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ABSTRACT
The socle of a nondegenerate Jordan pair, defined as the sum of all minimal
inner ideals, is shown to have dcc on principal inner ideals. Furthermore, the
socle is the direct sum of simple ideals, and can be representied as a direct
limit of subpairs of finite capacity, imbedded as inner ideals.

Iatrocuction

Let ¥ = (V+,¥V ™) be a Jordan pair over an arbitrary commutative ring & of scalars.
An inner ideal M C V(o = %) is called trivial if @V ™7 = §, and simple if
i, is nontrivial and minimal among all nonzero inner ideals. The socle of V is
SocV = (SecV*,5cc V) where Soc V9 is the sum of all simple and all trivial inner
ideals of ¥?. This definition is an extensicn of the usual one in the nondegenerate
case (where O is the only trivial inner ideal). iIn §i, we show that Soc is an ideal
of V, compatible with diagonal Peirce spaces. The proofs follow closely those of [4]
for jordan triple systems.

of the socle: Il V is nondegeneraie then u € Soc ¥Vt if and only if the inner ideal
(u) = ku + Q.Y generated by u has dcc on principal inner ideals. The same
characterization then holds for Jordan algebras and triple systems. In these cases,
the resuli is due to Ferndndez Lépez and Garcia Rus [2, &), with scme restrictions
on the characteristic. While their proof of sufficiency carries over ic Jordan pairs
without change, the converse required Zel’mancv’s classification of simple Jcrdan
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algebras and triple systems. In contrast, the proof presented here is elementary
and works for an arbitrary ring of scalars. It is based on a careful study of the
Peirce decomposition of a simple inner ideal. Then we show inductively that every
u € SocV™T is regular, and if u = ¢y is extended to a Jordan pair idempotent
e = (e4,c_) then Vy(e) has finite capacity. By the results of [8], (u) = V;'(e) has
dce on principal inner ideals.

In §3 we show, using results of McCrimmon [9] and following the proof for
Jordan algebras by Osborn-Racine [11] that Soc V' is a direct sum of simple idecals
(Th. 2). A different proof was given in the Jordan triple case in [4]. Then we prove
the analogue of Litoff’s ‘Theorem for Jordan pairs (Th. 3): A simple nondegenerate
Jordan pair equal to its socle is a direct limit of finite capacily subpairs imbedded
as inner ideals. The analogous result for linear Jordan algebras is due to Anh [1]
who used Zel’'mancov’s classification. The proof given here is again clementary and
also intrinsic in the sense that it avoids imbedding inte associative algebras.

Terminology and notation follows [7]. When applying results on Jordan triple
systems to Jordan pairs, we will sometimes identify V with the polarized Jordan
triple sysiem ¥+ 9V ~. Expressions like v ¥ are to be interpreted componentwise
as (Q(VH)W—,Q(V~)W™T) or in the polarized iriple systems.

§1. The socls of a Jordan pair

et V = (V*,V~) be a jordan pair. Recall that an inner ideal of V7 is a
k-submodule M of V7 such that QaV ™% C M. Since we can always replace V
by V7 = (V—,¥*) it will usually be sufficient to consider innci ideals of V. If
z € V1 then [z] = @,V is an inner ideal, the principal inner ideal determined
by z. in general, z & [z]; in faci, this is the case if and only if z is (von Neumann)
regelar. The inner ideal generated bty z, that is, the smallest inner ideal containing
x, is easily seen to be (z) = kz + [2]. We remark that u € (z) implies [u] C [z], a
consequence of ihe identity {z,y,Q.2} = Qz{yzz}.

An inner ideal M is called trivial if QurV ~ = 0; eguivalentiy, every element cf
M is trivial (or an abscluie zero divisor). An inner ideal ¢ is simple if it is not
trivial and minimal among non-zero inner ideals of ¥+,

Lemma 1
The foilowing conditions on an inner ideal M are equivalent.
(i) M is simple;
(ii) M = V3t (d) where d is a division idempotent of V;
(iii) i # 0, and M = [z]) for all 0 # z € M.
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Proof. (i) = (ii): By [7, 10.5], either M = V,*(d), where d is a division idempotent,
or M contains a unon-zero trivial clement 2. The second case is impossible or else
(2) = M by minimality and A7 would be trivial.

