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ABRSTRACT

The notion of closure finite complexes with weak topology introduced by
I, H. C. Whitchead determines an adequate caiegory for the study of homciopy
theory. Mevertheless a noncompact space which can be described as 2 TW-
complex always needs an infinite number of cells. In the present paper we
develor a new notion ihat we call proper C¥W-complex which enables us tc
describe some noncompact spaces with finitely many cells.

In this new categery we give an algorithm which permits to compute the
singular homology groups and the proper homology groups associated with
a finite regular proper CW-complex. On the other hand, a characterization
of the proper homotopy equivalences depending on the Hurewicz and the
~elative Sieenrod groups is obtained. The paper finishes giving some results
aboui proper celiular approximations of proper maps between proper CTW-
complexes.

1. Introciuction

The study of simplicial complexes of dimension cne or two can be remounted ai ieast
to Euler’s time. in 1862, J. B. Listing developed an analysis of simplicial complexes
of greater dimension. In 1930, S. Lefschez worked with infinite simplicial complexes.
The notion of closure finite complexes with weak topology (CW-complexes) was
introduced by J. H. . Whitehead in 1949. Whitehcad woiked with infinite CW-
complexes tc include spaces such as open manifolds or cevering complexes. This
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category of CW-complexes provides a suitable setting in which to study Algebraic
Topology. Let us recall some properties of this category: The singular homology
and cohomology is determined by the skeletal structure, the maps which are homo-
topy equivalences can be characterized by the llurewicz groups, there exist collular
approximations for any continuous map and there is a suitable obstruction iheory.

'n 1970, Siebenmann suggested that for the study of noncompact spaces the
homotopy theory should be developed in the category of proper maps insiead
of continnous maps. in the category of spaces and proper maps several homo-
topy functors which are invariant by proper homotopy have been introduced. For
instance, the Brown-Grossman homectopy groups [2,10], the Steenrod homotopy
groups (1,12]. The authors have also contributed developing some homology and
cohomology groups [7].

Gne of the questions in proper homotopy is to describe a suitable category in
which to study algebraic proper topology. The authors think that such a category is
the category of proper CW-complexes. A proper CW-complex can be consivacied
from a discrete space by attaching consecutively compact cells O™ and neacompaci
cells D"=1 x ;. One important point is that the maps used for attaching must be
proper. The reader can check that there are many simple noncompact snaces which
admii 2 finite decomposition in compact and noncompact cells of the iype above,
in particular, the interior of a compact PL-manifold wiith nonempiy boundary 2nd
the space obtained by removing a subcomplex of a simplicial complex admit such a
decomposition. flowever, to obtain a standard decompositicn of these lasi examples
it is necessary (¢ use an iafinite number of cells.

in the presoni paper, we study some properties of these proner CW-caraplexes
In saciion 3 we give some topological results that will be needed later. NMotice that
a siandard CW-complex is locally compact if and enly if it is lecally finite, howeaver,
s lecally compact proper CW-complex need not be locally finite. In secticn 4, we
give an algorithra which computes the singular hcmology grcups and ihe sroper
homclogy groups, whose definitior is recalled in seciicn 2, of any finitc ~zgular
CW-complex. This permits ¢ generalize the proper obstrustion thecry developad
previously by the authors [6,9] to the category of finiie regular CW-complexes.

Secticn 4 contains a Theorem of Whitehead type which characterizes ihe oroper
maps belween finite proper TW-complexes which are proper hemotopy equivalences.
£ proner map which induces isomorphisms on the Murewicz and relative Steenrad
proper homotiopy groups is proved tc be a proper homotopy 2quivalencze. Finally, in
section 8, several results are given which give sufficient conditicns te guarantes the
existence of proper cellular approximations of proper maps between finiie broper
CVW.complexes.
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2. Preliminaries

DEeriniTioN 2.1, Let X and Y be topological spaces. A continuous map f: X — ¥
is said to be proper if f~1(X) is compact whenever K is a closed-compact subset
oflY.

Twe proper maps f,g : X — Y are said to be properly homotopic, f ~, g,
if there is a homotopy from [ to g which is proper. A subspace A of X is said
to be proper if the inclusion map of A into X is proper. In this case, we say that
(X, A) is a proper pair. The proper maps and homotopies from proper pairs and
triplets are also defined in the obvious way. A ray in X is a proper map ¢ :J — Y
where J denotes the semiopen interval [G,+00). A proper inap between two spaces
with base ray [ : (X,a) — (¥,f) is a proper map f : X — Y satisfying fa = S.
¥or proper pairs and triplets with base ray, that we shall call rayed paiis or rayed
triplets, proper maps and homotopies are defined in the expected way.

