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ABSTRACT
We study the geometry of the second fundamental form of a Cauchy-Riemann
submanifold of a Kaehlerian Finsler space M2"; any totally-real submanifold
of M ?™ with v-flat normal connection is shown to be a Berwald-Cartan space.

1. Introduction

Cauchy-Riemann (CR) submanifolds of Kaehlerian Finsler spaces were introduced
by the author [9, p. 57], and have been taken recently under study by A. Be-
jancu [3]. e shows that v-integrable Finslerian almost complex structures cor-
respond to Cauchy-Riemann structures (in the sense of A. Andreotti and C. D. Hill
[1]) on the total space of the tangent bundle of the given (Finsler) manifold. We
complete this result (cf. our theorem 1) in the following manner. If M2" is a Kaehle-
rian Finsler space, then by a result of A. Farinola [11], its Finslerian almost complex
structure is both h- and v-integrable; if moreover the nonlinear connection of the
Cartan connection of M2™ is integrable, we find a new CR. structure on V(M?") =
T(M?")\ 0 which is a direct summand (cf. our (2.1)) to the CR structure discovered
by Bejancu [3] for the holomorphic tangent bundle of V(M*"). Bejancu also con-
siders CR. submanifolds of Kaehlerian Finsler spaces and proves that any invariant
submanifold is v-minimal; his notion of Kaehlerian Finsler space is slightly more
general than that of the author [6], i.c:, the ambient space is endowed with an ar-
bitrary metrical and almost complex Finsler connection, while originally the author
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[5, p. 95] has imposed the Kaehler condition VJ = 0 to the Cartan conection V of
the given Finsler space. As underlined by several authors (e.g., H. Rund [15]), Rie-
mannian notions usually admit more than one significant counterpart. For instance,
one may consider the problem of wether an invariant submanifold (of a Kachlerian
Finsler space) is h-minimal. We prove h-minimality under the additional assump-
tion that the submanifold is totally-geodesic. This assumption is equivalent to the
vanishing of the normal curvature vector of the submanifold, but does not yield
the vanishing of the entire horizontal second fundamental form such that in general
totally-geodesic submanifolds of a Finsler space fail to be A-minimal. We examine
invariant submanifolds in complex v-space forms (see our theorem 2). Finally, we
consider totally-real submanifolds (with cither v-flat or h-flat normal connection)
and generic submanifolds of a Kachlerian Finsler space (cf. our theorems 4-6).

2. Statement of results

Let (M?",L,J) be a Kaehlerian Finsler space [6], and (x~'T'M?2",g) ils induced
Riemannian bundle, cf. our §3. By a recent result [11], the torsion tensor N} (given
by our (3.1)) vanishes. Therefore we may apply [3, Theorem 2.1, p. 160] eu(‘h as to
conclude that V(M?") = T(M?")\ 0 admits a (naturally mduced) Cauchy-Riemann
(CR) structure HY, i.e., a complex subbundle II? of the complexified tangent bundle

T(V(M™) = T(V(M*")) & C,

such that i) Hv is involutive, ii) H* N'H?Y = (0), and iii) R(H?) = ker(dr), where
7 : V(M?™) — M?" is the natural projection. On the other hand, let J be the lift
of J (with respect to the nonlinear connection of the Cartan connection of (M2, L)),
cf. our (3.4). Then J is naturally extended (by C-linearity) to T°(V(M?2™)); let
T'O(V(M?*")) be the bundle of all eigenvectors corresponding to the eigenvalue
i = v/=1 of J. Leaving definitions momentarily aside, we may formulate the follow-

ing:
Theorem 1

Let (M?™,L,J) be a Kaehlerian Finsler space whose Cartan connection has an
integrable (R}, = 0) associated nonlinear connection N on V(M?"). Then V(M*™)
admits a Cauchy-Riemann structure H* such that R(H") = N and

