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ABSTRACT

The Kolmogorov n-diameter of a bounded set B in a non-archimedean
normed space, as defined by the first author in a previous paper, is studied in
terms of the norms of orthogonal subsets of B with n + 1 points.

0. Introduction

The Kolmogorov diameters of a bounded set in a non-archimedean normed space
have been recently introduced by the first author [2]. In that paper the relationships
between Kolmogorov diameters and diametral dimension are also investigated and,
as a result, non-archimedean power sequence spaces are characterized by means of
their diametral dimension.

In this paper we explore the use of orthogonality in the study of n-diameters.
Our main result is theorem 3.5 in which we obtain a very close relationship between
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the n-diameter 6%(B) of an absolutely convex set B and a new constant, P}(B),
defined in terms of the norms of those t-orthogonal subsets of B consisting of n + 1
points. The inequalities which relate these two constants become equalities when
every one-dimensional subspace is orthocomplemented, the valuation is dense and
t =1 (corollary 3.8).

Throughout this paper K will be a non-archimedean complete valued field en-
dowed with a non-trivial valuation. If the valuation of K is discrete we will de-
note by 7 an element in K such that |r| < 1 is a generator of the value group
{|A\| : » e K- {0}}.

E will always denote a non-archimedean normed space over K, B(a,r) the closed
ball with center @ € E and radius r > 0, and B a nonempty bounded subset of E.
By co(B) we denote the convex hull of B, i.e.

n
co(B) = {z Aizi M €EK, [N <1, z;,€B,n€ N} .
i=1
Also [B] stands for the linear hull of B.
If ¢ is a real number with 0 < ¢ < 1, a finite sequence (z1,...,z,) of elements
of E is said to be t-orthogonal if

||/\1a:1 + -+ /\nznn > tmax (||)\1a:1||,... ,IIAnwn“)

for all A\y,...,A, € K. Notice that if (21,...,2,) is a t-orthogonal sequence, so is
(z1,...,2n,0,...,0). A subset X C E — {0} is t-orthogonal if the above inequality
holds for all » € N, all Aq,...,A, € K and all z1,...,2, € X for which z; # z;
when ¢ # j. Every t-orthogonal subset is a linearly independent set.

Now assume dim F < oo. A subset X C E — {0} is said to be a t-orthogonal
basis of F if it is a t-orthogonal subset and [X] = F (where [X] stands for the
lineal hull of X). Every finite dimensional normed space has, for each t € (0,1), a
t-orthogonal basis [5, Theorem 3.15].

A sequence (subset, basis) is said to be orthogonal if it is 1-orthogonal. If K is
spherically complete, every finite dimensional normed space has an orthogonal basis
[5, Lemma 5.5].

Following [5], a normed space F is said to be pseudoreflexive if the natural map
jg : E — E" is an isometry. It is not difficult to see that a normed space FE is
pseudoreflexive if and only if for each € > 0 and each finite dimensional subspace F’
of E, there exists a projection P € L(E) of E onto F such that ||P|| < 14+e€ A
projection P € L(FE) is said to be an orthoprojection if ||P|| = 1. If K is spherically
complete and F' a finite dimensional subspace of a normed space E over K, then
there exists an orthoprojection of E onto F [5, Corollary 4.7].
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1. The n-diameter of a bounded set

1.1. DEFINITION. Let B be a bounded subset of a normed space E. For each
non-negative integer n, we define
a) 6,(B) as the infimum of |A|, for those A € K — {0} such that B C F + B(0, |}|)
for some linear subspace F' of E with dim F' < n.
b) 67 (B) as the infimum of those 7 > 0, for which B C F 4 B(0, ) for some linear
subspace F of E with dim F < n.

The definition of §,(B) was introduced by the first author [2] under the name
of n-diameter of B. We shall write 6, g(B) (instead of 6,(B)) or §;, g(B) (instead
of 6(B)) if we want to emphasize the space E. In the case of real or complex ground
field this definition goes back to A. N. Kolmogorov.