Let us recall the definition and some properties, which will be used in ihe preseni
paper, of some proper homotopy invariants:

Let (X, 4,2) be a rayed proper pair. In 1980, Cerin [3] defined #,(X, ) 25 the
set of proper homotopy classes of proper maps of the form f : (8" xJ,*xJ) — (X, )
(x € 5™, the unit n-sphere) and such that f(*,1) = a(t) under the proper homstopy
relation relative to ¥ x J. Forn > 1, 7,(X, a) admits a group structure (abelian, for
n > 2) and mo(X, «) is the set of proper homotopy classes of J into X . We shall say
that #o(X, A,a) is the sei of proper ends of X. In the relative case 7w, (X, 4,¢e) is
similarly defined by considering proper maps of the form (D™ x J, 5" 1 x J, «x J) —
(X, 4,a) where D" is the unit n—disk. In a similar way, the second auther in 1584
[11] and independently Brin and Thikstum in 1985 [1] defined the preper homstopy
groups (X, e), m(X, 4,a), changing §™ x J by 5™ x J/S5™ x § and D™ x J by
D™ xJ/D™x0. Tn a general way, we shall refer te all these groups as proper Steenred
groups. Aliernative definitions of these groups have been given by Herndndez and
Porter [12]. For a detailed study of its properties using noncompact cubes we refer
1o the reader to [18]. Tor each n > 1 (n > 2), 7, T, are covariant functors from the
calegory ol rayed spaces (proper pairs) and based proper maps to the category of
groups and homomorphisms. These functors are invariant of the proper homotopy
type and have exact sequences associated with each rayed proper pair or triplet. ¥or
a rayed space (X, a) some relations between the Steenrod and Murewicz groups are
given by the exactl sequence

- wp (X, 0) — 7rn(X,a'(0)) — (X, a) — o (X,o) — - (1)
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An analogous sequence is obtained for the relative case. There are also compatible
actions of #1 (X, @) (71(A, a) for the relative case) on the groups and sets in sequence
above.

Massey [15] developed the singular homology H. by using singular n- cubes
(proper maps from I" io X) instead of singular n—simplexes. Similarly, the au-
thors [7] defined the proper homologies J., E., using proper singular n- cubes, i.e.,
proper maps [rom n-cubes /{3 X --- X K, to X where for each i,1 < i < n, X; is
cither T or J. Let us recall these proper homologies:

Let 7,(X) denoie the free abelian group generated by all proper singular
n- cubes of X module degenerate n—cubes. A proper singular n- cube

T:Kix.xk, — X
is said te be degenerate if there exists scme i such that
1 p —_m 1
T(X1yee s Tinerny®n) = T (21,000, Tl Tp)

for every z;,z} € X; (X; = I). Given a proper singular n—cube 7', the beoundary
operator is defined by

n
0T =5 (=1)'((ad)*? - (! )*T)
i=1
where (@!)* is the homomcrphism induced by the inclusion al given by
6'!5(1‘1,'--,wi—l,xs'+!,---,1‘n) = !wg,---,wi—l,l,wi+|,---,-"fn)
where ! = Q,1if X; = Fand [ = §if X; = J, in such a case (e!)* = ¢. The chain
cemplex obtained is denoted by 7,(X) and its n—th homology group by J.(X).
Provided S..(X) denctes the complex of singular cubes of X module degenerate
cubes, we ccnsider the quotient chain complex 7.(X)/S.(X). The n-th homology
group of this chain complex is densted by E,(X). ¥or a proper pair (X, 4) and 2
grovp { the proper (co)homology group with coeflicients in C is also defined i the
usual way.
The homologies J., F.., are covariant functors from the groper homotspy caé-
egory of proper pairs to the category of abelian groups. As for hemctopy groups
there is an exact sequence

s Fpp1(X) — Hp(X) — Jo(X) — £ (X)) — - (2)

which relates the proper homology groups tc the standard homclogy groups. There
is alsc a similar sequence for the relaiive case. Morcover, there are thecrems of
the Hurewicz type for the proper homectopy and homology groups mentioned in
this section which relaie the absolute and relative exact sequences (1) and (2) in a
commutative way [8].
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Piroper CW-complexes

