Kolmogorov diameters and orthogonality in non-archimedean normed spaces

A. K. KATSARAS

Department of Mathematics, University of Ioannina, Greece

J. MARTÍNEZ-MAURICA¹

Departamento de Matemáticas, Estadística y Computación, Universidad de Cantabria, 39071 Santander, Spain

Received 14/MAY/90

ABSTRACT

The Kolmogorov n-diameter of a bounded set B in a non-archimedean normed space, as defined by the first author in a previous paper, is studied in terms of the norms of orthogonal subsets of B with n+1 points.

0. Introduction

The Kolmogorov diameters of a bounded set in a non-archimedean normed space have been recently introduced by the first author [2]. In that paper the relationships between Kolmogorov diameters and diametral dimension are also investigated and, as a result, non-archimedean power sequence spaces are characterized by means of their diametral dimension.

In this paper we explore the use of orthogonality in the study of *n*-diameters. Our main result is theorem 3.5 in which we obtain a very close relationship between

¹ Research partially supported by the Spanish Dirección General de Investigación Científica y Técnica (DGICYT, PS87-0094)

the *n*-diameter $\delta_n^*(B)$ of an absolutely convex set B and a new constant, $P_n^t(B)$, defined in terms of the norms of those t-orthogonal subsets of B consisting of n+1 points. The inequalities which relate these two constants become equalities when every one-dimensional subspace is orthocomplemented, the valuation is dense and t=1 (corollary 3.8).

Throughout this paper \mathbb{K} will be a non-archimedean complete valued field endowed with a non-trivial valuation. If the valuation of \mathbb{K} is discrete we will denote by π an element in \mathbb{K} such that $|\pi| < 1$ is a generator of the value group $\{|\lambda| : \lambda \in \mathbb{K} - \{0\}\}$.

E will always denote a non-archimedean normed space over \mathbb{K} , B(a,r) the closed ball with center $a \in E$ and radius $r \geq 0$, and B a nonempty bounded subset of E. By co(B) we denote the convex hull of B, i.e.

$$\mathrm{co}(B) = \left\{ \sum_{i=1}^n \, \lambda_i x_i : \lambda_i \in \mathbb{K}, \ |\lambda_i| \leq 1, \ x_i \in B, n \in \mathbb{N} \right\}.$$

Also [B] stands for the linear hull of B.

If t is a real number with $0 < t \le 1$, a finite sequence (x_1, \ldots, x_n) of elements of E is said to be t-orthogonal if

$$\|\lambda_1 x_1 + \dots + \lambda_n x_n\| \ge t \max(\|\lambda_1 x_1\|, \dots, \|\lambda_n x_n\|)$$

for all $\lambda_1, \ldots, \lambda_n \in \mathbb{K}$. Notice that if (x_1, \ldots, x_n) is a t-orthogonal sequence, so is $(x_1, \ldots, x_n, 0, \ldots, 0)$. A subset $X \subset E - \{0\}$ is t-orthogonal if the above inequality holds for all $n \in \mathbb{N}$, all $\lambda_1, \ldots, \lambda_n \in \mathbb{K}$ and all $x_1, \ldots, x_n \in X$ for which $x_i \neq x_j$ when $i \neq j$. Every t-orthogonal subset is a linearly independent set.

Now assume dim $E < \infty$. A subset $X \subset E - \{0\}$ is said to be a *t-orthogonal basis* of E if it is a *t*-orthogonal subset and [X] = E (where [X] stands for the lineal hull of X). Every finite dimensional normed space has, for each $t \in (0,1)$, a *t*-orthogonal basis [5, Theorem 3.15].

A sequence (subset, basis) is said to be *orthogonal* if it is 1-orthogonal. If \mathbb{K} is spherically complete, every finite dimensional normed space has an orthogonal basis [5, Lemma 5.5].

Following [5], a normed space E is said to be pseudoreflexive if the natural map $j_E: E \to E''$ is an isometry. It is not difficult to see that a normed space E is pseudoreflexive if and only if for each $\epsilon > 0$ and each finite dimensional subspace F of E, there exists a projection $P \in L(E)$ of E onto F such that $||P|| \le 1 + \epsilon$. A projection $P \in L(E)$ is said to be an orthoprojection if ||P|| = 1. If \mathbb{K} is spherically complete and F a finite dimensional subspace of a normed space E over \mathbb{K} , then there exists an orthoprojection of E onto F [5, Corollary 4.7].

1. The n-diameter of a bounded set

- 1.1. DEFINITION. Let B be a bounded subset of a normed space E. For each non-negative integer n, we define
 - a) $\delta_n(B)$ as the infimum of $|\lambda|$, for those $\lambda \in \mathbb{K} \{0\}$ such that $B \subset F + B(0, |\lambda|)$ for some linear subspace F of E with dim $F \leq n$.
 - b) $\delta_n^*(B)$ as the infimum of those r > 0, for which $B \subset F + B(0, r)$ for some linear subspace F of E with dim $F \leq n$.

The definition of $\delta_n(B)$ was introduced by the first author [2] under the name of *n*-diameter of B. We shall write $\delta_{n,E}(B)$ (instead of $\delta_n(B)$) or $\delta_{n,E}^*(B)$ (instead of $\delta_n^*(B)$) if we want to emphasize the space E. In the case of real or complex ground field this definition goes back to A. N. Kolmogorov.

Remarks

1.2 It is obvious that $\delta_n(B) = \delta_n^*(B)$ if the valuation of \mathbb{K} is dense and $|\pi|\delta_n(B) \leq \delta_n^*(B) \leq \delta_n(B)$ if the valuation is discrete.

From now on we are going to restrict ourselves to the study of the properties of δ_n^* , the properties of δ_n being completely similar to those of δ_n^* .