(2.1) TOVM™) =1t 0.
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Let V be the Cartan connection of the Finsler space (M?",L) and § its vertical
curvature tensor. If u € V(M?") and p is a 2-dimensional real subspace of the fibre
7 M, let s(p) = Su(X,Y,X,Y), for some g,-orthonormal basis {X,Y} in p,
be the vertical sectional curvature of (M?",1) [6, p. 97]). Let o : GI(M?") —
V(M?"™) be the bundle of all 2-subspaces in fibres of the induced bundle 7#~17'M*"
of (M?", ). Its standard fibre is the Grassmann manifold G;2,(R) of all 2-planes
in R®". Note that the vertical sectional curvature is a function s : GI;(M?") —» R
rather than a function on V(M?"). Let now (M?",1,J) be a Kachlerian Finsler
space; a Finslerian 2-planc p € GFy(M?*") is said to be holomorphic if J(p) = p.
The restriction of s to the holomorphic 2-planes is refered to as the holomorphic
v-sectional curvature. Then (M?",L,J) is said to be a complex Finslerian v-space
form if there exists ¢ € C*°(V(M?")) such that the following equality s = coc holds
on all holomorphic 2-planes p € GF2(M?"). Qur §4 deals with the general notion of
a Finsler connection (V,N) on M2". If (V,N) is a metrical Finsler connection on
(M2, L,J) then its associated vertical curvature S(X,Y, Z, W) is skew-symmetric in
X, Y, respectively in Z, W, and thus the above procedure is easily generalized such
as 1o yield a well defined concept of (holomorphic) v-sectional curvature. Morcover
the main theorem in [6, p. 95 may be refined to the general case of a metrical
Finsler conection (V,N) on M?", n > 2, provided that J is parallel with respect
to V. Moreover, if the holomorphic v-sectional curvature s (constructed with respect
to (V,N)), does not depend on the 2-plane p C w7 17'M 2™ but only on the direction
u € V(M?*"), then M?" is also refered to as a complex v-space form with respect
to (V,N). We obtain the lollowing:

Theorem 2

Let M™ be an invariant, i.c.
J,,,(Tr;lTMm) =n 1TM™, u€ V(]\/I"‘),

submanifold of the complex v-space form (M*"(c), 1.,J),n > 2. Then M™ is a com-
plex v-space form (with respect to the induced connection) of the same holomorphic

v-sectional curvature ¢ if and only if () = 0, i.e. then vertical second fundamental
form vanishes.

It has been recently shown [3, p. 165], that any invariant submanifold M™ of
a Kaehlerian Finsler space is v-minimal, i.c. » = 0, cf. our §6. It is our purpose to
study h-minimality (i.c. up = 0) of invariant submanifolds. We obtain the following:
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Theorem 3

Let M™ be an invariant totally-geodesic submanifold of the Kaehlerian Finsler
space (M2",I,,J). Then M™ is h-minimal.

In contrast with the theory of submanifolds in Riemann spaces, in general a
totally-geodesic submanifold of a Finsler space is neither A- nor v-minimal. Indeed,
let JI be te horizontal second fundamental form of M™ in M?", cf. our §6. By
a theorem of M. G. Brown [13], M™ is totally-geodesic if and only if Ng = 0,
No = II(v,v), where v is the Liouville vector of M™. As proved by O. Varga,
see [13], the vanishing of the normal curvature (Nyg = 0) yields the vanishing of
the normal curvature vector (N = 0), too. Here N(X) = H(X,v). Nevertheless,
in general N = 0 does not imply the vanishing of the entire horizontal second
fundamental form.

A Berwald-Cartan space is a Finsler space whose Cartan third curvature tensor
(vertical curvature tensor) vanishes. Typical examples of Berwald-Cartan spaces
are rcal Finsler surfaces (2-dimensional Finsler spaces) [14]. We slightly generalize
this concept by calling Berwald-Cartan all submanifolds whose vertical curvature
(associated with the induced connection) vanishes; clearly, such a submanifold is

Berwald-Cartan in the original sense provided that the induced and intrinsic con-
nections coincide.

Theorem 4
Let M™ be a totally-real, I.e.

Ju(r'TM") = E($)u, u€V(M"),

submanifold of the Kaehlerian Finsler space (M*",L,J). If M™ has a v-flat normal
connection (i.e. S* =0) then M™ is a Berwald-Cartan space.