3. Proper CW-complexes

e are going to describe the category of proper CW-complexes that generalizes
the category of standard CW-complexes and the category of finite proper cubic
complexes [9]. This new calegory is suitable for the study of proper homotopy as we
shall sec in the following sections. In the present section, the maximum norm in R™

llel| = max {|z;] : i =1,...,0}, z=(z1,...,20)

will be considered, and the [ollowing notation will be used:

"= {zeR ol <1},

n={re el <1},

s*l={zeR":|z|| =1},
et = (e" x J) — (e" x {0}) (n > 0),
0 = {0}.

DrrRITION 2.1. A proper CW-complex mnsistq of a Hausdorff space X together

with two index sets A,, and B, fcr each integer n > 0 such that Bg = 0, 4,N2n = 0,
and proper maps
oL E" = X foreach n > Qand a € 4,
¢p: F" ' xJ— X  foreachn>Cand € By,
satisfying the following properties:
Pl X = Unn ¢5(c") for each n > G and v € A, U Ly, where ¢ = ™ if v € 4,
and ¢" =™ il y € B,.
£2) ¢2(c*) N @7 (e™) = 0 unless n = m and -y = 4.
P3) (¢3)|c» is a one-ic-one map for every n > G and v € A, U 5.
P4) Let X" = Umn ¢ (c™) for every 0 < m < n and every v € Am U Bp.
Then,
én(sn—l) C Y-l for every n > 1 and o € A,,
5((E " x {0 u(s™ 2xJ)) cxnt for every n > Z and £ € 2,,
op(£° % {0}) C x° for every § € I,

P5) A subset I of X is closed if and only if for cach n > 0 and cach v € AU,
(#2)~1(F) is a closed subset in E™if y € 4, orin £ x J if v € 5.
P&) For cach n > &, ¢2(Z™") is contained in the union of finitely many subseis

of ihe form %( ™), where &" = K" if v € 4, and " = £ x Jif
v E DB,
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T'he preper maps @7 are called characteristic maps of X, the subspaces (&™)
compaci n -cells of X and the subspaces ¢,’.;(.E'"‘1 X J) noncompact n—cells of X.
The subspace X" is called the n—skeleton of X, and if X® = X for some n it is
said that X has finite dimension, and the least n satisfying X™ = X is called the
dimension of X. If there is no n such that X™ = X it is said that X has infinite
dimension. If X has only a finitc number of cells it is said that X is finite. Gf
course X has the coherent topology associated to the family of iis cells. owever, it
is interesting to note that X also has the coherent topology associated te the family
of compact subsets (X is a k-space). Therefore the cells are closed subsets of X,
and hence proper subsets. Moreover each characteristic map ¢L 1 L™ — (E") is
an identification.

Gn the other hand, as in the standard case a map f : X — V belweer s
proper CW-complex and a topological space ¥ is continuous if and only if f o #n is
continucus for each n > 0 and cach y € A, U B,,. If X is finite, f is proper if 22d
ouly if f o @Z is proper for each n > G and each y € 4, U B,,. Basy examples show
that in the last statement the condition of finiteness is necessary.

DEFINITION 3.2. Given 2 proper CW-complex X, a subspace I of X is said tc be
a subccmplex if for each n > 0 there exist subsets A/, B, of Ay, By, respectively,
such that:

a) L=, . #5(c") for every n > 0 and vy € AL, U B.,.

t) #2(Z")C L foreveryn>Gand y € A, U B,,.

it is iniercsting to ncte that the arbitrary unicn and intersection of 2 family of
subcomplexes are both subcomplexes.

The fcllewing preperties of proper CW-complexes will be used later.

]
o

o)

FPropostion

i) If £ is a subcomplex of a proper CW-complex X, then L is a proper CWY-
complex, morecver L is a closed (hence, proper) subset of X.

ii) The path-components of 2 proper CW-complex X are subcomplexes, and if
X is connected, it is path-connecied too.