- 1.3. $\delta_n^*(B) = \delta_n^*(\operatorname{co}(B))$ and $\delta_n^*(B) = \delta_n^*(\overline{B})$.
- 1.4. $\delta_0^*(B) \geq \delta_1^*(B) \geq \cdots \geq \delta_n^*(B) \geq \cdots$. By using 1.3 and [5, Theorem 4.37, $(\alpha) \iff (\gamma)$], one can easily prove that B is compactoid if and only if $\lim \delta_n^*(B) = 0$ (See also [2, Theorem 3.3] for a direct proof).

This characterization of compactoid subsets is the non-archimedean counterpart to the following well known result: A bounded subset B of a real or complex normed space E is precompact if and only if $\lim \delta_n(B) = 0$ [3, Proposition 9.1.4].

1.5 Theorem

Let λ be an element of \mathbb{K} such that $\lambda = 1$ if the valuation is discrete and $|\lambda| > 1$ if the valuation is dense. Let B be a bounded subset of E, $n \in \mathbb{N}$ and $t \in (0,1)$. Let also $\beta_n^t(B)$, $\gamma_n^{\lambda}(B)$, $\theta_n(B)$ and $\omega_n(B)$ be defined in the following way:

- a) $\omega_n(B)$ as the infimum of those r > 0, for which $B \subset F + B(0,r)$ for some linear subspace F of E with dim $F \leq n$ and $F \subset [B]$.
- b) $\theta_n(B)$ as the infimum of those r > 0, for which $B \subset \operatorname{co}\{a_1, \ldots, a_n\} + B(0, r)$, for some sequence (a_1, \ldots, a_n) in E.
- c) $\beta_n^t(B)$ as the infimum of those r > 0, for which $B \subset \operatorname{co}\{a_1, \ldots, a_n\} + B(0, r)$, for some t-orthogonal sequence (a_1, \ldots, a_n) in E.

- d) $\gamma_n^{\lambda}(B)$ as the infimum of those r > 0, for which $B \subset \operatorname{co}\{a_1, \ldots, a_n\} + B(0, r)$, for some sequence (a_1, \ldots, a_n) in $\lambda \operatorname{co}(B)$.
- e) $\psi_n^{t,\lambda}(B)$ as the infimum of those r > 0, for which $B \subset \operatorname{co}\{a_1,\ldots,a_n\} + B(0,r)$, for some t-orthogonal sequence (a_1,\ldots,a_n) in $\lambda \operatorname{co}(B)$.

Then,
$$\delta_n^*(B) = \omega_n(B) = \theta_n(B) = \beta_n^t(B) = \gamma_n^{\lambda}(B) = \psi_n^{t,\lambda}(B)$$
.

Proof. It is obvious that

$$\psi_n^{t,\lambda}(B) \ge \beta_n^t(B) \ge \theta_n(B) \ge \delta_n^*(B)$$

and that

$$\psi_n^{t,\lambda}(B) \ge \gamma_n^{\lambda}(B) \ge \omega_n(B) \ge \delta_n^*(B).$$

Let us split the rest of the proof into three steps:

(1) $\beta_n^t(B) \ge \gamma_n^{\lambda}(B)$.

Let r > 0 for which there exists a t-orthogonal sequence (a_1, \ldots, a_n) of elements of E such that $B \subset \operatorname{co}\{a_1, a_2, \ldots, a_n\} + B(0, r)$.

First assume that the valuation on \mathbb{K} is discrete. Then by [1, Lemma 1.2], there exist $b_1, \ldots, b_n \in \operatorname{co}(B)$ such that

$$co(B) \subset co\{b_1, \ldots, b_n\} + B(0, r),$$

and hence $\beta_n^t(B \geq \gamma_n^{\lambda}(B)$.

Now we assume that the valuation on \mathbb{K} is dense and let $\xi \in \mathbb{K}$ such that $1 < |\xi| \le |\lambda|$. By using again [1, Lemma 1.2] there exist $b_1, \ldots, b_n \in \operatorname{co}(B)$ such that

$$\xi^{-1}$$
co(B) \subset co{b₁,...,b_n} + B(0,r),

which implies

$$B \subset \operatorname{co}\{c_1, \dots, c_n\} + \xi B(0, r),$$

where $c_k = \xi \, b_k \in \lambda \operatorname{co}(B) \ (k = 1, \dots, n)$. Then, $\gamma_n^{\lambda}(B) \leq |\xi| \beta_n^t(B)$ for all $\xi \in \mathbb{K}$ such that $|\xi| \in (1, |\lambda|]$. Hence, $\beta_n^t(B) \geq \gamma_n^{\lambda}(B)$.

 $(2) \ \delta_n^*(B) \ge \beta_n^t(B).$

Since B is bounded there exists M>0 such that $||x||\leq M$ for all $x\in B$. Let r>0 for which there exists a linear subspace F with dim $F\leq n$ such that $B\subset F+B(0,r)$. First assume $m=\dim F>0$. We claim that

$$B \subset (F \cap B(0,s)) + B(0,r)$$
 where $s = \max\{M,r\}$.

Indeed, let $x \in B$ and let f be an element of F such that $||x - f|| \le r$. Then, $||f|| = ||x - f - x|| \le \max\{M, r\} = s$ and we are done.

Now, let $\{f_1, \ldots, f_m\}$ be a t-orthogonal basis of F such that $||f_i|| \geq s t^{-1}$ $(i = 1, \ldots, m)$. If $x \in F \cap B(0, s)$, then x can be written as

$$x = \sum_{i=1}^{m} \lambda_i f_i$$

with

$$s \ge ||x|| \ge t \max_{1 \le i \le n} |\lambda_i| ||f_i|| \ge s \max_{1 \le i \le n} |\lambda_i|$$

and so $x \in \operatorname{co}\{f_1,\ldots,f_m\}$. Thus, $F \cap B(0,s) \subset \operatorname{co}\{f_1,\ldots,f_m\}$ and hence

$$B \subset \operatorname{co}\{f_1,\ldots,f_m\} + B(0,r).$$

If dim F = 0, this last inclusion also holds for $f_1 = \cdots = f_m = 0$. This allows us to conclude that $\delta_n^*(B) \geq \beta_n^t(B)$.