(i) = (iii): Lvery non-zero z in V;T(d) is invertible in Vz(d) hence

ViH(d) = QuV5 (d) = [a].
(iii) = (i): Immediate from the definitions. O

We shall cali an element z in V* (or V™) simple if (z) is a simple inner ideal.
By Lemma 1, z is simpic if and only if z is a non-zero clement of scme simple
inner ideal, and if and only if £ = d; can be extended to a division idempotent
d = (d4,4-) of V. In particular, simple clements are regular. The socle of V is
SocV = (SocV+, SocV ™) where Soc V7 is the sum of all simple and all trivial inner
ideals. Equivalently, the clements of the socle are those of the form

31+"'+3n+t1+"'+tm

where the s; are simple and the ¢; are trivial.

it will be convenient to single out a class of subpairs of V' that behaves well
with respect ic these concepts. A subpair ¥ = (Ut,U7) of V is called full if
@RV ° = QU7 foral » € U%, ¢ = L. Fer example, diagonal Peirce spaces
Va(e), Yo(c) are full, as follows from the Peirce relaticns. The proof of the following
properties of full subpairs is straightferward and left to the reader.

Proposition 1

Zet J be a full subpair of V.

(a) The simple elements (trivial elements, division idempotents) of U are pre-
cisely the simple clements (trivial elements, division idempotents) of ¥V containod
inU.

(b) Socl C Y NSocV.

(c) If V is nondegencrate so is U.

(d) If T is a full subpair of U then T is a full subpair of V.

(e) Ut and U~ are inner ideals of V. Conversely if W = (W™, %W~} is a subpair
consisting of inner ideals and W is regular then W is full.
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In order to prove that the socle is an ideal it is useful to introduce structural
transformations [1]. For Jordan pairs, this concept takes the following form. A
structural transformation between Jordan pairs V and W is a pair of maps (f,g)
where f: Vt — W+t and ¢ : W~ — V= (in the opposite direction!) are k-lincar
maps satisfying Q(f(x)) = fQzg and Q(g(y)) = 9Q,f,forallz € V* and y € W~
We indicate this by (f,g): V — W. The main examples are the inner structural
transformations: if w € V* and v € V= then

(Qu,Qu): VP 2,

(Qu,Qu): V &= VP,

and
(B(u,v), B(v,u)): V&V

are structural, and so is the composition of structural transformations. if (¢4, 0_):
P Tr s . . - - — .
V — W is an isomorphism then (¢4 ,0-1): V < W is structural.

Finally, if (f, g) is struciural sc is (g, f) : W°P 2 vor,

Lemma 2

Tet (f,9): V = W be structural.

(a) ff M C VY7 is an inner ideal so is f(M) C W+, and if M is irivial so
is f(M).

(b) if M C V¥ is a simple inner idcal then f(M) is either simple or trivial. In
the first case, the restriction of f to M is injective.

Proof. (a) is immediate from the definitions. ¥or (b), suppose that @.g(¥%W~) = 0
for some 0 # 2 € M. Since M = [z] wc then have
Qug("W™) = QQ(V7)Qzg9(W™) =0
hence
0= f(Qarg(W7™)) = Q(f (M)W~

and f(#) is trivial. Ctherwise, Q,g(*V ™) # 0for all 0 # z € M. By (a) (applied to
(9, 1)), 9(W™) is an inner ideal of ¥~ hence Q,g(W ~) is an inner ideal contained
in M which must equal M by simplicity. Thus

(M) = [(Qeg(W7™)) = Q(f ()W~

for all § # = € M. By Lemma 1, either f(iA) = 0 or f(M/) is simple and [ is
injective on . O
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Proposition 2

(a) If (f,g): V = W is structural then f(SocV+) C Soc W+ and g(SocW~) C
SocV ™.

(b) SocV is an ideal of V, invariant under all structural transformations.

(¢) Let ¢ be an idempotent, and let p? : V? — V7 (c) and i° : V7 (c) — V7 be
the Peirce projections and inclusions, respectively. Then, for j = 0,2,

(pt,i7): V 2 Vi(e)

and
(i*,p7) : Vi(e) 2V

are structural, and Soc Vj(¢) = Vj(e) N Soc V.