Propositicn 3.4

Let X be a proper CVW-complex, then K is a compact subspace of X if and
only if X is contained into a finite subcomplex of X and X N@N(E™) is compact for
every n > 0 and v € A, U i3,.
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FProposiiion 3.3

For a proper UW-complex X, consider the statements:
LFEC) The family of cells cfX is locally finite; i.e., cach point £ € X has 2
neighbeurhood which only meets finitely many cells.
1.C) X is locally compact.
Ll) X is locally finite; i.e., each cell meets a finite number of cells.

Then LC and LFC are equivalent, and LF implies both L.C of LFC.

The following example shows that LC does not implies LF: Let X be the proper
CW-complex consisting cf a 0-cell {0}, a non-compact 1-cell J = [0, c0) and for each
integer i > 0 a compact cell E? with characteristic attaching map ¢? : 3E? — J
given by @%(z) = i for every z € 8E?. Since J meets an infinite number of rolls it
follows that X is not locally finite, allhough it is clear that X is locally compact.

¥or the standard CW-complexes LC and LF properties are equivalent. This is
a reinarkable difference between proper and standard CW-complexes.

Proposition 3.8

Let X and ¥ be proper {V/-complexes. Provided that oae of them is lccally
compact, then the product space is alsc a proper CW-cocmplex.

Proof. Let A, _;,,, bc index seis and d)j'."; ¥ € /i,, U 8,,, characleristic maps for X,
and similasly AL, 31, ¥, for Y. Cousider for X x ¥ the index sets:

Ap =

i
(W

{/;,,)\.4 i+j=n},
By = {U{(4:i x B)U(Bi x A U(B:ix B}):i+j=n},

and the characterisiic maps qS’ ¢6, where it is necessary to take inio accound the
homeomorphisms:

A (r"" x Jye Bl s (B x ) x £
Bl )y x (B9 x J) 2 BRI 0

It is easy to check that the product space X X Y together with ‘he cells just
defined akove saiisfy all the properties ¢f Definition 3.1 except perhaps ¥ ¢ chack
5, we can see first that P5 follows easily if A and Y are lccally compaci. For the
general case, for example, if X is lecally compact, since ¥V is 2 k-space (see definiiion
of k-space in [4]) it follows that X x Y is alsc a k-space. Fmally taking into acccunt
Troposition 3.5 and that X % V is a k-space it is not difficult to check that P8 is
also satisfied. OJ

N/
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Now the absclute proper homotopy extension property (APHEP) can be defined
for a proper pair (X, A) as for the standard hoemotopy, but, of course, taking preper
maps and homotepies. For proper CW-complexes we have:

Propaosition 3.7

If X is a finite proper C'W-complex and L is a subcomplex of X, then (X,L)
has the APHEP.

Proof. Let f: X — Y be a proper map from X inic a topological space ¥, and
lnt #l : L, x I — Y be a partial proper homotopy of f. Define the proper map

X xQU L XTI —Y by #(z,0) = f(z) for z € X and F(y,t) = H(y,t) for each
(.ll,l) € .x /. Now F can be extended properly over X x I by using an inductive
procedure cn the relative skeleton K™ = X" U L:

¥or n = 0, for each 9-cell v which is not in £, we can extend properly & by
F(v,t)=wv.

Assuine thai & is also defined on X x 0U K"~ x I, then for each n—cell ¢ (Z")
of X which is not in L consider the proper map

d) Xid . . -
TP X OUBE" % I "5 $R(EP) X U GR(AE™) x T C X x 0U Kt i rEy

where if Z" = E™ 98" = 7 land if 7 = En-V x J, 8T = En-l x QU S % % J
for n > 1 and 8Z™ = £° x 0 for n = 1. Now according o [8, Proposition 2.2] we
can chocse 2 proper retraction 7 : " X J — Z® X 0 U J¥™ x § which induces a new
preper inap

r' i @R(EM) X § — PH(E") X QU PL(BE™) x T

ue"ncd by ©'(z,1) = (¢2 X id[) o r(2,¢) where z € 5™ satisfies that #5(2) = 2. Then
For' i ¢2(E™) x I — ¥ is a proper extension of & over the n—cell ¢>"(L") a.‘d the
unicn of all these extensions defines a proper extension over X 30U X" x {. Finally,

since X has finite number of cells it follows that the homotopy ¥ : X x 7 — ¥
obtained by this procedure is proper. O

The following Proposition is concerned with ¥reudenthal compactifications and
we need some previous concepts:

wel X be a space, consider the set {#} of closed-compact subsets of ¥ directed
by inclusion. The set of Freudenthal’s ends of X is defined by

