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An analytic study on the self-similar fractals: Differentiation of integrals

MIGUEL RRYRs*
Facultad de Informdtica, Universidad Politécnica de Madrid, Boadilla del Monte, 28660 Madrid, Spain

Received 16/JUN/89

ABSTRACT
Let & C R™ be a self-similar fracial of Hausdorff dimension &, such that
its Hausdortf measure /1° is finite and positive. In this paper, we define
two differentiation bases on /5 which are density bases for ([, IT*). For
these diffcrentiation bases, we study covering properties of Vitali type, and
we prove that they differentiate L' ([, 11*).

1. Introduction

Let £ be an s-set, that is, a subsel of the Luclidean n-space ®" which is measurable
with respect to the s-dimensional IMausdorff measure /% and for which 0 < H*(FE) <
oc. In the Mandelbrot’s terminology [1], a fractal is an s-set for which s is fractional,
or s is integer and its geometric properties are completely opposite to the properties
of the nice s-dimensional surfaces. The aim of this paper is the definition and the
study of two diflerentiation bases on the self-similar s-sets, that is s-sets which are
a finite union of disjoint subsets, each of themn similar to the whole set.

In the second secction of this paper we present some definitions and results about
Mausdorff measures and self-similar sets, and notations.

Civen I/ C R", a sell-similar s-set, in section 3 we define two differentiation
hases, B; and By, on K. In the theorems 3.1 and 3.2, we prove covering properties,
of Vitali type, for these bases and. in the theorem 3.3, we prove that they are density
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bases for (F.I1*). In the theorem 3.10 we shall see that the maximal operator,
associated to B {B, or By), satisfies an inequality of weak tvpe (1,1). Using the
preceding results we prove. in the theorem 3.5, that basis B (B or By) differentiates
to LI'(E.11%).

2. Preliminaries

Given a subset I C R", for s, 0 € ¢ < n, we define:

He(E) =liminf {z d(A)  E C U A 0 <d(Ay) < c‘)}

l"‘-'()" N .
=1 i=1

where d(A) denote the diameter of the set A. For cach s, 0 < s < n, the application
117 is an outer measure on BR™ which we call Hausdorff s-dimensional outer mea-
sure. The restriction of 11° 1o the a-field of Il*-measurable sets is called Hausdorll
s-dimensional measure. This measure I1* is Borel regular. We shall say that I is
an s-set if £ is /1%-measurable and 0 < I*(1) < ~.

Given [/ C R" there is a unique number g, 0 < s < n, such thaf:

cc, ift < s
HYE) =
0, ilt>s

which is called the Hausdorfl dimension of E, and we shall write s = dim I,

More details about Hausdorfl measures may be consulted in [1] or [5)].

A wide and important class of s-sets is that formed by the self similar sets,
which are defined as follows:

2.1. Derixrrion. Weshall say that a compact set £ C R" is self-similar if thereis a
finite family & = {S1,..., 51} of similitudes ($; : 8" — R" such that |S;(2)—-5i(y)| =
rilz —y|, for all z,y € R"*, 0 < r; < 1)and a number s, 0 < 8 < n, satisfying:

a) =, $i(F)

b) 0 < H1*(1) < o0

¢) 3 (SH(EYNSi(k)=0,for1<i<j<L

The number s which give us the Hausdor{l dimension of the self-similar set, I
is the unique positive number which satisfies Ei-:l r{ = 1. From the definition one
deduce immediately that if I = 1 the set F contains a single point, and dimF =0
and HY(F) = 1. We shall assume then, in this paper, that [ > 2.



An analytic study on the self-similar fractals 161

2.2. Notation. Lel [ be a fixed positive integer number. Lor every positive integer
number k, we denote by S} the sei of all k-tuples formed by the first [ positive
integer numbers, that is:

k=i in) 1< <1 LS <k}

and analogously S, will denote the set of all the infinite scquences formed with the
£ first positive integer numbers:

So= i1y ) 1< i< L > 1)
Ha=(...,ik) € S,’\7 and 3 = (J1.....7¢) € S,’,, we define the concatenation

of a and 3 by:
a8 = (iyaeoyit, Jia-edg) € Shays
and for every p, 1 < p < k, we denote by alp] the p-tuple formed by the p first
coordinates of o, that is:
afp] = ({1.....0p) € S,’;.