Remarks

1.2 It is obvious that 6,(B) = 6(B) if the valuation of K is dense and |r|6,(B) <
67(B) < 6,(B) if the valuation is discrete.

From now on we are going to restrict ourselves to the study of the properties
of 6, the properties of §, being completely similar to those of §;.

1.3. 63(B) = 63 (co(B)) and 65(B) = 6%(B).

1.4. é5(B) > 65(B) > --- > 6x(B) > ---. By using 1.3 and [5, Theorem 4.37,
(a) <= (7)], one can easily prove that B is compactoid if and only if lim 5;(B) = 0
(See also [2, Theorem 3.3] for a direct proof).

This characterization of compactoid subsets is the non-archimedean counterpart
to the folllowing well known result: A bounded subset B of a real or complex normed
space E is precompact if and only if lim§,(B) = 0 [3, Proposition 9.1.4].

1.5 Theorem

Let X be an element of K such that A = 1 if the valuation is discrete and |A| > 1
if the valuation is dense. Let B be a bounded subset of E,n € N and t € (0,1). Let
also 3¢ (B), Y)(B), 6,(B) and w,(B) be defined in the following way:

a) wn(B) as the infimum of those r > 0, for which B C F + B(0,r) for some linear

subspace F' of E with dim F' < n and F C [B].

b) 0,.(B) as the infimum of those r > 0, for which B C co{ay,...,an} + B(0,7),

for some sequence (ay,...,a,) in E.

c) BL(B) as the infimum of those r > 0, for which B C co{as,...,a,} + B(0,7),

for some t-orthogonal sequence (a1, ...,an) in E.
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d) v)(B) as the infimum of those r > 0, for which B C co{ay,...,a,} + B(0,7),
for some sequence (ay,...,a,) in Aco(B).

e) YL*(B) as the infimum of those r > 0, for which B C co{ay,...,a,} + B(0,r),
for some t-orthogonal sequence (ai,...,as) in Aco(B).

Then, 6;,(B) = wn(B) = 0,(B) = B5(B) = 75(B) = v (B).
Proof. It is obvious that
YN (B) > B4(B) > 6,(B) > 65(B)

and that
i (B) > ¥(B) > wn(B) > 65(B).

Let us split the rest of the proof into three steps:

(1) BL(B) 2 72(B).

Let » > 0 for which there exists a t-orthogonal sequence (a1,...,a,) of elements
of E such that B C co{ay,as,...,an} + B(0,r).

First assume that the valuation on K is discrete. Then by [1, Lemma 1.2], there
exist by,...,bn, € co(B) such that

co(B) C co{by,...,bn}+ B(0,r),

and hence G5 (B > 7)(B).

Now we assume that the valuation on K is dense and let £ € K such that
1 < [¢| £ |A|l. By using again [1, Lemma 1.2] there exist b,...,b, € co(B) such
that

£ co(B) C cofby,... b} + B(0, 1),

which implies
B C CO{Cl, .. ',c’n} +€B(037‘)7

where ¢ = £bg € Aco(B) (k = 1,...,n). Then, v, (B) < |€|8L(B for all £ € K such
that |¢| € (1,]|A|]. Hence, B5(B > v, (B).
(2) 65(B) 2 BL(B).

Since B is bounded there exists M > 0 such that ||z|| < M for all z € B.

Let » > 0 for which there exists a linear subspace F' with dim FF < n such that
B C F+ B(0,r). First assume m = dim F > 0. We claim that

B C (Fn B(0,s)) + B(0,r) where s = max{M,r}.
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Indeed, let z € B and let f be an element of F' such that ||z — f|| < r. Then,
lfll = llz = f — || < max{M,r} = s and we are done.