F(X) =limme(X — K).
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{4 D

Tet £ C X and e = {Uk} € F(X), then we denote ¢ < E il there is some closed-
compact subset ¥ such that Ux C E. Denote £F = {e € F(X):e < E} and
E* = EU E”. The topolegy induced on X U F(X) by the base {£* : £ is an open
subset of X} is called the Freudenthal topology. This topological space extends the
topology of X and will be denoted by X*. Let us recall that if X is a Hausdorff,
locally path-connected, locally compact space with a finite number of paih-connected
components, then X is an open subset of X* and X* is a Hausdor(f locally connected
compact space that will be called Freudenthal’s compactification of X.

it is interesting to note that if X is a finite proper CW-complex, from Propo-
sitions 3.3 and 3.5 we can assert that X satisfies the conditions above.

Proposition 3.8

Let X be a finite proper CW-complex, then the ¥Freudenthal compactification
X" is a finite standard CV/-complex.

Proof. et A,, B, be the index sets and {¢: tn>0, 7€ A, U Bn} the charac-
teristic maps of X. Since X is finile, it follows easily that F(X) is also a finite sat
{eiy,. .. e, }. Now, we can give a CW-complex structure to X* taking as index sci
Uop = AgU {ix.. ,ig}, Un = A, U B, for each n > 0, and the characteristic maps
are given by (¢2)* = @2 if ¥ € Aqn, and for each v € B, by the continucus map

(en) - (B 1x /) 2EY — X

induced by the proper characieristic map @5 . En=! % 7 — X con the freudenthal’s

compactificaticns. if n = 0, we alsc consider the maps (¢?j)* t B0 F(X)yc X
: (O V(0 = fo: Y =

given by (¢7,)"(£°) = {e, },i=1,-.,q

DEFINITION 3.9, A preper CW-complex X is said to be regular if each n—cell admits
an injective characteristic map and the boundary ¢2(GX") of each n-cell is the union
of finitely maay (n — 1)-cells.

Remark 2.16. In Freposition 5.8, it is clear that if XV is regular, X* is regular too.
On the other hand, an analogous result is obtained if we take the Alexandroff’s
compactification X of X.
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Remark 3.11. As in the standard case, an alternaiive definition of proper CW-
complex can be given as follows [16, 7.3.11]:
Let X be a topological space together with a sequence of subspaces

X0cXx'cXxX?®c...cX

satisfying the following properties:
—_ oo S n
a) X =pey X™
b) X0 is a discrete space.
¢) ¥For cach n > § there are two index sets A,, B, and proper maps

MEI LI dats for each n > 0 and a € 4,

@ Ml {oyusm2 x J - X! for each n > 1 and B € 4,

such thal X" is obtained from X"~! by attaching n-cells E™ and £*~! x J through
the proper maps ¢%, @5 respectively, i.e., en the disjoint union of X"~! and disjoint
copies &3 of K™ for cach o € A, and disjoint copies (E™7! x J)g of £~ 1 % J for
cach g € £,. We identify, for each vy € 4, U B,, ¢ and ¢%(z), where z € 3E™ or
(&' x J), respectively.
d) For each 8 € By, ¢%(8(E™" X J)) is contained n = finile union of subsets
of ihe form T with m < n, and £ denotes either ET or (E™ x J)s if § € By,
e) £ svbset & is closed in X if and only if for each n > 0 N X™ is closed
in X7,
To see that this an alternative definition of proper CW-complex we refer tc
reader to [18].

4. Computing the homologies X, J., E. for finite reguiar proper {W-compiexsa
i.et us consider the following notations:

S.(X) is the chain complex of singular compact simplexes of X; i.e., §,(X) is
the free abelian group generated by maps of the type A®™ — X where A™ is the
standard n—simplex.

7.(X) is the chain complex of singular proper simplexes of X; i.e., C!(X)is the
free abelian group generated by proper maps of the type A™ — X or A" ixJ — X.

Cl(X) = C!(X)/5%(X) is the chain complex of singular non-compaci simplexes
of X; ie., f:'; X') is the free abelian group generated by proper maps of the type
Al Jj = X,
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S.(X) = S.(X) is the chain complex of singular compact cubes in X; i.c.,
5n(X) is the free abelian group generated by maps of the type I* — X module
degencrate maps.