Proof. (a) is immediate from Lemma 2. [n particular, SocV is invariant under all
inner struciural transformations, hence it is an outer ideal (observe {zyz} = z +
Q:Qyz— B(z,y)z). Since the socle is a sum of inner ideals, the cuter ideal property
implies that it is in fact an ideal, proving (b). For part (c), (p*,i7) is structural
by the Peirce relaiions. Hence SocV;™(¢) C SocV ™ and pT(SocV*+) C Soc Vj+((:)
which implies Vj'"(c) NSocV* C Soc VJ-"'((:). The assertion follows by interchanging
the roles of + and —. O '

§ 2. Characterization of the socle

[n the following three Lemmas, V denotes a nondegenerate Jordan pair. We first
analyze the Peirce decomposition of a simple inner ideal i4. Let ¢ be an idempotent
with Peirce spaces V; = Vj(c), j = 0,1,2. For j =(,2, VJ" is an inner ideal hence
sc is M N V;", and by simplicity of Af, either M N Vj"' =0or M C VJ-+. Let
pi : Vt — V¥ be the Peirce projection and M; = pi(M). If i = 0 or i = 2 then
by Lemma 2 and Prop. 2(c), either A7; = 0 or #; is simple and p; : M — M; is
injective. in particular, if
z =29+ 21+ %o

is the Peirce decomposition of a non-zero element = € A4 then z; = 0 implies M; = 0,
and if z; # 0 then z; is simple. For i = 1, the situation is more complicated.

Lemma 3

(a) If z1 = O then either 2o = 0 or zo = 0 as well.
(b)Ifzy #£Cand z; = 0 forj = 0 or j = 2 then x, is simple, M is a simple
inner ideal, and M = Q;V|".
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Proof. (a) Suppose z; # 0 (j = 0 or j = 2). Then z; is simple in V; hence
zj = Q(x;)y; for some y; € V™. By orthogonality of V; and V,_;,

Qry; = Qzj)y; =z, € M N Vj‘"

whence M C V,i'" and xy_; = 0.
(b) From z; = 0 we have 3f; = 0 which means that A is contained in Vz'"_jf?;V{".,
the kernel of p;. We first show

(1) QuVy = QM)V = Q(M)V,_; =0.
Indeed, by the Peirce relations,
QuYy7 =Q(M)V; CcMNQVHV cMnVE, =0
since x| # 0 implies M ¢ T./.;‘;j. Also, Q(M1)V,”; C Vj+ hence
QIQ(MV,L)VT C QQ(M)V, )V € QM )Q(V,_))Q(M)V =90

implies Q(#41)%,; = 0 by nondegeneracy.
Next, we claim

(2) PQuYT) = Qu)V T,
forall u=uy_; + u; € 4i. Indeed,
Qua—s +u)Vy™ = {uamj, Vi, wi} + Qu) V™ € ViE, O Vi
by the Pairce relations, hence
P1(Qu¥y7) = Q(u1)Vy” = Q(wa)V ™
by (1).
New (2, V" is an inner ideal:
QY™ =Q.Q(V7)QuV™
C QuQ(Vl—)(Vztj o V)
C Qu(Vy ®V)
= Qu Vl—,
by (1) and the Peirce relations. Also, uy # 0implies @(u1)V =~ # 0 by nondegeneracy,
and thus @, ¥;~ # 0 by (2). Since M is simple, M = @,V,”, and by (2),
1)1(‘W) = M) = Q(UI)V—

for all non-zero u; € My, showing that M, is a simple inner ideal. {n particular, z,
is a simple clement, and A7 = Q,V;~. This completes the preof. O
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Lemma 4

Let xy # 0, and extend xo = dy to a division idempotent d € Vy(¢). Then
z € Vyt(e) where ¢ = ¢ +d, and ¢y +  is conjugate to ey by a d-elementary
aulomorphism.

(See [8, §1], for the definition of clementary automorphisms).