Now, let {fi,...,fm} be a t-orthogonal basis of F such that ||f;]] > st!
(i=1,...,m). f z € FN B(0,s), then z can be written as

T = i Aifi
i=1

with
s 2> |z|| > tllgn?gxnl/\’| I fill > SIISH?SXJ/\;'

and so z € co{f1,..., fm}. Thus, FN B(0,s) C co{f1,--.,fm} and hence

B C co{fiy---sfm}+ B(0,7).

If dim F' = 0, this last inclusion also holds for f; = --- = f,, = 0. This allows us to
conclude that 6%(B) > BL(B).

(3) ¥2X(B) < 7a(B).

Let 7 > 0 for which there exists a sequence (aq,...,a,) in Aco(B) such that
B C co{ai,...,an} + B(0,7). Set H = [a1,...,a,], and let m = dimH > 0
(the case m = 0 is trivial). By [6, Lemma 2.2] there are m linearly independent
elements by,...,b, € {a1,...,a,} such that co{ay,...,a,} = co{by,...,bn}. Next,
we consider two norms in H as follows

(a) || - ||1 is such that (H,|| -||1) has an orthogonal basis and
tllzll < llzfls < [l

for all z € H, where || - || is the original norm on H. One such norm exists by
[5, Theorem 3.15 (iv)].
(®) || - ll2 is defined by

llell = 1Y Awbilla = max [Nl
i=1

1< i<m

Both (H,|| - ||1) and (H,]|| - ||2) have an orthogonal basis and so there exists an
orthogonal basis {ci,...,¢,} which is orthogonal in both spaces [4, Theorem 1.11].
Moreover, since {||z||; : ¢ € H} C {|A| : A € K}, there is no loss of generality if we
suppose that ||¢;]le =1 fori=1,...,m.
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We claim that co{bs,...,bn} = co{e1,...,cm}-
Indeed,

co{by,...,bm} ={z € H : ||z|]s < 1}

and hence

cof{ery ... em} Ccof{br,...,bm}.

On the other hand, b; can be written as

and hence

L= 1bill = max |Xlllejll = max |X].

Then, b; € co{ecy,...,cm}foralli € {1,...,m} and co{by,...,bm} C co{c1,...,cm}.
We have that B C co{c1,...,¢m} + B(0,7) with ¢1,...,¢cm € Aco(B). Also,

IAer + -4+ Amem]] 2 | Aer + -+ + Amem|lr

= ax |Adlleill

> tlgli'cggnl il | cill

which shows that {ci,...,¢cn} is t-orthogonal. Thus, ¥{*(B) < ) (B). O

Remarks

1.6. The constant 8f(B) introduced in the above theorem does not depend on the
choice of ¢. In the same way, y(B) does not depend on A and ¥4*(B) does depend
neither on A nor on t.

1.7. Also, if K is spherically complete, every finite dimensional normed space has an
orthogonal basis and hence theorem 1.4 is also valid for ¢t = 1.

The same holds for any K if every one-dimensional subspace of FE is orthocom-
plemented [5, 4.35]. Indeed, every finite-dimensional subspace of E is orthocom-
plemented. Then every linear subspace of a finite-dimensional subspace E, of F is
orthocomplemented in F and hence in E,. By [5, 5.15] this implies that E, has an
orthogonal basis.
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1.8. In view of 1.5 it is reasonable to compare §%(B) with the following new constant:
on(B) = inf{r >0:B Cco{ay,...,a,}+ B(0,7), ay,...,a, € co(B)}.

It is obvious that o,(B) > 65(B) and that they are equal if the valuation on K is
discrete. So we will assume that the valuation on K is dense.

Since on(B) = on(co(B)), we are also going to restrict ourselves to absolutely
convex subsets B of E. Recall that B is said to be ¢’-compactoid or pure compactoid
(7, Definition 3.1] if for each r > 0 there exists a finite set M C B such that
B C co(M) + B(0,r). Then, it is obvious that B is ¢’-compactoid if and only if
limo,(B) = 0.