(3) $\psi_n^{t,\lambda}(B) \leq \gamma_n^{\lambda}(B)$.

Let r>0 for which there exists a sequence (a_1,\ldots,a_n) in $\lambda\operatorname{co}(B)$ such that $B\subset\operatorname{co}\{a_1,\ldots,a_n\}+B(0,r)$. Set $H=[a_1,\ldots,a_n]$, and let $m=\dim H>0$ (the case m=0 is trivial). By [6, Lemma 2.2] there are m linearly independent elements $b_1,\ldots,b_m\in\{a_1,\ldots,a_n\}$ such that $\operatorname{co}\{a_1,\ldots,a_n\}=\operatorname{co}\{b_1,\ldots,b_m\}$. Next, we consider two norms in H as follows

(a) $\|\cdot\|_1$ is such that $(H,\|\cdot\|_1)$ has an orthogonal basis and

$$t||x|| \le ||x||_1 \le ||x||$$

for all $x \in H$, where $\|\cdot\|$ is the original norm on H. One such norm exists by [5, Theorem 3.15 (iv)].

(b) $\|\cdot\|_2$ is defined by

$$||x||_2 = ||\sum_{i=1}^m \lambda_i b_i||_2 = \max_{1 \le i \le m} |\lambda_i|.$$

Both $(H, \|\cdot\|_1)$ and $(H, \|\cdot\|_2)$ have an orthogonal basis and so there exists an orthogonal basis $\{c_1, \ldots, c_m\}$ which is orthogonal in both spaces [4, Theorem 1.11]. Moreover, since $\{\|x\|_2 : x \in H\} \subset \{|\lambda| : \lambda \in \mathbb{K}\}$, there is no loss of generality if we suppose that $\|c_i\|_2 = 1$ for $i = 1, \ldots, m$.

We claim that $co\{b_1, \ldots, b_m\} = co\{c_1, \ldots, c_m\}$. Indeed,

$$co\{b_1,\ldots,b_m\} = \{x \in H : ||x||_2 \le 1\}$$

and hence

$$co\{c_1,\ldots,c_m\}\subset co\{b_1,\ldots,b_m\}.$$

On the other hand, b_i can be written as

$$b_i = \sum_{j=1}^m \lambda_i^j c_j \qquad (i = 1, \dots, m)$$

and hence

$$1 = ||b_i||_2 = \max_{1 \le j \le m} |\lambda_i^j| ||c_j||_2 = \max_{1 \le j \le m} |\lambda_i^j|.$$

Then, $b_i \in \operatorname{co}\{c_1, \ldots, c_m\}$ for all $i \in \{1, \ldots, m\}$ and $\operatorname{co}\{b_1, \ldots, b_m\} \subset \operatorname{co}\{c_1, \ldots, c_m\}$. We have that $B \subset \operatorname{co}\{c_1, \ldots, c_m\} + B(0, r)$ with $c_1, \ldots, c_m \in \operatorname{\lambda co}(B)$. Also,

$$\|\lambda_1 c_1 + \dots + \lambda_m c_m\| \ge \|\lambda_1 c_1 + \dots + \lambda_m c_m\|_1$$

$$= \max_{1 \le i \le m} |\lambda_i| \|c_i\|_1$$

$$\ge t \max_{1 \le i \le m} |\lambda_i| \|c_i\|$$

which shows that $\{c_1,\ldots,c_m\}$ is t-orthogonal. Thus, $\psi_n^{t,\lambda}(B) \leq \gamma_n^{\lambda}(B)$. \square

Remarks

- 1.6. The constant $\beta_n^t(B)$ introduced in the above theorem does not depend on the choice of t. In the same way, $\gamma_n^{\lambda}(B)$ does not depend on λ and $\psi_n^{t,\lambda}(B)$ does depend neither on λ nor on t.
- 1.7. Also, if \mathbb{K} is spherically complete, every finite dimensional normed space has an orthogonal basis and hence theorem 1.4 is also valid for t = 1.

The same holds for any \mathbb{K} if every one-dimensional subspace of E is orthocomplemented [5, 4.35]. Indeed, every finite-dimensional subspace of E is orthocomplemented. Then every linear subspace of a finite-dimensional subspace E_n of E is orthocomplemented in E and hence in E_n . By [5, 5.15] this implies that E_n has an orthogonal basis.

1.8. In view of 1.5 it is reasonable to compare $\delta_n^*(B)$ with the following new constant:

$$\sigma_n(B) = \inf \{r > 0 : B \subset \operatorname{co}\{a_1, \dots, a_n\} + B(0, r), \ a_1, \dots, a_n \in \operatorname{co}(B) \}.$$

It is obvious that $\sigma_n(B) \geq \delta_n^*(B)$ and that they are equal if the valuation on \mathbb{K} is discrete. So we will assume that the valuation on \mathbb{K} is dense.

Since $\sigma_n(B) = \sigma_n(\operatorname{co}(B))$, we are also going to restrict ourselves to absolutely convex subsets B of E. Recall that B is said to be c'-compactoid or pure compactoid [7, Definition 3.1] if for each r > 0 there exists a finite set $M \subset B$ such that $B \subset \operatorname{co}(M) + B(0,r)$. Then, it is obvious that B is c'-compactoid if and only if $\lim \sigma_n(B) = 0$.

Let now B be a compactoid subset of a normed space E such that B is not c'-compact (e.g., if \mathbb{K} is spherically complete take $E = \mathbb{K}$ and $B = \{\lambda \in \mathbb{K} : |\lambda| < 1\}$). Then, $\lim \sigma_n(B) > 0$ but $\lim \delta_n^*(B) = 0$.

