose of this note is to study the spaces \mathcal{S}_{φ} of the φ -nuclear operators and to compare their properties to those of the by now well-known space \mathcal{S}_{1} of nuclear operators.

Let $\mathcal{L}(\ell^2)$ be the space of all bounded linear operators on ℓ^2 . As well known, every compact operator T on ℓ^2 has a representation of the form

$$T = \sum_{n} \xi_n e_n \otimes f_n, \tag{1}$$

where (e_n) and (f_n) are orthonormal systems in ℓ^2 and the sequence (ξ_n) can always be taken to be non-increasing, non-negative and such that $\xi_n \longrightarrow 0$. For p > 0, it is customary to denote by \mathcal{S}_p the space of all operators T as in (1) for which the quantity

$$\sigma_p(T) = \sum_n \xi_n^p$$

is finite [5, §15.5]. Thus, for $1 \leq p < \infty$, the \mathcal{S}_p are the Schatten classes, while for $0 the elements of <math>\mathcal{S}_p$ are the so-called *p*-nuclear operators [5, Theorem 18.5.2].

124 SIMÕES

Now, following [3, §II.2], we consider the set Φ' of all continuous, strictly increasing, sub-additive functions $\varphi:[0,\infty)\to[0,\infty)$ such that $\varphi(0)=0$. For any function $\varphi\in\Phi'$ and any scalar sequence $\eta=(\eta_n)$ we put

$$\sigma_{\varphi}(\eta) = \sum_{n} \varphi(|\eta_{n}|)$$

and

$$\ell_{\varphi} = \{ \eta : \ \sigma_{\varphi}(\eta) < \infty \}$$

and we observe that, because of sub-additivity, ℓ_{φ} is a linear space of sequences on which σ_{φ} is a metric generating a topology under which $(\ell_{\varphi}, \sigma_{\varphi})$ becomes a complete, metrizable, topological vector space. Since each $\varphi \in \Phi'$ is equivalent to a concave function $\widetilde{\varphi} \in \Phi'$ and since $p\varphi \in \Phi'$ whenever $\varphi \in \Phi'$ and p > 0, we may always assume that φ is concave and satisfies

$$\varphi(1) = 1, \tag{2}$$

so that

$$\varphi(t) \ge t \quad \text{for all} \quad t \in [0, 1].$$

Then, we denote by Φ the set of all such functions and, from now on, we always assume that $\varphi \in \Phi$.

An operator $T \in \mathcal{L}(\ell^2)$ admitting the representation (1) with $(\xi_n) \in \ell_{\varphi}$ is called φ -nuclear and the set of all such operators is denoted by \mathcal{S}_{φ} . We observe that, when $\varphi(t) = t^p$ ($0), then <math>\ell_{\varphi} = \ell^p$ and hence $\mathcal{S}_{\varphi} = \mathcal{S}_p$, showing that the φ -nuclear operators are a generalization of the p-nuclear ones.

The purpose of this note is to study the spaces S_{φ} and to compare their properties to those of the by now well-known space S_1 of nuclear operators. If $T \in S_{\varphi}$, we put $\sigma_{\varphi}(T) = \sigma_{\varphi}(\xi)$ if $\xi = (\xi_n)$ is the sequence in the representation (1) of T.

Theorem 1

 \mathcal{S}_{φ} is an operator ideal and σ_{φ} is a translation-invariant metric on it generating a topology under which \mathcal{S}_{φ} becomes a complete, metrizable, topological vector space in which the finite-rank operators are dense. Moreover, the inclusion map $(\mathcal{S}_{\varphi}, \sigma_{\varphi}) \to (\mathcal{S}_{1}, \sigma_{1})$ is continuous.

Proof. The ideal properties of \mathcal{S}_{φ} are evident from the hypoteses on φ and so is the fact that σ_{φ} is a translation-invariant metric on \mathcal{S}_{φ} . Thus $(\mathcal{S}_{\varphi}, \sigma_{\varphi})$ is a metrizable topological vector space and it is also clear that the finite-rank operators are dense in it. Suppose now that $T \in \mathcal{S}_{\varphi}$; then $\sigma_{\varphi}(T) = \sum_{n} \varphi(\xi_{n}) < \infty$ and hence there exists a k such that $\varphi(\xi_{n}) \leq 1$ for all $n \geq k$. Because of (3) and the fact that φ is increasing, we must have $0 \leq \xi_{n} \leq 1$ for $n \geq k$ and hence $\xi_{n} \leq \varphi(\xi_{n})$ again by (3). But then

$$\sum_{n\geq k} \xi_n \leq \sum_{n\geq k} \varphi(\xi_n) < \infty$$

and $T \in \mathcal{S}_1$. This argument shows at the same time that $\mathcal{S}_{\varphi} \subset \mathcal{S}_1$ and that the inclusion map $(\mathcal{S}_{\varphi}, \sigma_{\varphi}) \to (\mathcal{S}_1, \sigma_1)$ is continuous. Finally the completeness of $(S_{\varphi}, \sigma_{\varphi})$ follows from that of (S_1, σ_1) and of $(\ell_{\varphi}, \sigma_{\varphi})$ by a standard argument. \square