Let now B be a compactoid subset of a normed space F such that B is not
c’-compact (e.g., if K is spherically complete take E = Kand B = {A € K : |A| < 1}).
Then, limo,(B) > 0 but lim §%(B) = 0.

Also, with the same proof as in 1.5 one can easily see that o,(B) equals to the
infimum of all » > 0 such that B C co{ay,...,a,} + B(0,r) for some t-orthogonal
sequence (a1, ...,a,) in co(B).

1.9. Assume that dim[B] > n and let A and ¢ as in theorem 1.5. Then, reasoning as
in theorem 1.5, 6;;(B) equals to each of the following numbers:

a) The infimum of all 7 > 0 such that B C F + B(0,r) for some linear subspace
F of F with dim F = n.

b) The infimum of all » > 0 such that B C F + B(0,r) for some linear subspace
F of E with dim F = n and F C [B].

c¢) The infimum of all # > 0 such that B C co{as,...,an} + B(0,7) for some
linearly independent subset {a1,...,a,} of E.

d) The infimum of all » > 0 such that B C co{a1,...,an} + B(0,7) for some
t-orthogonal subset {a1,...,a,} of E.

e) The infimum of all » > 0 such that B C co{ai,...,an} + B(0,r) for some
linearly independent subset {a1,...,a,} of Aco(B).

f) The infimum of all » > 0 such that B C co{ai,...,an} + B(0,7) for some
t-orthogonal subset {a;,...,a,} of Aco(B).

1.10 Corollary

Let F be a normed space such that E C F and let B be a bounded subset of
E. Then, 63 g(B) = 6, p(B).
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2. A related constant

2.1. DEFINITION. Let B be a bounded subset of a normed space £ and let ¢ € (0,1].
For each non-negative integer n, we define P!(B) as the infimum of all » > 0 such
that if

YcBn{z€E:|z|>t1r},

and Y is t-orthogonal, then #Y < n.
When t = 1, we shall write P,(B) instead of P}(B).

Remarks
2.2. In the definition of P!(B) the infimum is attained; that is, if

YcBn{z€E:|z||>tPB)},

and Y is t-orthogonal, then #Y < n.
2.3.
PY(B) =tsup {||z|| : = € B} = t§5(B).
Pj(B) > P{(B) >---> Pi(B)>---.
Also if t; < ty, then t5 ' P¥2(B) < t7! P2 (B) for each n.

2.4 Theorem

Let B be a bounded subset of a normed space E, t € (0,1] and n a non-negative
integer. Then

a) P{(B) = 0 if there are no t-orthogonal subsets of B consisting of n+1 points.
b) Otherwise

Py (B) = tsup {inf{|ly]l: y € Y}}

where the supremum is taken over the t-orthogonal subsets Y of B such that
#Y =n+ 1.

Proof. The first part of the proof is trivial. Now assume P!(B) > 0 and take
s € (0,Pi(B)). Then by 2.1 there exists a t-orthogonal subset Yy contained in
Bn{z € E:|z| >t"1s} with n + 1 elements. Then, inf{||y||: y € Yo} > ¢t~'s and
hence

Pi(B) < tsup {inf{||y| : y € Y}},

with Y as above. This inequality also holds if P:(B) = 0.
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In order to prove the equality let us suppose that
sup {inf{ul] :y € Y1} > 17 PL(B).
In this case there exists a t-orthogonal subset Y of B with n + 1 elements such that
inf {||y]| : y € Y} >t P(B)
which contradicts 2.2. O

2.5. Corollary

Let B be a bounded subset of a normed space E, t € (0,1) and n a non negative
integer. Then,

Pi(B) = sup {PL(BN M)},
M
where the supremum is taken over the n + 1-dimensional subspaces M of E.