Also, with the same proof as in 1.5 one can easily see that $\sigma_n(B)$ equals to the infimum of all r > 0 such that $B \subset \operatorname{co}\{a_1, \ldots, a_n\} + B(0, r)$ for some t-orthogonal sequence (a_1, \ldots, a_n) in $\operatorname{co}(B)$.

- 1.9. Assume that $\dim[B] \ge n$ and let λ and t as in theorem 1.5. Then, reasoning as in theorem 1.5, $\delta_n^*(B)$ equals to each of the following numbers:
 - a) The infimum of all r>0 such that $B\subset F+B(0,r)$ for some linear subspace F of E with dim F=n.
 - b) The infimum of all r > 0 such that $B \subset F + B(0,r)$ for some linear subspace F of E with dim F = n and $F \subset [B]$.
 - c) The infimum of all r > 0 such that $B \subset \operatorname{co}\{a_1, \ldots, a_n\} + B(0, r)$ for some linearly independent subset $\{a_1, \ldots, a_n\}$ of E.
 - d) The infimum of all r > 0 such that $B \subset \operatorname{co}\{a_1, \ldots, a_n\} + B(0, r)$ for some t-orthogonal subset $\{a_1, \ldots, a_n\}$ of E.
 - e) The infimum of all r > 0 such that $B \subset \operatorname{co}\{a_1, \ldots, a_n\} + B(0, r)$ for some linearly independent subset $\{a_1, \ldots, a_n\}$ of $\lambda \operatorname{co}(B)$.
 - f) The infimum of all r > 0 such that $B \subset \operatorname{co}\{a_1, \ldots, a_n\} + B(0, r)$ for some t-orthogonal subset $\{a_1, \ldots, a_n\}$ of $\lambda \operatorname{co}(B)$.

1.10 Corollary

Let F be a normed space such that $E \subset F$ and let B be a bounded subset of E. Then, $\delta_{n,E}^*(B) = \delta_{n,F}^*(B)$.

78

2. A related constant

2.1. DEFINITION. Let B be a bounded subset of a normed space E and let $t \in (0,1]$. For each non-negative integer n, we define $P_n^t(B)$ as the infimum of all $r \geq 0$ such that if

$$Y \subset B \cap \{x \in E : ||x|| > t^{-1}r\},\$$

and Y is t-orthogonal, then $\#Y \leq n$.

When t = 1, we shall write $P_n(B)$ instead of $P_n^1(B)$.

Remarks

2.2. In the definition of $P_n^t(B)$ the infimum is attained; that is, if

$$Y \subset B \cap \{x \in E : ||x|| > t^{-1}P_n^t(B)\},\$$

and Y is t-orthogonal, then $\#Y \leq n$.

2.3.

$$P_0^t(B) = t \sup \{||x|| : x \in B\} = t \, \delta_0^*(B).$$

$$P_0^t(B) \ge P_1^t(B) \ge \cdots \ge P_n^t(B) \ge \cdots$$

Also if $t_1 \leq t_2$, then $t_2^{-1} P_n^{t_2}(B) \leq t_1^{-1} P_n^{t_1}(B)$ for each n.

2.4 Theorem

Let B be a bounded subset of a normed space $E, t \in (0,1]$ and n a non-negative integer. Then

- a) $P_n^t(B) = 0$ if there are no t-orthogonal subsets of B consisting of n+1 points.
- b) Otherwise

$$P_n^t(B) = t \sup_Y \big\{\inf\{\|y\|: y \in Y\}\big\}$$

where the supremum is taken over the t-orthogonal subsets Y of B such that #Y = n + 1.

Proof. The first part of the proof is trivial. Now assume $P_n^t(B) > 0$ and take $s \in (0, P_n^t(B))$. Then by 2.1 there exists a t-orthogonal subset Y_0 contained in $B \cap \{x \in E : ||x|| > t^{-1}s\}$ with n+1 elements. Then, $\inf\{||y|| : y \in Y_0\} > t^{-1}s$ and hence

$$P_n^t(B) \le t \sup_Y \big\{\inf\{\|y\|: y \in Y\}\big\},$$

with Y as above. This inequality also holds if $P_n^t(B) = 0$.

In order to prove the equality let us suppose that

$$\sup_{V} \left\{ \inf \{ \|y\| : y \in Y \} \right\} > t^{-1} P_n^t(B).$$

In this case there exists a t-orthogonal subset Y of B with n+1 elements such that

$$\inf \{ ||y|| : y \in Y \} > t^{-1} P_n^t(B)$$

which contradicts 2.2. \square

2.5. Corollary

Let B be a bounded subset of a normed space $E, t \in (0,1]$ and n a non negative integer. Then,

$$P_n^t(B) = \sup_{M} \big\{ P_n^t(B \cap M) \big\},\,$$

where the supremum is taken over the n+1-dimensional subspaces M of E.

Proof. Let m be this supremum. It is obvious that $m \leq P_n^t(B)$. The equality holds if $P_n^t(B) = 0$. Hence, suppose $P_n^t(B) > 0$ and let $r \in (0, P_n^t(B))$. Then, there is a t-orthogonal set $Y \subset B$ such that #Y = n+1 and $\|y\| > t^{-1}r$ for all $y \in Y$. Let M = [Y]. Then, dim M = n+1, $Y \subset B \cap M$, and hence $P_n^t(B \cap M) > r$. This proves that $m \geq P_n^t(B)$ and we are done. \square

2.6 Proposition

For each $t \in (0,1]$, $P_n^t(B) \leq \delta_n^*(B)$.