C.(X) is the chain complex of singular proper cubes of X; e.g., Cp(X) is the
[ree abelian group gencrated by singular proper n—cubes of the type I — X or
I"=! % J — X module degencrate n-cubes.

7(X) = Cu(X)/5.(X)is the chain complex such that Cn(X) is the free abelian
group generated by singular proper n—cubes of the type 1"~ x J — X module
degenerate n cubes.

In all the complexes above the boundary is defined in a natural way, and for
non pesitive integers g, the g—chain corresponding object is always the group zero.

Proposition 4.1

There are homotopy cquivalences between the following chain complexes.
(a) SL(XY) and S.(X).

(b) Ci(X), C.(X) and T.(X).

(¢c) CL(X), CAX) and T(X)/S.(X).

Proof. (a) Since both complexes determine ordinary singular homology theories, the
resulf is a consequence of the homology uniqueness theorems [3].

(¢) To see that T.(X)/S.(X) and C..(X) are homotopic equivalent we refer to
reader to [11]. fn order to find a homotopy equivalence between C.(X) and CL(X).
lot us consider the tangent mapping space

1(X,2c) = {f:1— X:fYee)= 1}
where X is the Alexandroff’s compactification of 7. Now define
W CUX) — St_, (1(X, %))
as follows: given a proper map k : A"~ % J — X, then for cach z € A" ! define
(0'(k)(2))(t) = k(z,1) for cach t € I — {1}

and
(k) (@)(1) = <.

Similarly, we can define
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jusi exchanging A"~ by I*~!. It is obvious that ¢’ and ¢ are homotopy equiva-
lences. Tl we consider the homotopy equivalence

v: 8. (T(X,00)) — S

x—1

(1'(X,00))
given by (a), then the composition
v=9"lovor:C.(X)— CL(X)
gives the desired homotopy equivalence.
b) ¥rom [11] it follows that 7.(X) and C.(X) are homotopic equivaleni. For
C.(X) and CL(X), consider the commutative diagram:
6 — S.(%X) — Cu(X) — Cu(X) — 9
v lw l'u

0 — S(X) — C(X) — CYX) — ©

where w is induced by v and v taking into account that Cp(X) 2 5,(X) @ Cu(X)
for each » > 0. Since in the diagram above the rows are exact and v and v are

homotopy equivalences, it follows that w is alsc & homclopy equivalence. []

For a topolcgical space X consider the following commutative diagram with

CXaLl TOwSs.

J,id [nx lr‘zx 3)
8 — S(X) — 8&Y(FX,0) — S§iUX)/S{X, o0} > O

where if 4,8 C X, §1(X,A) denotes the quotient SiL{X)/5.(4), and 5,{4, 3} is
the chain complex generated by singular simplexes T : A7 — X such that either
T(A7) C A or T(AY) C B. The map nx is induced by the compactificaiior

(A" x J)N & A™ aad ny is induced by nx in 2 natural way. Using all these
notaticns we have:

T -~ +
Lemma 4.7

Let X be a topological space of the form K x J, then nx and fx are homctopy
equivaleirces of chain complexes.
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Proof. "The diagram above induce the following commutative diagram with exact
rows

— H,(X) — Jo(X) - Ey(X) -

lm. l(‘nx ). l(nx )-

— H(X) — Il (X,00) — H($9(X)/S'{X,00}) —

-_— ”q_|(X) — Jq_l(z‘i') E—

Jia |
— Hy(X) — Hy(X,00) —

Since X = K x J, it follows that J,(X) = 0 for all ¢ (see properties of J, in
[7,8]). Because X is contractible we also have that H,(X,00) = 0 for all ¢. Then
id, and (nx). arc isomorphisms. Now the five lemma can be applied to obtain
that (7jx )« is also an isomorphism. Therefore we can conclude that nx and fx are
homotopy equivalences. [

Proposition 4.3

Let X be a itopological space such that X is conic at co; i.e., there is aa open
neighbourhood U of co in X and a homeomorphism h : U — K x 1/i x {1} such
that h(fr 7) = X x 0 and h(co) = * where * is the equivalence class X x {1}. Then
nx and fjx are homotopy equivalences.

Prool. Consider the following commutative diagram where ¢ and 9 are induced by
inclusions.