Proof. Let m be this supremum. It is obvious that m < P}(B). The equality holds
if P}(B) = 0. Hence, suppose P.(B) > 0 and let r € (0, P{(B)). Then, there is a
t-orthogonal set Y C B such that #Y = n+ 1 and ||y|| > t~'rforall y € Y. Let
M = [Y]. Then,dimM =n+1,Y C BN M, and hence P.(BN M) > r. This
proves that m > P!(B) and we are done. O

2.6 Proposition
For each t € (0,1], PL(B) < §:(B).

Proof. Let r > 6%(B). Then there exists a vector subspace F of E, dim F < n,
such that B C F + B(0,7). Now assume there exists a t-orthogonal subset Y of
Bn{z € E : ||z|| > t~1r} with more than n points. Let {y1,...,¥n+1} be a t-
orthogonal subset of elements of Y. Foreach i (i = 1,...,n+ 1), let f; € F be such
that ||yi — fi|| < r < t||yi||- By using [4, Lemma 6.d], we deduce that {f1,..., fat+1}
is a t-orthogonal subset of elements of F'. But this is impossible because dim F' < n.
Hence Pi(B) < r and so §%(B) > P:(B). O

2.7 Corollary

For a bounded absolutely convex subset B of a normed space F, the following
properties are equivalent:
a) 6;(B) =0
b) There exists t € (0,1] such that P,(B) =0
¢) dim[B] < n.
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Proof. (c) => (a) is obvious and (a) => (b) follows from 2.6.

(b) => (c). Since Pi(B) = 0, every t-orthogonal subset Y C B — {0} has no
more than n elements.

Let us prove that dim[B] < n. If not, we could find n + 1 nonzero elements in
[B] which are t-orthogonal. Since [B] = |J,¢x AB, this would imply the existence of
a t-orthogonal subset of B — {0} with n + 1 elements. This contradiction completes
the proof. O

The above corollary 2.7 does not hold if we drop the hypotesis of convexity as
the example 2.9 shows. In this case we must replace the property (b) by a stronger
one.

2.8 Corollary

For a bounded subset B of a normed space E, the following properties are
equivalent:

a) 62(B)=0
b) There exists a sequence (t,,) in (0, 1] with t,, — 0 such that Pi=(B) = 0 for
all m

c¢) dim[B] < n.

Proof. Since the other implications are obvious, we only need to show that
(b) = (¢). So assume (b) and suppose that dim[B] > n. Then, there are n + 1
linearly independent elements 1,...,2,41 of B. There exists t € (0,1] such that
{z1,...,Zn41} is t-orthogonal. Then {z1,...,Zn41} is tp-orthogonal, if ¢, < ¢,
which contradicts theorem 2.4. Hence the result follows. O

2.9 EXAMPLE. One cannot expect an equality in the formula of proposition 2.6.
Let, for instance, K be not spherically complete and let K2 be the space considered
in [5, p. 68]. Since the space K2 does not contain any two nonzero elements that
are orthogonal, we deduce that P,(B) = 0 for any B and n > 1 whereas 6;(B) # 0
if dim[B] > 1.

2.10 ExaMPLE. Unlike 6%, P:(B) can be different from PZ(co(B)). Indeed, let K be
any field and let F = K? with the usual (product) norm. Let z1, z2 be two linearly
independent elements of F which are not t-orthogonal. Then, if B = {z1,z:},
P}(B) = 0 whereas P}(co(B)) > 0.
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3. The main result

The aim of this paragraph is to get a better relationship between P}(B) and é}(B)
than the one obtained in 2.6. Because of 2.10 we are going to restrict ourselves to
absolutely convex bounded sets B. Also, when ¢t = 1, we will need some additional
properties on the space E because of 2.9 (see corollary 3.8 below).

First we need the following lemmas which are quite similar to the ones given in
[5, p. 137] (within the proof of lemma 4.36).