Proof. Let $r > \delta_n^*(B)$. Then there exists a vector subspace F of E, dim $F \leq n$, such that $B \subset F + B(0,r)$. Now assume there exists a t-orthogonal subset Y of $B \cap \{x \in E : ||x|| > t^{-1}r\}$ with more than n points. Let $\{y_1, \ldots, y_{n+1}\}$ be a t-orthogonal subset of elements of Y. For each i $(i = 1, \ldots, n+1)$, let $f_i \in F$ be such that $||y_i - f_i|| \leq r < t||y_i||$. By using [4, Lemma 6.d], we deduce that $\{f_1, \ldots, f_{n+1}\}$ is a t-orthogonal subset of elements of F. But this is impossible because dim $F \leq n$. Hence $P_n^t(B) \leq r$ and so $\delta_n^*(B) \geq P_n^t(B)$. \square

2.7 Corollary

For a bounded absolutely convex subset B of a normed space E, the following properties are equivalent:

- a) $\delta_n^*(B) = 0$
- b) There exists $t \in (0,1]$ such that $P_n^t(B) = 0$
- c) $\dim[B] \leq n$.

- *Proof.* (c) \Longrightarrow (a) is obvious and (a) \Longrightarrow (b) follows from 2.6.
- (b) \Longrightarrow (c). Since $P_n^t(B)=0$, every t-orthogonal subset $Y\subset B-\{0\}$ has no more than n elements.

Let us prove that $\dim[B] \leq n$. If not, we could find n+1 nonzero elements in [B] which are t-orthogonal. Since $[B] = \bigcup_{\lambda \in \mathbb{K}} \lambda B$, this would imply the existence of a t-orthogonal subset of $B - \{0\}$ with n+1 elements. This contradiction completes the proof. \square

The above corollary 2.7 does not hold if we drop the hypotesis of convexity as the example 2.9 shows. In this case we must replace the property (b) by a stronger one.

2.8 Corollary

For a bounded subset B of a normed space E, the following properties are equivalent:

- a) $\delta_n^*(B) = 0$
- b) There exists a sequence (t_m) in (0,1] with $t_m \longrightarrow 0$ such that $P_n^{t_m}(B) = 0$ for all m
- c) $\dim[B] \leq n$.

Proof. Since the other implications are obvious, we only need to show that $(b) \Longrightarrow (c)$. So assume (b) and suppose that $\dim[B] > n$. Then, there are n+1 linearly independent elements x_1, \ldots, x_{n+1} of B. There exists $t \in (0,1]$ such that $\{x_1, \ldots, x_{n+1}\}$ is t-orthogonal. Then $\{x_1, \ldots, x_{n+1}\}$ is t_m -orthogonal, if $t_m \leq t$, which contradicts theorem 2.4. Hence the result follows. \square

- 2.9 EXAMPLE. One cannot expect an equality in the formula of proposition 2.6. Let, for instance, \mathbb{K} be not spherically complete and let \mathbb{K}^2_{ν} be the space considered in [5, p. 68]. Since the space \mathbb{K}^2_{ν} does not contain any two nonzero elements that are orthogonal, we deduce that $P_n(B) = 0$ for any B and $n \geq 1$ whereas $\delta_1^*(B) \neq 0$ if $\dim[B] > 1$.
- 2.10 Example. Unlike δ_n^* , $P_n^t(B)$ can be different from $P_n^t(\operatorname{co}(B))$. Indeed, let \mathbb{K} be any field and let $E = \mathbb{K}^2$ with the usual (product) norm. Let x_1, x_2 be two linearly independent elements of E which are not t-orthogonal. Then, if $B = \{x_1, x_2\}$, $P_1^t(B) = 0$ whereas $P_1^t(\operatorname{co}(B)) > 0$.

3. The main result

The aim of this paragraph is to get a better relationship between $P_n^t(B)$ and $\delta_n^*(B)$ than the one obtained in 2.6. Because of 2.10 we are going to restrict ourselves to absolutely convex bounded sets B. Also, when t = 1, we will need some additional properties on the space E because of 2.9 (see corollary 3.8 below).

First we need the following lemmas which are quite similar to the ones given in [5, p. 137] (within the proof of lemma 4.36).

3.1 Lemma

Let B be a bounded absolutely convex subset of a pseudoreflexive normed space E over \mathbb{K} and let 0 < t < 1. Let $d_0 = 1 < d_1 < \cdots < d_{n+1}$ be such that $d_1d_2\cdots d_{n+1} < d$, where $d = t^{-1}$ if the valuation of \mathbb{K} is dense, and $d = \min\{|\pi|^{-1}, t^{-1}\}$ if the valuation is discrete. Choose $\beta, \alpha_1, \ldots, \alpha_{n+1}$ in \mathbb{K} and v_1, \ldots, v_{n+1} in \mathbb{R} as follows:

- (i) if the valuation is dense, we take $|\beta| > 1$ and then choose $v_k = |\alpha_k| > 1$, where $\alpha_1, \ldots, \alpha_{n+1}$ in \mathbb{K} are such that $|\alpha_1 \cdots \alpha_{n+1}| \leq |\beta|$.
- (ii) if the valuation is discrete, we take

$$\beta = \alpha_1 = \cdots = \alpha_{n+1} = 1$$
 and $v_1 = \cdots = v_{n+1} = v$,

where v > 1 is such that $vd_{n+1} < |\pi|^{-1}$.

Then, there is a t-orthogonal sequence z_1, \ldots, z_{n+1} (eventually some z_i can be zero) in E and projections $Q_0 = I_E, Q_1, Q_2, \ldots, Q_{n+1}$ in L(E) such that:

- $(1) ||Q_k|| \le d_k (k = 0, 1, \dots, n+1)$
- (2) $z_k \in Q_{k-1}(B)$ and

$$||z_k|| \ge v_k^{-1} \sup \{||x|| : x \in Q_{k-1}(B)\}$$
 $(k = 1, ..., n+1)$

- (3) $R_k = Q_{k-1} Q_k$ is a projection of E onto $[z_k]$ (k = 1, ..., n + 1)
- (4) $Q_m Q_k = Q_m$ if $m \ge k$ (m, k = 0, 1, ..., n + 1).