Proof. Let Vi; be the Peirce spaces relative to the orthogonal system ¢; = ¢, €3 = 4,
and decompose x = 3 ;5 accordingly. Then by definition, ry = 249 = c'{, X9 = X1,
and ry = z24x19. The Peirce decomposition of 2 relative to d is now & = uy+u;+ug
(u; € V¥ (d)) where uy = dy is invertible in Vy(d) with inverse u; ' =do, uy =1y,
and uy = xy; + x19. By [8, Lemma 1], the d-clementary transform z' = B(uy,d_)x
is given by

2’ = uz + (o — Q(uq)d-) € V¥ (d) @ Vit (d).

Since &' is simple along with » and uy # 0, Lemma 3 (a) yiclds
0= Ug — Q(ll-'] )(1_ = (:L‘l] - Q(.’l.'rz)d._) + x0 € vl-*‘l- = V{g

Thus 2,90 = 0 and
=11+ T2+ I € V2+((.:').

Furthermore, 3(u;,d- )z = d4 which implies
Blupd_)cy +2)=cy +dy = ¢4

by orthogonality of ¢ and d. [

Ifzy # 0 and x9 = C then xy = dt can be extended to a division idempotent
d € Vi(c) such that Va(d) C Vi(e). Furthermore, ¢y + z is coajugate to ¢y by a
d-clementary aviomorphism.

Lroof. Ty Lemma & (b), z; is simple and [¢;] = My C YT (c). Also, 2z = Q.1
for some 3 € Vi (¢). Since £ = z9 4+ x;, this means that z, = {z1y 22} and
71 = Qe1)y. Seiting gl = Q(yi)a1 we have g} = Q(y!)zy and 23 = Q(z1)y}
[7, 5.2], and

{-'01,52(.?/1)$1,-772} = {Q(ml)yleyl,ivz} = {3713-/13?2} = Z2.
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Thus d = (x1,y]) € Vi(c) is an idempotent extending 21, it is a division idem potent
since xy is simple, and {dyd_zy} = 2y whence xy € V1+(d). Also,

Vot (d) = Ay C Vit(e)
and therefore
Vi (d) = QY3 (d) € Vi (o).
['urthermore, by the Peirce relations.

Bz, d_)cy +2) = ey + 32 + B(20,d_)d_
=c¢y+ro+d_ —2,
= ¢y +dy,
and
B(dy.c)eg +dy) =y — {dpe_cq} + Q(d4)Q(c ey
Fdy = 20(di)e- + Q(d1)Q(e_)dy
=ecy —dy +dy
=€y,
since @Q(dy)e— € My N Vgt(c) = 0. This shows that wr(ey + ) = ¢y, where

p = B(d+,c-)B(x2,d-). it remains to show that ¢ is d-clementary. This is clear for
the second factor by xy € ¥7(d). Also, Q(dy )e—. = § shows that

c- =v1+ vy €V (d) @ V5 (d).

Hence
B(d+,c-.) = B(dy vy + o) = B(ds,v1)

is d-elementary as well. O

Hemark. Tf we decompose ¢4 = ug + ug € ¥;¥(d) © V5t (d), then it follows from
(10, 1 3] thai ¢ = (uy,v;) and ¢p = (up,vp) are orthogonal idempotents and ¢ is
cellinear to d.

Before stating the main result of this section, we recall from [8] that the fellowing
finiteness conditions on a degenerate Jordan pair vV are equivalent.

(i) finite capacity: there exists a strong frame, i.e., 2 finite set of crthogonal

division idempotenis whose common Peiice-0-space is zero;

(ii) finite length: the lengths of chains of principal inner ideals are bounded;

(iii) both chain conditions on principal inner ideals.

U these conditions hold, then the capacity (that is, the cardinality of a sirong
frame) equals the maximum length of a chain of principal inner ideals, and V is
rogular.
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""heorem 1

Let Vo be a nondegenerate Jordan pair and « ¢ VY. Then the lollowing condi
tions are equivalent.

(i) u ¢ Soc V't

(i) w is regular. and if « — ¢4 for some idempotent ¢ then Viy(c¢) has finite
capacity:

(iii) (u) has dee on principal inner ideals.
If these conditions hold, then the maximum length of a chain of principal inner ideals
in (u) is finite and equals the capacity of Vy(c).

Remark. Any two extensions of v to idempotents are conjugate by an automorphism
[8. Cor. of Prop. 2], hence (ii) depends only on u.