3.1 Lemma v
Let B be a bounded absolutely convex subset of a pseudoreflexive normed

space E over K and let 0 < t < 1. Letdy = 1 < dj < -+ < dpy41 be
such that dydy-++dny1 < d, where d = t~! if the valuation of K is dense, and
d = min{|r|~1,¢1} if the valuation is discrete. Choose 8, ¢, ..., an41 in K and
V1, ..., Unt1 in R as follows:

(i) if the valuation is dense, we take |3| > 1 and then choose vy = |ax| > 1, where
a1, ..., 0ny1 in K are such that |y -+ - anp1] < |6
(ii) if the valuation is discrete, we take

B=ay=--=0ap41 =1 and V] =t = Upg1 = 0,
where v > 1 is such that vd,4+1 < |7|71.

Then, there is a t-orthogonal sequence z1,...,zn4+1 (eventually some z; can be
zero) in E and projections Qo = Ig, Q1, Q2, ..., @nt+1 in L(E) such that:
(1) ”Qk” < dg (k =0,1,...,n+ 1)
(2) zx € Qx—1(B) and

k)l > o7 sup {[lall : @ € Qs (B)}  (k=1,...,n+1)

(3) Rk = Qk—1 — Q is a projection of E onto [z] (k=1,...,n+1)
(4) QmQr=Qm ifm>k (mk=0,1,...,n+1).

Proof. Take Q¢ = Ig and suppose that z1,..., 2m—1,Q0,---, @m-1 (1 <m < n+1)
satisfy (1)-(4). Choose z,, satisfying (2). Since E is pseudoreflexive, there exists a
projection @ of E onto [2,,] with ||@Q|| < d/dm—1. Taking Q. = (Ig—Q)Qm-1, we
have that Q,, is a projection with ||Qm| < dn and Ry, = Qm-1 — Qm = QQm-1 is
a projection onto [z,]. Thus, by induction we can choose z1, ..., z,4+1 and Qo, @1,
.« +y Qn41 satisfying (1)—(4). It remains to show that z1, ..., z,41 are t-orthogonal.
To this end we first notice that Rx(zp,) = 0if m # k while Rg(2x) = zx. Since
|Rk|| € di < t71, we have

n+1 n+1
Zl Aizil| >t max Ry (Zl A,-z,) ‘ =t max | Ak] |2kl
1= 1=

which completes the proof. O
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3.2. Remark. Assume also that E is a normed space for which every subspace of
dimension 1 is orthocomplemented. Then the conclusions of lemma 3.1 hold for
t=landdy=1(k=0,1,...,n+1).

3.3 Lemma
With the notations of the preceding lemma, the following hold:

(a) If the valuation of K is dense and if vy € K, |y| > |B|t™!, then
(i) @m(B)CyB(m=0,1,...,n+1)
(ii) for m > k we have ||z || < |87|||2]| (Mm,k =1,...,n+1).
(b) If the valuation of K is discrete, then
(iii) Qm(B) C Qm-1(B)C B (m=1,...,n+1)
(iv) For m > k we have ||zn|| < |7|7Y||2k]| (m,k=1,...,n+ 1).

Proof. We first observe that each @, (B) is absolutely convex. Let now z € B
and 1 < m £ n+ 1. There exists A € K (we take A = 0 if 2z, = 0) such that
R (z) = Azp. Thus

Alizmll = |RBm(2)]| = |(Rn@m-1)()]| < dm |Q@m-1(2)|| < dmvm [l2m|

and so |A| < dpmvm.-
If the valuation of K is discrete, then |A| < d,v < |7]~! and so |A] < 1, which
implies that R,,(z) € @m-1(B) and therefore

Qm(2) = @m-1(2) — Bm(z) € Q@m-1(B).