Proof. Take $Q_0 = I_E$ and suppose that $z_1, \ldots, z_{m-1}, Q_0, \ldots, Q_{m-1}$ $(1 \le m \le n+1)$ satisfy (1)–(4). Choose z_m satisfying (2). Since E is pseudoreflexive, there exists a projection Q of E onto $[z_m]$ with $||Q|| \le d_m/d_{m-1}$. Taking $Q_m = (I_E - Q)Q_{m-1}$, we have that Q_m is a projection with $||Q_m|| \le d_m$ and $R_m = Q_{m-1} - Q_m = QQ_{m-1}$ is a projection onto $[z_m]$. Thus, by induction we can choose z_1, \ldots, z_{n+1} and $Q_0, Q_1, \ldots, Q_{n+1}$ satisfying (1)–(4). It remains to show that z_1, \ldots, z_{n+1} are t-orthogonal. To this end we first notice that $R_k(z_m) = 0$ if $m \ne k$ while $R_k(z_k) = z_k$. Since $||R_k|| \le d_k < t^{-1}$, we have

$$\left\| \sum_{i=1}^{n+1} \lambda_i z_i \right\| \ge t \max_k \left\| R_k \left(\sum_{i=1}^{n+1} \lambda_i z_i \right) \right\| = t \max_k \left| \lambda_k \right| \left\| z_k \right\|$$

which completes the proof. \square

3.2. Remark. Assume also that E is a normed space for which every subspace of dimension 1 is orthocomplemented. Then the conclusions of lemma 3.1 hold for t = 1 and $d_k = 1$ (k = 0, 1, ..., n + 1).

3.3 Lemma

With the notations of the preceding lemma, the following hold:

- (a) If the valuation of \mathbb{K} is dense and if $\gamma \in \mathbb{K}$, $|\gamma| > |\beta|t^{-1}$, then
 - (i) $Q_m(B) \subset \gamma B \ (m = 0, 1, ..., n + 1)$
 - (ii) for $m \ge k$ we have $||z_m|| \le |\beta\gamma|||z_k|| \ (m, k = 1, ..., n + 1)$.
- (b) If the valuation of K is discrete, then
 - (iii) $Q_m(B) \subset Q_{m-1}(B) \subset B \ (m=1,\ldots,n+1)$
 - (iv) For $m \ge k$ we have $||z_m|| \le |\pi|^{-1} ||z_k|| \ (m, k = 1, ..., n + 1)$.

Proof. We first observe that each $Q_m(B)$ is absolutely convex. Let now $x \in B$ and $1 \le m \le n+1$. There exists $\lambda \in \mathbb{K}$ (we take $\lambda = 0$ if $z_m = 0$) such that $R_m(x) = \lambda x_m$. Thus

$$|\lambda| \|z_m\| = \|R_m(x)\| = \|(R_m Q_{m-1})(x)\| \le d_m \|Q_{m-1}(x)\| \le d_m v_m \|z_m\|$$

and so $|\lambda| \leq d_m v_m$.

If the valuation of K is discrete, then $|\lambda| \leq d_m v < |\pi|^{-1}$ and so $|\lambda| \leq 1$, which implies that $R_m(x) \in Q_{m-1}(B)$ and therefore

$$Q_m(x) = Q_{m-1}(x) - R_m(x) \in Q_{m-1}(B).$$

Hence, for discrete valuation, we have $Q_m(B) \subset Q_{m-1}(B)$, which implies that $Q_m(B) \subset Q_0(B) = B$. Also, if $m \geq k$, then $z_m \in Q_{m-1}(B) \subset Q_{k-1}(B)$ and so

$$||z_m|| \le v ||z_k|| \le |\pi|^{-1} ||z_k||.$$

Assume next that the valuation is dense and let $|\gamma| > |\beta| t^{-1}$. Choose $\delta \in \mathbb{K}$, $|\beta| < |\delta| < t |\gamma|$. For each $m, 1 \le m \le n+1$, choose $\gamma_m \in \mathbb{K}$ such that

$$d_m |\alpha_m| \le |\gamma_m| \le d_m |\alpha_m| |\delta \beta^{-1}|^{1/(n+1)}$$
.

Now, for $x \in B$, we have $R_m(x) \in \gamma_m Q_{m-1}(B)$ and so

$$Q_m(x) = Q_{m-1}(x) - R_m(x) \in \gamma_m Q_{m-1}(B).$$

Therefore $Q_m(B) \subset \gamma_1 \cdots \gamma_m B$.

But

$$|\gamma_1 \cdots \gamma_m| \leq |\gamma_1 \cdots \gamma_{n+1}| \leq d_1 \cdots d_{n+1} |\beta| |\delta\beta^{-1}| \leq t^{-1} |\delta| < |\gamma|$$

and thus

$$Q_m(B) \subset \gamma B$$
.

If $m \geq k$, then

$$z_m \in Q_{m-1}(B) \subset \gamma_k \gamma_{k+1} \cdots \gamma_{m-1} Q_{k-1}(B)$$

and hence

$$||z_m|| \le |\gamma| |\alpha_k| ||z_k|| \le |\beta\gamma| ||z_k||.$$

This completes the proof. \square

- 3.4. Remark. Assume also that E is a normed space for which every subspace of dimension 1 is orthocomplemented. Then, if the valuation of \mathbb{K} is dense the following improvement of the statement (a) of 3.3 holds:
- (i) $Q_m(B) \subset \beta B \ (m = 0, 1, ..., n + 1)$ and
- (ii) For $m \ge k$, (m.k = 1, ..., n + 1), $||z_m|| \le |\beta|^2 ||z_k||$.