Proof. (i) == (ii): Let v = s + --+ + s, where the s; are simple elements. We
prove (ii) by induction on n. For n = 0 there is nothing to prove. Now suppose that
¢y = 8+ -+ 8, is regular. and Vi(e) has finite capacity, where ¢ = (e4.,¢..) is an
idempotent. Let @ = sp,41 be a simple element. and decompose & = x9 4 2 + 19
with respect to e. We distinguish the following cases.

Case 1. xg # 0. With the notation of Lemma 4, ¢; + z is conjugate to
ey 1 dy = ep. Hence it suffices to show that W = Vy(e) has finite capacity. Now
W oinherits nondegeneracy from V. If {ey.....¢,} is a strong frame of Vy(e) then

o B L o
8. Prop. 3]
i8. Prop. 2
cxop 4+ ¢y,

where = means that the idempotents are associated in the sense that they have the
same Peirce spaces. [t follows that

cxe +-te.+d

whence {¢y.....¢,,d} is a strong frame of 11",

Case 2. 7y # 0= xg. Then ex + & is conjugate to ¢4 by Lemma 5, and we are
done by induction hypothesis.

Case 3. 29 — @1 = 0. Then e + @ = ¢y + x4 € VyH(c). By regularity of Vy(c)
we have ¢y ++ o = eyq for an idempotent ¢ € Vy(e), and by [8. Prop. 3(b)] Va(e).
which is the same as the Peirce space of ¢ in ¥5(¢). has again finite capacity.

(ii) = (iii): By regularity. (u) = [u] = V¥ (e). Now (iii) and the last assortion
follow from [8, Th. 3].

(iii)
argument. adapted to the Jordan pair case. Let M be the set of all [#] where o € (u)

> (i): This can be proved as in [2]. For completeness. we present the
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and w2 SocV T Then [u] € .M 5o M is not empty. Choose a minimal A = [x]
in M. If 2 =0 then v e SoctVt and we are done. Now suppose x £ 0. By the
dee for (u) and |7. 10.5]. there exists a division idempotent d such that dy € M.
Decompose & = xy 4+ &y + 29 relative to d. The socle is an ideal containing d hence

o= QUdy)Qd o )
and
= {dpdoa) — 2y

are in the socle. and so is

g = (u—ux)+(x2+ ).

Also. wa.xy € (x) since dp € A C (&) and
{dyd. 2} = Q(dy +x)d_ — Q(d )d_ — Q,.d_ € (z).

It follows that 2o € (x) C (u) as well. showing [xg] € A and [zg] C [#] (ef. the
remark made at the beginning of §1). By minimality of 17 we have

M= [wg] = Q(ao)V ™ C VyH(d),

contradicting 0 # dy € 1 N V;F(d). This completes the prool. O

~ - T " -
Coioilary i

The [ollowing conditions on a degenerate Jordan pair V. are equivalent.
(i) V =SocV;

(ii) ¥ has dee on principal inner ideals;

(iii) V' is the union of full subpairs of finite capacity.

‘Lhis is immediate from Th. 1. Note that a subpair of finite capacity will be full
as s00n as it consists of inner ideals. by regularity and Prop. 1.

Let J be a Jordan algebra or triple system. Then V = (J,J) is a Jordan pair,
and (principal) inner ideals and the socle are the same for .J and V+. This shows

fal

Covellary 2

Let J be a nondegenerate Jordan algebra or triple system. Then u € SocJ if
and only if (u) has dce on principal inner ideals. In this case, u Is regular,
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Note, however. that condition (ii) of 'T'h. T has no natural counterpart for alge-
bras or triple svstems: Fven if Vo= (J.J). 15(e) will in general not be the Jordan
pair associated with a subalgebra or subtriple of J.

We show next that the socle behaves well relative to ideals and full subpairs.
For a different prool in the Jordan triple case. see 1]

Fropoesition 3

Let Vo be nondegencrate and T= (1Y 1) an ideal or a full subpair of V.. Then
the simple elements (division idempotents) of I are just the simple elements (division
idempotents) of V' contained in I. and Socl = ] NSocV.