Theorem 5

Let M™ be a totally-real submanifold of the Kachlerian Finsler space
(M, L,,J), having an h-flat normal connection. Then the induced connection of
M?™ has a vanishing horizontal curvature tensor, ie. R = 0.

Let (M?",J,L) be an almost Hermitian Finsler space and (r='T'M?", go) its
induced bundle. Let us lift J, gy (by using the nonlinear connection N° of the
Cartan connection), to an almost Hermitian structure §o, J on V(M?*™), cf. our §3.
By taking the vertical, respectively the horizontal lifts, of the Finslerian distributions
of a CR submanifold M™ of M?*" one obtains:
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Theorem 6

Let (M™,D,DL) be a CR submanifold of the almost Hermitian Finsler space
(M2, 1,,J). Then each integral manifold V,(M™) = n~(z), £ € M™, of the
vertical distribution ker(dr) on V(M ™) is a CR submanifold of the almost ITermitian
manifold (V(M?"),§y,J) whose holomorphic and totally-real distributions are vD
and yD*. If additionally M™ is gencric (dimg D' = 2n — m) and the nonlinear
connection N of its induced connection is integrable, then each maximal integral
manifold S of N carries a pair of distributions D and Dt such that 8DL is
totally-real, i.e. anti-invariant under J. Morcover 8D and D' are orthogonal if
and only if

(2.2) 9o (N(X),N(Y)) =0
for any X € D, Y € DL. Also 8D is holomorphic (with respect to j) il and only if

(2.3) NoJ=JoN,

i.e. the normal curvature vector and the Finslerian almost complex structure com-

mute. Consequently if (2.2) and (2.3) hold, then (S, ,H'D BD1) is a CR submanifold
of (V(M*™), o, J).

3. Complex Finsler structures

Let (M*,L), n > 1; be a real 2n-dimensional Finsler space with the Lagrangian
function L : T(M?2") — [0,+00). Tere T(M?") — M?™ denotes the tangent bundle
over M%". Let j : M2 — T(M?") be the natural imbedding, i.c.

i(z) = 0, € Tu(M?™), €M™,

We put V(M?2") = T(M*™)\ j(M?™).

Let m : V(M?") — M?" be the natural projection and 7 'TM?" — V(M?")
the pullback bundle of T(M?") by m. A bundle morphism J : 7~ 1TM?*"* —
T T M?*, J? = —1, is said to be a Finslerian almost complex structure on M?".

Let u € V( 'VI“’) then 7;1TM?" = {u} x To(M?*"), z = m(u), denotes the
fibre over u in #~!"I"M?". Any ordinary almost complex structure J : T(M?*") —
T(M?), J? = —1, admils a natural lift to a Finslerian almost complex structure J
given by

JuX = (u,Jo7X), z=mu), X €n'TM?™, ueV(M™).
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ITere 7 denotes the projection onto the second factor of the product manifold
V(M) x T(M?*).

Let (U, ') be a system of local coordinates on M?" and let (x=(I/),z?,y’) be
the naturally induced local coordinates on V(M?"). The vertical lift is the bundle
isomorphism v : 7"1TM%" — ker(dr) defined by

vX; = 0;, 0 = o

Clearly, the definition of 4 does not depend upon the choice of local coordinates.
Here
0

Xi(u) = (u, e

To make this construction precise, let us note that any tangent vector field X on
M?™ admits a natural lift X to a cross-section of 7~ !'TM?2" defined by

), uEw—](U),15i§2n.
m(u)

X(u) = (u, X(x(n))), ueV(M™).

Note that X; are the natural lifts of the (locally defined) tangent vector fierlds 8/0x*.
Clearly {X;}i<i<2n form a (local) frame of =11 M?2".
Let : '
gij = 50.‘(?]‘[/2.
We put
9u(X,Y) = gi;()XYI, X =X'X;, Y =YX}, uer\(V),

for any cross-sections X, Y in x~1TM?2*, The decfinition of g, does not depend
upon the choice of local coordinates around z = w(u), u € M?". Since (M?*",L) is
a Finsler space, for cach u € #~1(U) the quadratic form g;;(u)é¢*¢7 is positive defi-
nite. Therefore 7=*T"M 2™ {urns into a Riemannian vector bundle with the Ricmann
(bundle) metric g : w — g,. Then (x71TM?",g) is called induced bundle of the
Finsler manifold (M?",L). Cross-scctions in the induced bundle are refered to as
Finsler vector ficlds on M?".