3.5 Theorem

Let B be a bounded absolutely convex subset of a pseudoreflexive normed space E over \mathbb{K} and let 0 < t < 1.

(1) If the valuation of K is dense, then

$$P_n^t(B) \le \delta_n^*(B) \le t^{-1} P_n^t(B).$$

(2) If the valuation of K is discrete, then

$$P_n^t(B) \le \delta_n^*(B) \le |\pi|^{-1} t^{-1} P_n^t(B).$$

Proof. (1) Let t < s < 1 and let β , γ , α_k , z_k , Q_k , R_k , $k = 1, \ldots, n+1$, be as in 3.1 and 3.3 for this choice of s. Let $b_k = \gamma^{-1} z_k$, $k = 1, \ldots, n$ and $b_{n+1} = \beta^{-1} \gamma^{-2} z_{n+1}$. Then b_1, \ldots, b_{n+1} are elements of B which are s-orthogonal and hence t-orthogonal. Since $||b_{n+1}|| \le ||b_k||$, for k < n+1, we must have

$$||b_{n+1}|| \le rt^{-1}$$
 where $r = P_n^t(B)$.

For $x \in B$, we have

$$\left\|x - \sum_{i=1}^{n} R_i(x)\right\| = \left\|Q_n(x)\right\| \le |\alpha_{n+1}| \|z_{n+1}\| \le |\beta\gamma|^2 \|b_{n+1}\| \le |\beta\gamma|^2 rt^{-1} = m.$$

If $F = [z_1, \ldots, z_n]$, then $B \subset F + B(0, m)$ and so

$$\delta_n^*(B) \leq m = |\beta\gamma|^2 r t^{-1}$$

Let $\epsilon > 0$. If we had chosen β , γ , s such that

$$|\beta| < 1 + \epsilon, \qquad s > \frac{1}{1 + \epsilon}, \qquad |\gamma| < \epsilon + |\beta| \, s^{-1} < \epsilon + (1 + \epsilon)^2,$$

then we would have

$$\delta_n^*(B) \le (1+\epsilon)^2 \left[(1+\epsilon)^2 + \epsilon \right]^2 rt^{-1}.$$

Taking $\epsilon \longrightarrow 0$, we get

$$\delta_n^*(B) \le rt^{-1} = t^{-1}P_n^t(B).$$

(2) Let s=t and let z_k , Q_k , R_k be as in 2.10. Take $b_k=z_k$, $k=1,\ldots,n$ and $b_{n+1}=\pi z_{n+1}$. Then b_1,\ldots,b_{n+1} are t-orthogonal elements of B and $\|b_{n+1}\| \leq \|b_k\|$ if $k\leq n+1$. If $r=P_n^t(B)$, then we must have $\|b_{n+1}\|\leq rt^{-1}$. Now for $x\in B$, we have

$$\left\| x - \sum_{i=1}^{n} R_i(x) \right\| = \left\| Q_n(x) \right\| \le v \left\| z_{n+1} \right\| \le v |\pi|^{-1} r t^{-1}$$

and so

$$\delta_n^*(B) \le v |\pi|^{-1} r t^{-1}.$$

Taking $v \longrightarrow 1^+$, we get $\delta_n^*(B) \leq |\pi|^{-1} r t^{-1}$, which completes the proof. \square

Remarks

- 3.6. Since the values of δ_n^* and P_n^t do not depend on the space in which B is embedded, we can replace in the above theorem the hypothesis "E is pseudoreflexive" by "[B] is pseudoreflexive".
- 3.7. Theorem 2.5 does not hold for t = 1 (see 2.8). However, taking into account this theorem as well as 3.2 and 3.4 we can easily prove the following result.

3.8 Corollary

Let B be a bounded absolutely convex subset of a normed space E over \mathbb{K} in which every subspace of dimension 1 is orthocomplemented. Then:

(1) if the valuation of \mathbb{K} is dense, then:

$$\delta_n^*(B) = P_n(B)$$

(2) if the valuation of K is discrete, then

$$P_n(B) \le \delta_n^*(B) \le |\pi|^{-1} P_n(B).$$

3.9 Corollary

If B is a bounded absolutely convex subset of a pseudoreflexive normed space E over \mathbb{K} and if the valuation of \mathbb{K} is dense, then

$$\delta_n^*(B) = \lim_{t \to 1^-} P_n^t(B).$$

3.10 Corollary

Let B be a bounded absolutely convex subset of a pseudoreflexive normed space E over \mathbb{K} . Then:

(a) if the valuation of K is dense, then

$$\delta_n^*(B) = \sup_M \delta_n^*(B \cap M),$$

where M can be any n+1-dimensional linear subspace of E

(b) if the valuation of K is discrete, then

$$\sup_{M} \delta_{n}^{*}(B \cap M) \leq \delta_{n}^{*}(B) \leq |\pi|^{-1} \sup_{M} \delta_{n}^{*}(B \cap M),$$

with M as in (a).

Proof. Let d be this supremum. It is obvious that $d \leq \delta_n^*(B)$.

- (a) Assume that the valuation on \mathbb{K} is dense. If $d < \delta_n^*(B)$, then by 3.5 and 3.9 there would exist $t \in (0,1)$ such that $d < P_n^t(B) \le \delta_n^*(B)$. By 2.5 there exists a vector subspace M with dimension n+1 such that $d < P_n^t(B \cap M) \le P_n^t(B)$. And this last inequality contradicts 3.5.
 - (b) Assume that the valuation on K is discrete. Then

$$\delta_n^*(B) \leq |\pi|^{-1}t^{-1}P_n^t(B) = |\pi|^{-1}t^{-1}\sup_M P_n^t(B\cap M) \leq |\pi|^{-1}t^{-1}d. \ \Box$$

From now on, we are going to assume that the space E is not necessarily pseudoreflexive. In this case we are able to give some partial counterparts to theorem 3.5 and to corollary 3.8.