U = 00)/SH( —00) 2+ CUX)/SUX)

lﬁlf—wa J'ﬁ)(

SHTY/SUU N X,e0) =2 §(R)/SU{X, c0)

First, we are going to sce that ¢ is a homotopy chain equivalence. This is
equivaleni to prove that Ky(U — oc) — 54(X) is an isomorphism for all q which
is cquivalent again to sce that E (X,U — o) = 0 for all g. Taking into account
that I — oo = frU x [0,1), fr/ and X — U are compact and fr U/ x [0,1/2] has
the same proper homotopy type that fr¥. we can apply the excision property of
the homelogy £, to obtain /i (X, U/ — 20) & K(X — U,{t U) = 0. Recall that &
vanishes on compact pairs.
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In order 1o prove thai ¢ is a homotopy chain equivalence, consider the commu-
tative diagrain:

¢ — S{X,»0} — SHX, U} — S(U)/S{UNX,c0} — ¢

1id li J’d;
¢ — Si{X,0} —  S(X) —  SUX)/SH{X, 00} — 0

where 7 is the inclusion map. Note that 7 is a homotopy chain map since X and U
are open and X = X U U and we can apply [15, Theorem 6.3]. Consequently we
also have that 1 is a homotopy chain equivalence.

On the other hand, since U — co 2 K x J, from lemma 4.2, fig_., is also
a homotopy chain cquivalence. Therefore we obtain Lhat ijx is a homotopy chain
equivalence. I'inally, by considering diagram (3) the same is cbtained for yy. O

bt

o iz
v 4.4

”

I X is a proper finite regular CW-complex, then nx and 7x are homoiopy
equivalences.

Corclla
)

Proof. According io Remark 3.10, X is a standard regular CW-complex and oo is
a0 cell of ¥ Now we can apply [14, Thecrem [11.1.7] to cbiain a subdivisicn of
ihe cell structure of X which is simplicial. Because in a simplicial CW stiructure 2
0 -cell always has a conic neighbourhood, we have that X is conic at co. Now we
czin anply Propasition 4.3 o obtain the desirved result. O

[TV P, e
Coroilary 4.8

if % is a finite proper C\W-complex such that X is conic at co, then gy and iy
are homotopy equivalences.

Lot X a diniie regular proper CW-complex. l.et us choose an orieniation for
cach n- cell of X that will be called positive. Consider the follewing chain coinplexes:

£.(X) is ihe free abelian group generated by all compact oriented cells.

C.(X) is the free abelian group generated by all oriented cells.

Cu(X ) is ihe free abelian group generated by all noncompact oriented cells.

Take as boundary operators those induced by the geometric boundary; i.e., if
is a q—cell and 7 is a (g+1)-cell, then the incidence numberof rat ois Lor —1if ¢ is
a face of T and the orientation induced by 7 at ¢ is positive or negative respectively
and 3 if o is not a face of 7. Tt is interesting to note that the faces of a compaci cell
are compact, however a noncompact cell can have compact and noncompact faces.
Then for the chain complex @(,‘() we only consider noncompaci faces.
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Cero i““y 4.3

Let X be a finite regular proper CW-complex. Then for each integer g, the g-th
homology group of the chain complexes S.(X), C(X), ol (X), are isomorphic to
H,(X), Jo(X), Eq(X), respectively.

Remark 4.7. The obstruction theory for the extension and classification of proper
maps from X to V developed in [9] or [6] can be easily generalized from ihe results
of the present section for the case in which X is a finite regular proper CVW-complex.

5. A theorem of Whiiehead type for the proper homoiopy equivalences

NDEFINITION 5.1. A proper map f : X — VY is said to be a proper hcinotopy
equivalence if there exists a proper map g : ¥ — X such that fg ~, idy and
gf ~p idx. In this case g is s2id to be the proper homotopic inverse of f.