Let J be a Finslerian almost complex structure on M 2™, Since the induced bun-
dle and the vertical bundle ker(dr) (over V(M?™)) are isomorphic, ker(dr) turns into
a Ricmannian bundle in a natural way, with the metric g¥(Z,W) = g(y~'Z,7"'W)
for any vertical tangent vector fields Z, W on V(M?2"). Morcover ker(dr) is a com-
plex vector bundle since each fibre ker(d, ) carries the complex structure J? defined
by

JY=q,0J, 077, w€ V(M.
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Let [J”,J*] be the torsion of the (1,1)-tensor field J¥. This is ker(d7)-valucd,
since ker(dr) is involutive. Let JX; = J!(z,y)X;. Then J_;:J,ﬂ = —§i. We de-
fine N3(Xi, X;) = N5 X, where:

- oJi 0J} oJm . aJr"
3. V:'.:'m k 'm. J '_m k'_'l J .
(3.1) Vo =I5 gy = I8 g T By~ Im

Clearly the definition of ¥j does not depend upon the choice of local coordinates.
Actually one has:

(3.2) INJ(X,Y) = [J",0°](vX,7Y)

for any Finsler vector flields X, Y on M?". Lollowing [3, p. 159], if N3 = 0 then J
may be called a complex Finsler structure. Nevertheless, this concept is not entirely
satisfactory since, in this sense, the natural lift of any (not necessarily integrable)
almost complex structure on M?" is a complex Finsler structure, by 3.1).

A differentiable 2n-distribution N : v — N, on V(MZ"') is called a nonlinear
connection on V(M?") if each IV, is a direct summand to the vertical space ker(d,)
in T,(V(M?™)), u € V(M?). In classical tensor notation N might be represented
by the Pfaffian system:

(3.3) dy' + N dz? = 0.

Here Nj € C=(x~1(U)) are the coeflicients of the nonlinear connection; that is, if
u € 771(U), then N, is spanned by the tangent vectors

/) .,
m:(‘);—N{aj (9,'

i)

T 9

Let N be a nonlinear connection on V(M?"). We shall need the bundle epimorphism
L:T(V(M?2")) — m=VI'M?, defined by

LuZ = (u,(dy7m)Z),  ZeT,(V(M*")), ue V(M™).

Clearly, the restriction of L, to Ny is a R-linear isomorphism N, ~ x T M?". Let
By denote its inverse. The resulting bundle isomorphism 3 : 77 'TM?" — N is
refered to as the horizontal lift (with respect to the nonlinear connection N). If J
is a I"inslerian almost complex structure on M?2" then we may put J* = oJo [
such as to define a complex structure on the bundle N — V(A127),
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We shall need the Dombrowski mapping, i.c. the bundle Iﬁorphism
G:T(V(M*™)) — - ITM?*", GZ=+"'2,
where Z, denotes the vertical part of Z with respect to the direct sum decomposition
To(V(M*™)) = N, @ ker(d,7), u€ V(M™).

With any Finslerian almost complex structure J one may associate an almost com-
plex structure J on V(M?") defined by:

(3.4) J=pBoJoL+vy0JoG.

Note that the restriction of J, to N, respectively to ker(d,r), coincides with J},
respectively with JY, for any u € V(M?*").