Proof. Let first 1 be an ideal. Then for any regular element @ = Q,y € I we have

Qv =0Q.0,0,V CcQ,QJtCQ,. " CQ.V~,
hence the principal inver ideal [2] is the same computed in V' or in 1. Simple
elements are regular and I is nondegenerate [7, 4.13]. Hence the first assertion and
the inclusion Soc I C I'NSoct” follow zasilyv. The corresponding statement for a full
subpair holds by Frop. 1. Conversely, let # € It N SocVt. Then z is regular by
Th. 1. say, & = (Q,y, and we may even assume y € [ and y = @,z (replace y by
Qyx. having chosen y € I in ce

» of a full subpair). Now z = )_ s; where the s; are
simple. Hence y = > Qys; and the suinmands are zero or simple by Lemma 2 and
belong to 17 as 17 is an iuner ideal. Thus y € Soc I, showing z = .,y € Soc I+
since Soc ! is an ideal in 1. O

Coroliary

If V' = SocV is nondegencrate, then a full nonzero subpair of V' contains a
division idempotent.

3. Structure of the socle

Recall that two orthogonal idempotents ¢ and d of a Jordan pair are connected il
Fi(e)n i (d) contains invertible elements of Va(e+d). and V is called connected [12]
if any two orthogonal division idempotents of V/Rad V" are connected. We denote
the ideal of ¥ generated by a subset N by (X).
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o

Liemma €
Let ¢ and d be orthogonal division idempotents of a nondegenerate Jordan
pair V. Then the following conditions are equivalent.
(i) ¢ and d are connectod:
(i) ¥Vi(e) N Vi(d) #£ 0:
(iii) d € (¢);
(iv) {d) = {¢).

Proof. let ¢y = ¢, ¢2 = d, ¢ = €] + €2, and denote the Peirce spaces of V relative
to €1, ez by ¥;;. Then the equivalence of (i) and (ii) follows from [6, Th. 6.3.1],
applied to ihe unital Jordan algebra J = V3 (¢) (with unit 1 = e4 and U-operators
Uz = Q(x)Q(e_)) which is nondegerate and has e, ¢f as supplementary set of
orthogonal division idempotents. If ¢ and d are connecied then

d € Vyy = Q(V12)V1y C {c).
TF V)2 = 0, we have ¥y(c) = V), Vi(c) = Vo, hence

() = Va(e) 2 Vi(e) S Q(Vi(e))Va(c)
[9, 2.13] = Vi1 ® Yio & Q(Vio) V1

C Vi1 3 Vip O Voo,

and d € ¥3, showing d ¢ (c). Thus we have (i) <= (iii). The equivalence with (iv)
follows by symmetry. O

Thegrem 2
Let V' be nondegencrate.
(a) A simple element gencrates a simple ideal of V.
(b) Soc v is the direct sum of simple ideals of V.
(¢) A nonzero ideal of Soc V is simple if and only if it is connected.

Proof. (a) Let I be the ideal of V generated by a simple element ¢ € V1. Extend
z = c4 to a division idempotent ¢ and let V = Vo & V; ® V, relative lo ¢. ‘Then
c- =Q(c-)er € T hence

Vy = (Q(C+)v_'.(2(c—)|’",+) cl,

and 1 = (c) = (Vy). By [9,2.13], ] = V2 & V1 5 Q(V1)Vz. This shows that the ideal of
! generaied by ¢ (or x) is T itself. Alsc, I is nondegencrate [7, 4.13]. Thus we may
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replace V' oby I and then have to show: If V' is generated (as an ideal) by a division
idempotent ¢ then V is simple. An ideal K of V' decomposes K = Ky @) Ky @ Ko,
where Iy = KNV Il Ky, £ 0 then Ny = V) since V, is a division pair. T'hus
Vo= (¢} = K in this case. Now suppose Ky # 0. Clearly V = SocV. Since the
socle is regular (Th. 1) sois K. By Proposition 1, K is full in ¥, and Ky is full in
K as a Peirce-0-space. By the Corollary of Proposition 3, Ky contains a division
idempotent d. Then d € {¢) =V hence V = (d) = K by Lemma 6. Linally, suppose
K9 = Ko == 0. Then
Q(K)Va C Ny =0,

QK1 )Vo C Iy =0,

and by {9, formula (PP1)].
QUE)V C ({i¥ive oy} 4+ {Q(K )V, Vi, Va} =0

since {1 ViVy} C K2 = 0. Hence Ky = 0 by nondegencracy of V.