3.11 Theorem

Let B be a bounded absolutely convex subset of any normed space E over \mathbb{K} , $t \in (0,1)$ and n a non-negative integer. If for some m > n, $\delta_m^*(B) < \delta_n^*(B)$, then

$$\delta_n^*(B) \ge P_n^t(B) \ge t\delta_n^*(B).$$

Moreover, if every subspace of dimension 1 is orthocomplemented, then $\delta_n^*(B) = P_n(B)$.

Proof. Set

$$p := \min \big\{ m \in \mathbb{N} : \delta_m^*(B) < \delta_n^*(B) \big\}.$$

Then

$$\delta_p^*(B) < \delta_{p-1}^*(B) = \dots = \delta_n^*(B)$$

Take $r \in (\delta_p^*(B), \delta_n^*(B))$ and $\lambda \in \mathbb{K}$ as in the statement of the theorem 1.5. Then, there exists a t-orthogonal sequence (a_1, \ldots, a_p) in λB such that

$$B \subset \operatorname{co}\{a_1,\ldots,a_n\} + B(0,r).$$

Also, $||a_1||, \ldots, ||a_p|| > r$ because $r < \delta_{p-1}^*(B)$. So, $Y_p = \{\lambda^{-1}a_1, \ldots, \lambda^{-1}a_p\}$ is a t-orthogonal subset of B and $\#Y_p = p > n$. If we choose a subset Y of Y_p with n+1 elements,

$$\inf\left\{\|y\|:y\in Y\right\}>|\lambda|^{-1}r$$

and hence $P_n^t(B) > t|\lambda|^{-1}r$ by 2.4. Since the last inequality holds for all $r \in (\delta_p^*(B), \delta_n^*(B))$ and for all λ as in 1.5, we deduce $P_n^t(B) \ge t\delta_n^*(B)$. The second part of the theorem follows from 1.7. \square

3.12 Theorem

Let B be a bounded absolutely convex subset of any normed space E over \mathbb{K} , $t \in (0,1)$ and $n \in \mathbb{N}$. If $\delta_n^*(B) < \delta_{n-1}^*(B)$, then

$$\delta_n^*(B) \ge P_n^t(B) \ge t\delta_n^*(B).$$

Proof. Take $r' \in (\delta_n^*(B), \delta_{n-1}^*(B))$. By 1.5 there exist $a_1, \ldots, a_n \in \lambda B$ such that

$$B\subset\operatorname{co}\{a_1,\ldots,a_n\}+B(0,r'),$$

 $||a_1||, \ldots, ||a_n|| > r'$, and $\{a_1, \ldots, a_n\}$ is $t^{1/2}$ -orthogonal.

Set $F := [a_1, \ldots, a_m]$ and assume whithout loss of generality that $\delta_n^*(B) \neq 0$. Then, if $0 < r'' < \delta_n^*(B)$, B is not contained in F + B(0, r''). Hence, there exists $b \in B$ such that ||b - f|| > r'' for all $f \in F$. Let

$$b = \sum_{i=1}^{n} \mu_i a_i + a_{n+1}, \qquad |\mu_i| \le 1 \ (i = 1, \dots, n), \quad ||a_{n+1}|| \le r'.$$

It is obvious that $||a_{n+1}|| > r''$. Also

$$a_{n+1} = b - \sum_{i=1}^{n} \mu_i a_i \in \lambda B.$$

Moreover, for any $\lambda_1, \ldots, \lambda_n \in \mathbb{K}$,

$$\left\| a_{n+1} - \sum_{i=1}^{n} \lambda_i a_i \right\| = \left\| b - \sum_{i=1}^{n} \mu_i a_i - \sum_{i=1}^{n} \lambda_i a_i \right\| > r'' \ge \|a_{n+1}\| \frac{r''}{r'}$$

which shows that for $r''/r' \ge t^{1/2}$, $\{a_1, \ldots, a_n, a_{n+1}\}$ is t-orthogonal [5, Lemma 3.2]. Also

$$Y = \left\{\lambda^{-1}a_1, \dots, \lambda^{-1}a_n, \lambda^{-1}a_{n+1}\right\} \subset B$$

and

$$\inf \{ ||y|| : y \in Y \} > |\lambda|^{-1} r''.$$

This implies $P_n^t(B) > t|\lambda|^{-1}r''$ and hence $P_n^t(B) \geq t\delta_n^*(B)$. \square

Acknowledgement. We are grateful to W. H. Schikhof for some valuable suggestions.

References

- 1. S. Caeneepel and W.H. Schikhof, Two elementary proofs of Katsaras' theorem on p-adic compactoids, in *Proceedings of the Conference on p-adic Analysis*, ed. by N. De Grande-De Kimpe and L. Van Hamme, pp. 41–44, Hengelhoef, 1986.
- 2. A. K. Katsaras, On non-archimedean locally convex spaces, *Bull. Greek Math. Soc.*, **29** (1990), 61–83.
- 3. A. Pietsch, Nuclear Locally Convex Spaces, Springer, 1972.
- 4. A. C. M. van Rooij, *Notes on p-Adic Banach Spaces I-VI*, Math. Inst., Katholieke Universiteit, Reports 7633 and 7725, Nijmegen, 1976-77.
- 5. A. C. M. van Rooij, Non-archimedean Functional Analysis, Marcel Dekker, New York, 1978.
- 6. W. H. Schikhof, Finite Dimensional Ultrametric Convexity, Math. Inst., Katholieke Universiteit, Report 8538, Nijmegen, 1985.
- 7. W. H. Schikhof, A Complementary Variant of c-Compactness in p-Adic Funtional Analysis, Math. Inst., Katholieke Universiteit, Report 8647, Nijmegen, 1985.