Let (M?",L) be a Finsler space and (r~'T'M?",g) its induced bundle. Let N
be a fixed nonlinear connection on V(M?"). The Sasaki metric § is given by:

(3.5) §(Z,W) = g(LZ, LW) + g(GZ,GW).
Thus V(M?") turns naturally into a (noncompact) Riemannian manifold. Moreover,

(V(M?™),§,J) is well known to be almost llermitian.
We shall need the torsion N}(X;,X;) = A¥; X, where:

'_ §Ji §J; . I 6J7
(3.6) k=I5 szm I Szm +Jm szd i bxk

Clearly the definition of N .'} does not depend upon the choice of local coordinates.
Note that:

(3.7) NH(X,Y) = L[J*, J*](8X,8Y)

for any Finsler vector fields X, Y on M?",
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4. Kaehlerian Finsler spaces

Let (M?", L) be a Finsler space endowed with the Finslerian almost complex struc-
turc J. Then (M?",[,J) is said to be an almost Hermitian Finsler space if
9(J,X,71,Y) = g(X,Y), for any Linsler vector fields X, Y on V(M?2"). Tet V be a
connection in the induced bundle (x=1TM?" g). Ti is said to be metrical if Vg = 0,
respectively almost complex if VJ = 0. A tangent vector field Z on V(M?") is
horizontal (with respect to V) if Vzv = 0. Here v denotes the Liouville vector field,
i.e. the cross-section in the induced bundle defined by v(u) = (u,u), v € V(M?").
Let N be the distribution of all horizontal tangent vectors on V(M?2™); it is refered
to as the horizontal distribution of V. Then V is regular if its horizontal distribution
N is a nonlinear connection on V(M?"). A pair (V,N) consisting of a connection
in 7~ 'TM?" and a nonlinear connection on V(M*") is called a Finsler connection
on M?". Note that any regular connection in 7~ !TM?2" gives raise to a Finsler
connection on M?2™,

Let (V,N) be a Finsler connection; two concepts of torsion tensor ficlds are
usually associated with (V, N), namely

T(Z,W)=VyLW - VwLZ — L[Z,W],
Ty(2,W) = V2GW - VwGZ - G[Z, W],

for any tangent vector fields Z, W on V(M n), Let also R denote the curvature
2-form of V. Several fragments of 1", 7', and R are usually derived by means of the
bundle morphisms S, v, i.e.

T(X,Y) = T(BX,AY),  C(X,Y)=T(rX,BY),
RYX,Y)=Ty(8X,8Y), PYX,Y)=T(vX,8Y),
SYX,Y)=Ti(7X,7Y), R(X,Y)Z = R(BX,BY)Z,
P(X,Y)Z = R(vX,8Y)Z, S(X,Y)Z = R(vX,7Y)Z.
We may define no ‘vertical’ component of T since clearly ’i‘('yX,'yY) = 0 for any
Finsler vector fields X, Y on M?™. Note that:

(4.1) 1RY(X,Y) = [BX,BY],

i.e. B! is the obstruction towards the integrability on N. In spite of being defined
in terms of V the torsion R' depends essentially on N only, as easily seen in local
coordinates, i.e. '

P ONG  6N§

ELEN FTIY PYA
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where R'(X;, X;) = RE X;.

The fundamental theorem of Finsler gecometry asserts that there exists a unique
regular connection V in the induced bundle (x~!TM?2", g) of the given Finsler man-
ifold (M?", L) such that i) V is metrical, ii) T = 0, $' = 0. It is refered to as
the Cartan connection of (M2™,L). Then (M?2",1,,J) is called a Kachlerian Finsler

space il its Cartan connection is almost complex [6].

5. Cauchy-Riemann structures on the tangent bundle

If N is an arbitrary C*°-manifold and 7¢(N) = T(N) ® C denotes the complex-
ification of its tangent bundle, then a Cauchy-Riemann (CR) structure on N is a
complex subbundle # of TC(N) such that i) Hn H = (0), ii) I is involutive. Herc a
bar denotes complex conjugation. At this point we may prove our theorem 1. Let J
be a Finslerian almost complex structure on M2", Let N be a nonlinear connection
on V(M?"). If N% = 0, we consider the C-vector subbundle H" of TC(V(M?")) de-
fined by u +— IT!, where H! consists of all complex tangent vectors X ® 1—J* X ® 1,
i=+-1, X € Ny, u € V(M?™). Suppose R' = 0. By (3.7) and (4.1), it follows
that [J?,J*] = 0. Consequently /" is involutive. Also, by the very definition of
H", one has R(IT,)) = N, u € V(M?"). That is, V(M2") turns into a CR manifold.

|

Note that theorem 1 holds for nonlinear connections whose R! torsion field
vanishes identically. The following example shows that such nonlinear connections
actually exist. Let V be a flat connection on M?" and I;k(m) the connection coefi-
cients. Then N} = T, y* defines (by our (3.3)) a nonlinear connection on V(M?*")
with R}, = 0.