Now we put

$$B_{\varphi} = \left\{ T \in \mathcal{S}_{\varphi} : \sigma_{\varphi}(T) \le 1 \right\}$$

and

$$B_1 = \big\{ T \in \mathcal{S}_1 : \sigma_1(T) \le 1 \big\}.$$

Then we have the following

Lemma

 B_1 is the closure in (S_1, σ_1) of the absolutely convex hull of B_{φ} .

Proof. Let $T = \sum_n \xi_n e_n \otimes f_n \in \mathcal{S}_1$ be such that $\sigma_1(T) \leq 1$. Then $\sum_n \xi_n \leq 1$. Moreover, by (2),

$$\sigma_1(e_n \otimes f_n) = 1 = \varphi(1) = \sigma_{\varphi}(e_n \otimes f_n),$$

hence $e_n \otimes f_n \in B_{\varphi}$ for all n and the lemma follows. \square

Denote by \mathcal{S}'_{φ} the topological dual of $(\mathcal{S}_{\varphi}, \sigma_{\varphi})$ and put

$$||A||_{\varphi} = \sup \{|\langle T, A \rangle| : T \in B_{\varphi}\}$$

for $A \in \mathcal{S}'_{\varphi}$. Then we have

Theorem 2

 $(S'_{\varphi}, \|\cdot\|_{\varphi})$ is a Banach space isometric to $\mathcal{L}(\ell^2)$.

126 SIMÕES

Proof. By the lemma, $\mathcal{S}_{\varphi}' = (\mathcal{S}_{\varphi}, \sigma_1)' = \mathcal{S}_1'$ and

$$||A||_{\varphi} = \sup \{|\langle T, A \rangle| : T \in B_1\}.$$

Hence
$$(\mathcal{S}'_{\varphi}, \|\cdot\|_{\varphi}) = (\mathcal{S}'_1, \|\cdot\|_1) = \mathcal{L}(\ell^2)$$
 by [6]. \square

Turning now our attention to the extreme points of B_{φ} we find

Theorem 3

Let $T \in B_{\varphi}$. Then the following assertions are equivalent:

- (i) T is an extreme point;
- (ii) $T = e \otimes f$, with ||e|| = ||f|| = 1.

Proof. (ii) \Longrightarrow (i): Any $T = e \otimes f$, with ||e|| = ||f|| = 1, belongs to B_{φ} and hence to B_1 . By [2, Theorem 3.1], T is then an extreme point of B_1 and hence of B_{φ} , since $B_{\varphi} \subset B_1$.

(i) \Longrightarrow (ii): Let $T \in B_{\varphi}$ be an extreme point and write, as in (1),

$$T=\sum_n \xi_n e_n \otimes f_n,$$

with

$$\sum_{n} \varphi(\xi_n) \le 1. \tag{4}$$

Suppose that there are two integers j and k, with $j \neq k$, for which $\xi_j \neq 0$ and $\xi_k \neq 0$. Then, by (4),

$$0 < \varphi(\xi_i) + \varphi(\xi_k) = \rho \le 1.$$

Thus, in the two dimensional xy-plane the point (ξ_j, ξ_k) belongs to the set

$$C_{\rho} = \{(x, y) : \varphi(|x|) + \varphi(|y|) \le \rho\}$$

and is not an extreme point for such a set, since φ is concave and both ξ_j and ξ_k are non-zero. It follows that there are scalars $\alpha > 0$, $\beta > 0$ and t, with 0 < t < 1, such that

$$(\xi_i, \xi_k) = t(\alpha, 0) + (1 - t)(0, \beta) = (t\alpha, (1 - t)\beta)$$

and that the segment

$$\{s(\alpha,0) + (1-s)(0,\beta) : 0 \le s \le 1\}$$

is contained in C_{ρ} . In particular,

$$\max \{\varphi(\alpha), \varphi(\beta)\} \le \rho = \varphi(\xi_j) + \varphi(\xi_k). \tag{5}$$