Hence, for discrete valuation, we have Qm(B) C @Qm-1(B), which implies that
Qm(B) C Qo(B) = B. Also, if m > k, then z,, € Qmn-1(B) C Qk—-1(B) and so

llzml < vllzell < |77 |2kl

Assume next that the valuation is dense and let |y| > |B|t~!. Choose § € K,
|B] < |8] < t]v|. For each m, 1 < m < n+ 1, choose 7, € K such that

dm |tm| < || < dm o] 6671 [/,
Now, for z € B, we have R, (2) € Ym@Qm—-1(B) and so
Qm(2) = Qm-1(z) — Rm(z) € TmQ@m-1(B).
Therefore Qm(B) C 71+ YmB.
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But

sl < I gl < di o daga 18118871 < £716] < ]

and thus
Q@m(B) C1B.
If m > k, then
Zm € Qm-1(B) C YeVk+1** Tm-1Qk-1(B)
and hence

llzmll < |7l leklllzell < 187 []2kll-

This completes the proof. O

3.4. Remark. Assume also that F is a normed space for which every subspace of
dimension 1 is orthocomplemented. Then, if the valuation of K is dense the following
improvement of the statement (a) of 3.3 holds:

(i) @m(B)C BB (m =0,1,...,n+1) and
(ii) For m > k, (m.k=1,...,n 4+ 1), ||zm|l < I81%]|2k]l-

3.5 Theorem

Let B be a bounded absolutely convex subset of a pseudoreflexive normed space
E overK and let 0 < t < 1.

(1) If the valuation of K is dense, then

Pi(B) < 6,(B) < t"'Pi(B).
(2) If the valuation of K is discrete, then
PY(B) < 63(B) < [x|-1t"1P4(B).

Proof. (1) Let t < s < 1 and let 83, v, ak, 2k, Qk, Rk, k=1,...,n+ 1, be asin 3.1
and 3.3 for this choice of s. Let by = v lzx, k=1,...,n and boy1 = By 22nq1.
Then by,...,bp41 are elements of B which are s-orthogonal and hence t-orthogonal.
Since ||bnt1]| < ||bk|], for £ < n + 1, we must have

|bns|l < 7271 where 7 = PL(B).

For z € B, we have



84 KATSARAS AND MARTINEZ-MAURICA

= [|@n(@)|| < lonsalllznsall < 1BYPNlbnsall < |ByPrt™" = m.

z - Ri(z)
i=1

If F=[z,...,2,], then B C F + B(0,m) and so

§n(B) < m = |By[*rt™!
Let € > 0. If we had chosen S, v, s such that

1
14¢€’

Bl<1+e s> 7] < e+ |B]s7! < e+ (1 +¢)?,

then we would have
§5(B) < (1+€?[(1+€)? + ¢ rtL.

Taking € — 0, we get
6X(B) < rt™! =¢71PL(B).

(2) Let s =t and let 2k, Qk, Rx be asin 2.10. Take by = zx, k= 1,...,n and
bpt1 = T2py1. Then by, ..., by are t-orthogonal elements of B and ||bp+1]| < ||bk||
if k <n+1. If r = P{(B), then we must have ||b,41]| < rt~!. Now for = € B, we

have
T — Z Ri(z)|| = ||Qn(@)|| € v||znt1]| < v|x| 7 rt™?
=1

and so
6x(B) < wlr|~trt7L.

Taking v — 1%, we get §%(B) < |r|~1rt~!, which completes the proof. O

Remarks

3.6. Since the values of % and P} do not depend on the space in which B is embeded,
we can replace in the above theorem the hypothesis “F is pseudoreflexive” by “[B]
is pseudoreflexive”.

3.7. Theorem 2.5 does not hold for ¢t = 1 (see 2.8). However, taking into account
this theorem as well as 3.2 and 3.4 we can easily prove the following result.
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3.8 Corollary

Let B be a bounded absolutely convex subset of a normed space E over K in
which every subspace of dimension 1 is orthocomplemented. Then:

(1) if the valuation of K is dense, then:
67(B) = Prn(B)
(2) if the valuation of K is discrete, then

Pn(B) < 63(B) < |r|™' Po(B).

3.9 Corollary

If B is a bounded absolutely convex subset of a pseudoreflexive normed space
FE over K and if the valuation of K is dense, then

5(B) = lim P(B).