If J is a Finslerian almost complex structure with N% = 0, (with respect to a
fixed nonlincar connection), then J is said to be h-integrable. To unify terminology,
complex Finsler structures (cf. our §3) may be refered to as being v-integrable. It
should be underlined that if J is obtained by natural lifting from an ordinary almost
complex structure J then N"f still contains information on the integrability of J,
while Nj is vanishing identically.
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6. Invariant submanifolds of Kaehlerian Finsler spaces

Let ¢ : M™ — M*" be an isometric immersion (i.c. I(u) = Lo(huu), u € T(M™))
of a real m-dimensional Finsler space (M™,L) in a Kaehlerian Finsler space
(M?*", Lo, J). Throuhout a knot indicates objects (metrics, connections, etc.) asso-
ciated with the ambient space M2,

Let then (x~1TM™, g), (x7'T'M?*™, gy) be the corresponding induced bundles.
Ifere  denotes both the projections V(M™) — M™ and V(M?) — M?*™, TLet
D3 be the restriction of ¢ X 9. to #7'TM™. We denote by E(4)y the or-
thogonal complement (with respect to go,,) of 77! TM™ (thought of as the sub-
space (DY), m"TM™ in n'TM?"). Let E(1%) be the disjoint union of all E(1),,
v € V(M™). Then E(y) > V(M™) is a rank 2n — m real differentiable vector
bundle, i.c. the normal bundle of .

A Finslerian k-distribution D on M™ is an assignement D : u — D, such that
cach Dy is a k-dimensional real subspace of 771 TM™, u € V(M™), k > 1. With
each Finslerian distribution D on M™ we may associate a distribution on V(Mm™),
namely its vertical lift

YD : u > 7, Dy C ker(d, 7).

All Finslerian distributions considered are assumed to be smooth, i.e. D is smooth
if for any up € V(M™) there exists an open neighbourhood U of zo = m(up) in M™
and a family {X;}1<i<k of smooth Finsler vector fields defined on 7~1(U), such that
for each u € #=1(V), {Xi(u)hi<i<k is a linear basis of D,.

Cauchy-Riemann (CR) submanifolds of almost Hermitian (Riemannian) mani-
folds were considered firstly by A. Bejancu [16]. The author [9, p. 57] has gencralized
this notion to the Finsler geometry in the following manner. A submanifold M™ of
the almost Iermitian Finsler space M2" is said to be a CR submanifold if it carries
a pair of complementary (with respect to g) Finslerian distributions D and DL such
that D is invariant (i.c. J,Dy = Dy, u € V(M™)), while DL is anti-invariant (i.e.
JuDif C E(¥)u, u € V(M™)). Morcover, together with [3, p. 162], we call M™
an invariant submanifold if D+ = (0), respectively an anti-invariant submanifold if
D = (0). If M™ is anti-invariant and m = n then M™ is said to be a totally-real
submanifold of M?". Finally, if dimg DL = 2n —m then M™ s said to be a generic
CR submanifold.

We recall, e.g. [10, p. 3], the Gauss and Weingarten equations of 1, i.e.

VY =VzY + A(Z,Y)

6.1 .,
(6.1) V%€ = —AeZ + VEE.
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Here V® denotes the Cartan connection of (M?", 1) while V, IT, A, VL de-
note respectively the induced connection, the second fundamental form (of v), the
Weingarten operator (associated with the cross-section £ in E(4)), and the normal
connection (in E(%)). The induced connection V (although generally different from
the Cartan connection of (M™, L)) is known to be regular [10, p. 4]. Tet then N
denote its nonlincar connection (on V(M™)) and g the corresponding horizontal
lift. We consider the following fragments of H, A, i.e.