If we now put

$$T_1 = \alpha e_j \otimes f_j + \sum_{n \neq j,k} \xi_n e_n \otimes f_n,$$

$$T_2 = \beta e_k \otimes f_k + \sum_{n \neq j,k} \xi_n e_n \otimes f_n,$$

then $T = tT_1 + (1 - t)T_2$. Moreover,

$$\sigma_{\varphi}(T_1) = \varphi(\alpha) + \sum_{n \neq i,k} \varphi(\xi_n) \le 1$$

by (4) and (5), showing that $T_1 \in B_{\varphi}$. Since the same is true for T_2 , we conclude that such a T cannot be an extreme point. \square

Finally, we investigate the isometries of $(S_{\varphi}, \sigma_{\varphi})$, i.e. the linear bijections J: $S_{\varphi} \to S_{\varphi}$ such that $\sigma_{\varphi}[J(T)] = \sigma_{\varphi}(T)$. We find that the results of [1] can be extended to the following

Theorem 4

Let $J: \mathcal{S}_{\varphi} \to \mathcal{S}_{\varphi}$ be linear and onto. The following assertions are equivalent:

- (i) J is an isometry;
- (ii) There exist two unitary maps U, V on ℓ^2 such that $J = U \otimes V$.

Proof. (ii) \Longrightarrow (i): If $T \in \mathcal{S}_{\omega}$ has the representation (1), then

$$J(T) = \sum_{n} \xi_n U(e_n) \otimes V(f_n). \tag{6}$$

Because U and V are unitary on ℓ^2 , the sequences $(U(e_n))$ and $(V(f_n))$ are orthonormal systems in ℓ^2 and hence, from (6),

$$\sigma_{\varphi}[J(T)] = \sum_{n} \varphi(\xi_{n}) = \sigma_{\varphi}(T),$$

i.e. J is an isometry.

(i) \Longrightarrow (ii): If J is an isometry, then so is $J': \mathcal{S}'_{\varphi} \to \mathcal{S}'_{\varphi}$ and hence also $J'': \mathcal{S}''_{\varphi} \to \mathcal{S}''_{\varphi}$. But, by Theorem 2 and [6], $S''_{\varphi} = \mathcal{L}(\ell^2)' = \mathcal{S}''_1$, hence the restriction J_0 of J'' to $\mathcal{S}_1 \subset S''_1$ is an isometry of \mathcal{S}_1 onto \mathcal{S}_1 (because J maps \mathcal{S}_{φ} onto \mathcal{S}_{φ}) and (ii) follows by the theorem in [1]. \square

128 SIMÕES

Remark. One may also define an operator ideal η_{φ} as follows: $T \in \eta_{\varphi}$ if T has a representation of the form

$$T = \sum_{n} \xi_n u_n \otimes v_n, \tag{7}$$

where $(\xi_n) \in \ell_{\varphi}$ and $(u_n), (v_n) \subset \ell^2$ with $||u_n|| = ||v_n|| = 1$ for all n. Recalling [4, §3], we see that η_{φ} is the ideal of pseudo- φ -nuclear operators, which may be defined between arbitrary Banach spaces E, F and not just on ℓ^2 . Endowed with the metric

$$u_{\varphi}(T) = \inf \sum_{n} \varphi(\xi_n),$$

where the infimum is taken over all representations of the form (7), η_{φ} becomes a complete, metrizable, topological vector space for which all the results proved above for S_{φ} continue to hold. In particular, if φ belongs to the class Φ_{ω} of [3, § II.2], then ℓ_{φ} is idempotent, hence $\ell_{\varphi} = \ell^1 \cdot \ell_{\varphi}$ and, therefore, $\eta_{\varphi} = S_{\varphi}$ by [4, Theorem 3]. In this case the metrics ν_{φ} and σ_{φ} are equivalent, in the sense that they generate the same topology on $\eta_{\varphi} = S_{\varphi}$ (use the open mapping theorem and the fact that $\nu_{\varphi}(T) \leq \sigma_{\varphi}(T)$ always).

References

- 1. J. Arazy, The isometries of C_p , Israel J. Math. 22 (1975), 247–256.
- 2. J. R. Holub, On the metric geometry of ideals of operators on Hilbert space, *Math. Ann.* 201 (1973), 157-163.
- 3. V. B. Moscatelli, On the existence of universal λ -nuclear Fréchet spaces, J. Reine Angew. Math. 301 (1978), 1–26.
- 4. V. B. Moscatelli and M. A. Simões, Operator ideals on Hilbert space having a unique extension to Banach spaces, *Math. Nachr.* 118 (1984), 69–87.
- 5. A. Pietsch, Operator Ideals, North-Holland, Amsterdam, 1980.
- 6. R. Schatten, A Theory of Cross Spaces, Annals of Mathematical Studies, Vol. 26, Princeton University Press, Princeton, 1950.