Morcover, if k < ¢, we shall say that o C 3 il e = k], that is, i the k-tuple «
are the k first coordinates of 3.

2.3, Basiz results sbout self-similar sels
Let I2 C R" be the sclf-similar set associated to the family of similitudes

; . ) . . ~1
S = {S1,...,5:}, with ratios {r1,...,r}, and with HausdorIl dimension s (3,,_, r!
=1). Forevery ¥ > 1 and o = (#1,...,1k) € SL we denote:

Ko = S9.(l)=5;0-05;(F),
Pey =T = Ty,
where ro, will be the similitude ratio of §,. It is easy to show that:
(a) F = ersi E,, forallk > 1.
(b) Ea = Usest Faa, for every a € Stk > 1 and p > 1. In particular
5! X

. 1 -

I'Icy = Ui=1 I."/_r'"'.
(c) H3(EsN Fg)=0, forevery k > 1, a,8 € S} and o # 3.

(d) Ifa € 8!, 3 €8k and p < q, we have that:

(d1) ¥ C Lo, ifa C 3.
(d2) 1*(ExN Eg)=0,ifa ¢ 8.

For more details about sclf-similar sets one can see [1] or [3].
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3. Differentiation Bases on the Self-similar Fractals
R™ will be the self-similar set, of dimension s, associated 1o the
l s v
=1). We

In this section L' C
..... ,S1} with ratios {ry, ry (-,
shall call subsects of the generation k, k > 1. the clements of the following lanily

.....

family of similitudes § = {957,

e = {I'f,,,, 0 € S,’t_}

and we shall also consider the following families of sets

J
.A]=£|U{E'j=U l<]<’}

{ 'J—UI,“ (.tES,ﬂ._,.,l<_]<l} for all £ > 1

A =
It is casy to check that By = U2, &k and By = Uf':, Ay are two diflerentiation

forallz e I

bases for (1, I1*), being
Bi(z)={VeB :xeV},

By(z)={VeEB: zeV},

3. for all z € I.
We are going to prove now a covering theorem, of Vitali type, for each one of

the preceding bases (8, and By).
we can choose a

3.1 Theorem

Let F C £, and for every « € I let U(x) € By(z). Then,
sequence {Vi}i>1 C (U(2))zer (possibly finite) satisfying
(a) I°(V,NV,) =0, il p # ¢ (almost disjoint).

(b) " C Uk{_l '/r"‘"

Proof. We construct the seqnence {V}x>1 in the following way

r):x € I} # 0}

iy = min{i: &N {U(.

Let
\We choose all the sots of &, N{U(z) : z € I}, and we denote these sets by ¥4
Ir I'C UY_, Vi, this process is linished. In other case, lot
¢ \% N
! i
Ue&n{U(z):zeTF}, ngUv,g 05,

I'4
H

zzzmmgz 1>11,<b
l \
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and we choose all the sets of &, N {L'(2) : x € I} such that they are not contained
in U';zl V;. We denote this sets by Viup..... V. And so on.

It is obvious that the elements of the sequence { Vi }e>1, obtained in this way and
which may be [inite or infinite, are almost disjoint. Moreover, [or every = € I the
sol () cither has been chosen with its corresponding generation or it is contained
in some of the already chosen sets. Then, in any case:

zel(x)C U Vi

k>1
and therefore I C UJps, V- O

2.%Z. Thagrem

Let ' ¢ F, and for every x € F let U(z) € Ba(x). Then, we can choose a
sequence {Vi}i>t C (U(x))zer (possibly finite) satisfying:

(a) IT*(V, N V,) =0, ifp+# q (almost disjoint).

(b) # C Uiy Vi
Proof. We construct the sequence {Vi}r>1 in the following way:

Let
i =min{i: AN{U(2):2€F}#£ 0}

We choose, for every o € Sﬁl_l (if i, = 1, we consider 8§ = {0}), the set 4o with:
jo = max{j : £ € (U(2))eer}

and the remainder of the sets of A;, N{U(z) : € F} which are almost disjoint with
Lio (if {F:1<j <!, F} € (U(x))rer} =0, then we choose all the different sets
of A;, N{U(z) :z € I'}). We denote the sclected sets by Vi,..., V.