H(X,Y)= H(BX,Y), Q(X,Y)=H(X,Y),

AeX = A¢BX, WeX = Agr X,

for any I'insler vector fields X and Y on M™, respectively any cross-section £ in
E(v). Then H and @ are respectively called the horizontal and vertical second
fundamental forms of .

At this point we may prove our theorem 2. To this end, let (M?2™, Lo, J) be
a Kaechlerian Finsler space, n > 2, and suppose that its holomorphic v-sectional
curvature sp (with respect to the Cartan connection) is given by sy = c oo for some
¢ € C®(V(M*?")). By a result in [6], ¢ actually falls into a point function only, i.e.
¢ € C®°(M?"), and the vertical curvature tensor So(X,Y,Z, W) = go(So(Z, W)Y, X)
is given by:

(6.2) So(X,Y,Z, W)= % [go(X, Z)go (Y, W) — go(X,W)ge(Y, Z)

+ gO(XvJZ).qO(Ya JW) - gO(XvJW).‘IO(Ys JZ)
+ 2gn(X,JY)g0(Z,JVV)]

for any Finsler vector fields X, Y, Z, and W on M*?" [6, p. 97, (3.4)]. We need to
recall [10, p. 6] the following Gauss-Codazzi equation:

So(X,Y)Z = S(X,Y)Z+Wox.z2)Y — Woir.n X + (VaxQ)(Y, Z) = (V4y Q) (X, Z)

for any Iinsler vector fields X, Y and Z on M™. Here S stands for the vertical
curvature of the induced connection V on M™.

It is well known [10, p. 5] that @ is symmetric. Since M™ is invariant and
V?YXY = V,xY + Q(X,Y), it follows that J is v-parallel with respect to V while
Q is subject to

(6.4) QX,JY)=QUX,Y)=JQ(X,Y).
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Let p € GF3(M™) be a holomorphiz 2-plane and {X,JX} an orthonormal basis
in p. Taking the inner product of (6.3) with W and using (6.2), one derives the
expression of 5. This yields the holomorphic v-sectional curvature s on M™, that
is:

(6.5) s(p) = c() - 2| Qu(X, X)||"

where
z = m(u), u = o(p), vueEV(M™), ze M™,

and the proof of theorem 2 is complete. O

Let M™ be a submanifold of the Finsler space (M?",L). Let {E,...,E,}
be an orthonormal frame of the induced bundle (x~1TM™, g). The following (well
defined) normal sections, i.e.

1

ij : 1 ogij .
;ﬁ é JH(.E,',EJ'), V= E 6 JQ(.E,',.Z'/J'),

ll, =
are refered to as the h-mean curvature vector, and v-mean curvature vector of M™
in M2, respectively. '

At this point, we may prove our theorem 3. To this end, let M™ be an invariant
submanifold of the Kaehlerian Finsler space (M?", [, J). We recall [10, p. 4, (1.2)),

(6.7) T(X,Y)+ H(X,Y)— H(Y,X) = Co((N(X),Y) — Co((N(Y),X)

for any Finsler vector fields X, Y on M™. Ilcre 1' denotes the horizontal component
of the torsion 7" of the induced connection, while Cp stands for the mixt component of
the torsion Tp (of the Cartan connection of M%), Also N(X) = H(X,v). Generally
T # 0 and therefore H is not symmetric. From our formula

VixY = VaxY + H(X,Y)

it follows that J is h-parallel (with respect to V) but one may only prove that
H(X,JY) = JH(X,Y). Nevertheless, if M™ is assumed to be totally-geodesic
(N = 0) then (6.7) yiclds the symmetry of /T and a standard argument leads to
p=0.0
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7. Totally-real submanifolds of Kaehlerian Finsler spaces

Let M™ be an anti-invariant submanifold of the Kaehlerian Finsler space
(M2, J,L.). We suppose for the rest of this paragraph that m = n, i.e. M™ is
totally-real. Let RL be the curvature 2-form of the normal connection VL. Three
fragments of Rt may de defined in a natural way, i.c.