3.10 Corollary

Let B be a bounded absolutely convex subset of a pseudoreflexive normed space
E over K. Then:

(a) if the valuation of K is dense, then
52(B) = sup 85(B N M),
M

where M can be any n + 1-dimensional linear subspace of E
(b) if the valuation of K is discrete, then

sup 83(B N M) < 85(B) < x| sup 83(B n M),
M M

with M as in (a).



86 KATSARAS AND MARTINEZ-MAURICA

Proof. Let d be this supremum. It is obvious that d < 6}(B).

(a) Assume that the valuation on K is dense. If d < 63(B), then by 3.5 and
3.9 there would exist ¢ € (0,1) such that d < Pf(B) < §;(B). By 2.5 there exists a
vector subspace M with dimension n + 1 such that d < P{(BnN M) < P!(B). And
this last inequality contradicts 3.5.

(b) Assume that the valuation on K is discrete. Then

§%(B) < |7|"M tPY(B) = |n|" 't tsup PE(BN M) < |r|71t71d. O
M

From now on, we are going to assume that the space E is not necessarily pseu-
doreflexive. In this case we are able to give some partial counterparts to theorem
3.5 and to corollary 3.8.

3.11 Theorem

Let B be a bounded absolutely convex subset of any normed space E over K,
t € (0,1) and n a non-negative integer. If for some m > n, 6}, (B) < 6;,(B), then

67(B) > Py(B) > té,(B).

Moreover, if every subspace of dimension 1 is orthocomplemented, then 6 (B) =
P,.(B).

Proof. Set
p:=min {m € N: 65 (B) < §%(B)}.
Then
85(B) < é5_1(B) = -+~ = §3(B)

Take r € (6;(B),6,(B)) and A € K as in the statement of the theorem 1.5. Then,
there exists a t-orthogonal sequence (aq,...,a,) in AB such that

B C co{ai,...,ap} + B(0,7).

Also, |la1l],...,|lap|| > r because r < &5_;(B). So, Y, = {A7'a,...,A7la,} is a
t-orthogonal subset of B and #Y, = p > n. If we choose a subset Y of Y, with n+1
elements,

inf {|lyll :y €Y} > |A7r

and hence PI(B) > t|A|~!r by 2.4. Since the last inequality holds for all r €
(65(B),6%(B)) and for all A as in 1.5, we deduce P}(B) > té;(B). The second part
of the theorem follows from 1.7. O
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3.12 Theorem

Let B be a bounded absolutely convex subset of any normed space E over K,
t € (0,1) and n € N. If 6%(B) < 6 _,(B), then

6:(B) 2 Py(B) 2 t6;(B).
Proof. Take r' € (6;,(B),6%_,(B)). By 1.5 there exist a1,...,a, € AB such that
B C co{a1,...,az}+ B(0,7"),
llalls---,llan]| > ', and {ay,...,a,} is t1/2-orthogonal.
Set F := [aj,...,am] and assume whithout loss of generality that é;(B) # 0.

Then, if 0 < " < 63(B), B is not contained in F + B(0,7"). Hence, there exists
b € B such that ||b — f|| > r" for all f € F. Let

n
b= Z HiG; + Qny1, Iu'tl <1 (Z = 17'-"77')5 “an+1” < .

i=1

It is obvious that ||ant1] > r". Also

Gny1 = b— Z pia; € AB.

i=1

Moreover, for any A1,...,A, € K,

n n n
Qnt1 — Z Aia; b— Z pia; — Z Aia;
=1 1=1

i=1
which shows that for 7"/ /r' > t1/2, {a1,...,an,an4+1} is t-orthogonal [5, Lemma 3.2].
Also

> 1" > ||ans1]| ﬂ
= n+1 '

Y ={2"a1,..., A 'an, A" any1} C B

and
inf {Hyll (Y € Y} > |71

This implies P(B) > t|A|~1r" and hence P}(B) > t6%(B). O
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