(b) Since SocV is spanned by simple elements this is immediate from (a) (di-
rectness of the sum follows from a standard argument).

(¢) If I'is a simple ideal of Soc V' then I = (¢) for any division idempotent ¢ € I.
By i.einma 6, any division idempotent d of [, orthogonal Lo ¢, is connected to e.
Now

Rad f = I'NRad(Soc V) =0

by regularity of the socle. Thus I is connected. If I is a nonsimple ideal of SocV
then (by (a) and (b)) it contains two different simple ideals {¢) # (d) generated by
(necessarily orthogonal) division idempotents ¢ and d which are not connected by
Lemma §. 'This completes the proof. O

By Theorem 2, the siudy of the socle reduces to the case where it is simple.
Thus assume that V' is simple. nondegenerate. and equal to its socle; equivalently,
V has dcc on principal inner ideals. Tf V' has ace on principal inner ideals as well,
then it has finite capacity and the structure of ¥ is well known {7, 12.12]. To handle
the case of infinite capacity. we first prove

Yiemma ¥

Let V' be a simple Jordan pair with idempotents ¢ and d such that 0 # V,(d) C
Vi(e). Then V()N Vi(d) = 0 implies Vy(c¢) = 0.
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Proof. Since d € Vi(c) there is a simultancous Peirce decomposition V = Y V(ij)
where V(i) = Vi(e)nVj(d) [10. 1.8]. Now Vy(d) C Vi(e)implies V(22) = V(02) = 0,
and V(01) = 0 by hypothesis. Hence

Va(d) = 17(12),
Vi(d) = V(21) D V(11),
Vo(d) = V(20) & V' (10) & V(00),
and
Vo(e) = V(00).

Simplicity of V implics

V = (d) = Vo(d) & Vi (d) B Q (Vi (d)) Va(d)

hence
Vo(d) = Q(¥(21) + V(1)) V(12)
= Q(V(eN)V(2) + {V(21),V(12),V(11)} + Q(V(11))V(12)
C 0+ V(20) + 7(10)

from the Feirce relations. It follows that V(00) = Vy(e) = 0. O

We now prove the analogue of Liiofl’s theorem [5, p. 96, Th. 3] for Jordan
pairs. An associative coordinate algebra means a triple C = (4,5, Ro) where R is
an assocjative unital &-algebra with involution j and ample subspace Ry [6, 5.4].
We denoie by 4, (C) the Jordan algebra of n X n hermitian matrices over & with
diagonal elements in Ry, and by (/7,(C), T,(C)) the associated Jordan pair.

Y,

Iy

[ )
DITHL 3

[¢]

Let V = Soc / be a simple nondegenerate Jordan pair of infinite capacily.

(2) I 2 is any nonzero idempotent then Vo(e) is simple of finite capacity,
and Yh(e) # 8. The Vy(e) form a directed set with respect to inclusion, and
V= li_nf va(e).

(b) There exists an associative coordinate algebra C such that every Va(e) of
capacity n is isomorphic to (H,(C),T,(C)), where C' = (R,j, Ry) is one of the
following:

(I) & =18 D°° where 1) is a division ring, j is the cxchange involution, and

Ry is ihe diagonal;

(IT) R is a split quaternion algebra over a field K, with standard involution and
iy =K -1;

(11i) R is a division ring.
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Remark. (11,,(C"), H,,(C)) is isomorphic to the Jordan pair of all n X n matrices over
1) in case (1), and to the Jordan pair of 2n x 2n alternating matrices over K in case

(1) |7, 12.8].