RH(X,Y) = RH(BX,BY),

PY(X,Y) = R (7X, BY),

S1(X,Y) = RH(vX,7Y).
Then V< is said to be v-flat (respectively h-flat) if S* = 0, respectively if RL = 0).
We may prove now our theorem 4. To this end we recall [10, p. 8, (1.12)]:
(7.1) 90(So(X,Y)t,n) = go(SJ‘(X,Y)é‘,r,) — g([We, W,1X,Y).

Since the form of (7.1) is similar to that of the Ricci equation of a submanifold in
a Riemann space, we may apply the arguments in [16, p. 82] such as to generalize

[16, p. 82, proposition 1.3]. Indeed, for £ = JZ, n = JU, equation (7.1) followed by
(6.3) lead to:

(7.2)  $(X,Y)Z = Wow.nX - Wox.p)Y +JQ(X,WyzY) — JQ(Y, Wiz X).

On the other hand, as M™ is totally-real and V°J = 0 the Gauss and Weingarten
formulae (6.1) lead to:

(7.3) Wiy X = —JQ(X,Y).
Substitution from (7.3) into (7.2) finally yields § = 0. O

To prove theorem 5, we recall (1.4) and [10, pp. 6-7, (1.9)], i.c.

(74) RBo(X,Y)Z + Po(N(X),Y)Z — Po(N(Y),X) Z + So(N(X),N(Y)) Z

= R(X,Y)Z + Awx,2)Y — Angr.y X + (Vax H)(Y, Z)

— (VevH)(X,Z)+ H(T'X,Y),2) + Q(R\(X,Y), 2),
(7.5)  go(Lo(X,Y)E, ) + g0 (Po(N(X),Y)E, n)
~ 90 (Po(N(Y), X)€,n) + go(So(N(X), N(Y))E,n)
= go (R (X,Y)&,n) + 9(A,Y, AcX) — g(A, X, AcY).

Note that A is not self-adjoint, since /7 is not symmetric. As V1 is h-flat and:
(7.6) Ayjvy X = -JU(X,Y)
we may combine (7.4) and (7.5) such as to yield £ = 0. O
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8. Generic submanifolds

Let (M™,D,Dt) be a CR submanifold of the almost Hermitian Finsler space
(M?*", L,J). Clearly, the vertical distribution ker(dw) on V(M™) is integrable, and
its maximal integral manifolds are the fibres of 7, i.e.

ker(dym) = Ty (Va(M™)),  Vo(M™) =77 (z),

for all w € 7~ !(x), £ € M™. Let ¥D and 9D be the vertical lifts of D and D+,
respectively. It is a simple matter to verify that (Vy(M™),9D,yD1) turns to be a
CR submanifold of (V(M?"), J,go), in the sense of [16]. To prove the second part of
theorem 6, let 8D and BD* be the horizontal lifts of D and D+, respectively, with
respect to the nonlincar connection of the induced connection of M™, say N. Let §
be aleafof N, Ty (S) = Ny,u € 5. Leti: S — V(M™) be the natural inclusion and
% the given immersion of M™ in M2". We regard S as a submanifold of V(M?2")
by considering the immersion 9. 0i. If X € D, Y € D1, then

Go(BX,BY) = go(N(X),N(Y)),

due to:
(8.1) BZ = poZ +vH(Z,v),

for any Finsler vector field Z on M™ [10, p. 3]. Here Gy : 7" 'TM?™ — N° denotes
the horizontal lift with respect to the Cartan connection of (M?2", L). Thus 8D and

BD~L are mutually orthogonal (with respect to §) if and only if (2.2) holds. Let
X € D. Then

JBX = BIX + y{JH(X,v) — H(JX,v)},

and consequently #D is J-invariant if and only if (2.3) holds. Finally, for Y € D+
and any Finsler vector field Z on M™, ope has:

90 (JBY,BZ) = g (JN(Y), N(X)) =0,

by (8.1) and since M™ is generic, i.e. JN(Y') is tangential. O
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