I F c Ui-, Vi, this process is finished. Tn other case, let

‘ ( \ \
P

ip=mindi:i>in, {U:VeAn{l(z):xel},Ud U Viy #0 E)
s AR T
\ L =t

Now we perform an analogous operation replacing the set A; N {U(2) 1w € I'} by
the set {U: U € Ay, n{U(x):x € F}, U ¢ Ui, ¥;} and denote the selected sets
by Viogr...., Vo And so on.

The sequence {Vk}xp1. obtained in this way. satisfies (a) and (b) by the same
arguments of the proof of the preceding theorem. U
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In the next theorems, B denote any of the considered bases (By or By).
Given a diflerentiation basis Bon I, aset I' C IV and & € F, we deline the
density of Fat 2 by the limit:
) H*(rnv
D(F,z)=lim -——(——)
' d)—o0  H3(07)
7eB(x)

witen this limit exists. Otherwise, we shall say that the density does not exist.

San

.3. Thecrem

The basis B is a density basis for (I, 11%).
Proof. We have to show that for every s-set I C L one has:
D(F,z) = xr(z) for IT° —ae. .z € k.
(a) D{F,2) =0 at H-a.c. x € K\ .

To prove this, it is enough to show that for every « > 0 the set:

Go = {,L € L\ F : 3{Uk(2)}e>1 C B(z), d(Ui(z)) — 0,

3\

H(FnlUk(z)) > a. Vb > _1_}

1 (Ue(2))

has [T°-measure zero. Let £ > 0. Using the Besicovitch and Moran Theorem [1], we
can choose a closed and bounded set Iy C I such that IT°(1°\ F7) < €. Tor every
z € G, there is U(2) € B(z) such that:

nH(rntz)) . .

—_— arid J(z)N I = 1
(U (x) id V@) 1 =0 (1)
and so, applying Theorem 3.1 or 3.2 (if B = By or B = B, respectively) to

(U/(2))zeG,,» we can choose an almost disjoint sequence {Vi}i>1 C (0(7))zec,
such that G C Ugsq Vi and so, by (1), we have that:

(01 Vi)
13 (Vi)

>a and Vinlky =0 forallk > 1. (2)
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Then, we have:

(G < e U Vi
k>1

> H(Vi)

k>1

] '“h

-5 s/ 7
< - L,,” (FnVy)
k>1

i
=—I°| In v,\,
\

= % I ((F\f’,)n U Vk)

k21

1
< =H(F\F)
«
< =.
tut this is true for all € > 0, and so H*((Gy) = 0.
(b) D(F,z)=1at ll*-ac. z € F.
1 is an easy consequence of (a) and:

Ny L E(ENF)NY) o
—Hw) Ir+(U) '

We define the maximal operator associated to the basis 3, in the usual way, by:

S R SV
Mf(z) = r;lels[(),.-) ) o |f(:/)| di*(y) forallz € K

for every function f € LY(E,IT?). We shall see now that this maximal operator
satislies an inequality of weak type (1,1).

3.4. Theorem
For every function [ € L'(F, H*) and every number A > 0, we have that:

N ({ze B:M[f(z)>A}) <C H{\i 3)

where ¢ > () is a constant independent of A and f.
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Proof. let Ay = {& € I : M[f(xr

) > A}. Using the definition of the maximal
operator. we hiave that. for every @ ¢ A

a- there is U(#) € B(x) such that:

I _ .
TG y 010> R

and, applying Theorem 3.1 or 3.2 (if B = By or B = B,, respectively) to
(U(x))reay» we can find an almost disjoint sequence {Vile>1 C (U(x))zen, such
that Ax C Ugs Vi, and their elements satisly the inequality (4). Hence:

(A < 1® (Uu

A)l

”' U’A:)

L"'

k>1

L/ l/ (lll *(y)

k>1

1 Y
5 o L) die(y)

| . o
<3 [Lleidn)

/1l
A

and so we obtain (3) (€ =1, and it is independent of A and [f). O

Tollowing the usual techniques of differentiation of integrals [2], and using the
theorems 3.2 and 3.3, one can show casily the following differentiation theorer:

LA
)

8. Thegrom
For every function f € L*(. 1I*) one has:

/f P dIT(y) = [(z)

lir
drr)-o II
LEeRB(x)

for H*-a.c. ¢ € 1.
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