Proof. (a) By Theorem | and Theorem 2. Va(e) has finite capacity and is connected
since connectedness is inherited by diagonal Pierce spaces. Thus Va(e) is simple.
If Vo(e) = 0 then V' would have finite capacity by [8, Theorem 3], contrary to the
hypothesis. Furthermore. V' is the union of the Va(e) by Theorem 1 (ii) . Thus it
remains to show: For any two idempotents e, d, there exists an idempotent e such
that Vy(e) U Vy(d) C Va(e). Since Va(e) is full. it sullices to have ¢ and d in Vi(e),
and since ey, e_, dy, d_ are finite sums of simple elements it is cnough to prove:

(*) Every finite subset X of ¥+ UV~ consisting of simple elements is contained

in ¥;H(e) U ¥, (), for some idempotent e.

We show this by induction oun the cardinality of X. If X is empty let ¢ = 0.
Now suppose X C V,'(e)U ¥y (c¢) and let 2 be a simple clement (which we may
take in V¥, passing to ©°°F if necessary). Also. we may assume z ¢ V2+(c) or else
X U {z} C Vit(e) U vy (). Decompose & = gy + 2, + o with respect to ¢. Then
there are the following cases.

Case 1. xg # 0. With the notation of Lemma 4, let ¢ = ¢+ d. Then z € V37 (¢)
and Va(e) C Va(e), proving X U {z} C ¥t (e) UV, (e).

Case 2. w9 = 0 and x; # 0. Let d € Yi(c) be as in Lemma 5, and sct
W = W(e). Then the Poirce decompositions relative to ¢ and d are compatible
[10, 1.8], hence W = iV, 3 W = W, where W; = W N Vi(d), and W, = 0 by
Vo(d) C Va(e). Alse, W # 0 implies ¥y # 0 by Lemumna 7, and Q(W;)W, C W, = 0.
It follows that Wy is a full subpair of ¥ and hence of V. By the Corollary of
Proposition 3, ¥ contains a division idempotent d and Q(d’')d = 0 implies that d
and d' are coilinear [10, 8.7]. Now ¢ = ¢+ ' is an idempotent since d' is orthogonal
to ¢, and d € Vi(c) N V1(d") C “i(e) (by collincarity of d and d'). In particular,
dy = 1 € V;t(e). Also, Vy(e) C Vy(e) which implies ¢ = 24 + 2, € V,t(e). Thus
X U{z} c ¥ (e)uV, (e). This completes the proofs of (*) and (a).

(b) Let ¥y(c) and 1%(d) be Peirce-2-spaces of the same capacity n, both con-
tained in some ¥y(e). By [8, Prop. &, Cor. 3 of Th. 2], there exists an clementary
automorphism of V,(e) mapping V,(c) isomorphically onto Vy(d). In particular,
any two eirce-2-spaces of the same capacity are isomorphic. On the other hand,
¥ contains Peirce-2-spaces of arbitrary capacity: If V2(e) has capacity n then Vy(e)
contains a division idempotent f and Va(e 4 f) has capacity n 4+ 1. Now (b) follows
casily from [7, 12.12]. O
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Coroliary i

The socle of a noudegencrate Jordan pair is a direct limit of full subpairs of
finite capacity.

Proof. Since S = Soc V' is a regular ideal (Theorem 1), it is full in V (Proposition 1).
Decompose S into a direct sum of simple ideals ('I'hcorem 2). Let i be the collection
of all subpairs of V which are finite sums of ideals of finite capacity of S, plus finite
sums of Peirce-2-spaces in the simple ideals of infinite capacity of . Then I is
ditected by inclusion with union §. O

Corcliery 2

Let V. = SocV be nondegencrate and simple. Then any two finite ordered
sets of orthogonal division idempotents of the same cardinality are conjugate up
to association by an clementary automorphism, and the group E(V) of elementary
automorphisms equals E(d,V) where d is any division idempotent.

Proof. 1n case of finite capacity, this is [8, Cor. 3 of T'h. 2]. In the infinite case, it
follows [rom ""heorem 3 and [8, Prop. 1 (¢)]. O

Pemarks.

(1) Tdon’t knew if the set of all full subpairs of finite capacity is directed.

(2) Suppose that V = (J,J) is the jordan pair associated with a simple non-
degenerate jerdan algebra or triple system equal to its socle. Although V' is then
a direct limit of subpairs V2(e) which all contain invertible clements and are there-
fore associated with unital Jordan algebras, I don’t know if these can be chosen
compatible with the algebra or triple structure except for linear Jordan algebras,
see [1].
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