FProposition 5.2

If f is a proper homotopy equivalence then the induced maps
ﬂ-n(f) : WH(X’:EO) - ‘I(‘n(y, f(a:o))'l

To(f) (X, ) = (Y, fe)

are isomorphisms for each n > 0, 9 € X and a ray in X. Moreover, [ induces a
one-tc-one correspondence from the set of proper ends of X into the sel of proper
ends of ¥,

Proof. 'The result is well known for 7,,(f). For v(f), let #' be a proper homctopy
frem idy to g o f, then for cach ray « in X, ¥ defines a“path” p: J X { — X
boetween the rays a and go foa. According to [18, Theorem 1.5.2.] the path u
induces a isomorphism p, : 7o(X,@) = 1,(X,g90 f o &) for sach n. it is easy o
check that 7,(g) o 7 (f) = in. Analogously, the composition map 1(/f) 0 ru(g) is
preved tc be an isomorphism. Consequently 7»(f) is an isomorphism. The last part
of this Proposition follows from the functorial preperties of g, sec section 2. [

LCEFINITION 5.3. A proper map f: X — ¥ such that

1) f induces a bijection from the set of proper ends of X to the set of proper
endsof ¥,
and

2) mo(f) and 7, (f) are 1--1 maps for cach n > 0

0, zg € X, and o ray in X,

wili be called weak proper homotopy equivalence.
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To prove the converse of Proposition 3.2 in the category of finite proper CW-
complexes. let us recall briefly the cylinder of a given proper inap f : X — Y.
Denote by 7 the disjoint union (X x I) UY, then the cilinder .1y of f is defined
as the quotient of W induced by the identification given by (2,1) ~ f(z) for cach
r € X. Recall that the identification map p : 1V -+ i/ satisfies:

a) piy 1V — p(Y') is a homeomorphism and p(¥') is a closed subset of A4y

D) pixsr-xx1) (N XTI =X X1)=p(XxT-Xxl)isa h()nm()molphlsm
and p(X x T — X x 1) is an open subset of Uf

From these properties above it follows that X =2 X 30 and ¥ can be considered
as closed disjoint subspaces of iiy.

Propositicn § 5

If [+ X =Y is proper, then p: W — Ay is proper.

Froof. Sinee W = (X x I)U Y and the inclusion ¢ = pjy : ¥ — 47y is proper. it
will suffice to prove that ¢ = pjxyxy : X X I — Aiy is proper. Por this consider a
closed-compact subset i of Aff and let {s,}aea be an open covering of ¢71(H) in
A1 Yhen {4, N(N X D}ues is an open covering of g7 1 (K)N (X x 1) in X x 1,
and because ¢7'(H)N (X x 1) is homeomorphic to (io f)~1( %) which is compact, it
follows that a finite sul)('ovaring {Aa, N(X x 1)}, can be chosen. Now we have that

HWYIN((F %)= (Ao, U -o- Uhy, ) is a closed subset of 4 37 and it is contained
in g M (K)N((X % N)= (X x1)). Then p(q=' UO)N (X %) = (Ao, U -+ UAy,))) is
a closed subset of A7y which is contained in /&7, hence it is compact. Mow taking inio
account property b) above we can conclude that g~} (K)N ((.¥ 3¢ ) = (4is, U -+ U
Ay ) is also compact. Therefore we can complete the initial family {4,,..., 44, }
to form a finite subcovering of ¢~ 1(K). O

FremaQitiean KOG
FTIGRUSIVICE 3.8

i f:X — Yisproper, then Y is a sirong proper deformaiion retract of ify.
FProof. Let I 2 My x I — Ay the homotopy given by:
H(p(x.s).l) = p(z,s+ = st). (x,8)e X x I, Lel.

H(y. )y =y, yeY, tel.

Since [ is a locally compact Hausdor(l space the product space 445 3¢ ] can also
be considered as a quotient of 1¥ x T given by the identification ((x,1),1) ~ (f(x).1).
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Then to see that II is proper it sulfices to prove that g3 = qoly, go = 1 oly are
proper, where ¢, i are the maps defined in the proof of the Proposition 5.5 and

L(XxDxTI—-XxI, L:YxTI=Y

are given by
Li{(z,8).0) = (z,s+t—st), D(y,1) =y,

respeclively. Because [y, ¢, 1, I are proper it [olows that ¢y, g» are proper too.
Hence f is proper.

Now define r : My — Y by r = I}, and then roi =idy and ¥ :ior~,idy,
(relative to ¥'). O

Civen two topclogical spaces X and Y, the sel of proper homctepy <lasses
will be denoted by [X,V],. Note that 2 proper map [ : X —  induces the map
fo: %4, X]p — [%,V]p. With this notation we have:

m~e _—
hearem
Checrem B9

Let (X,Y) be a proper pair such that the inclusion map is a weak proper
homotopy equivalence. Then if X is g finite proper UW-complex ihe induced map
i.:[&,Y], = [K, X], is a one-io-one correspondence.

Preof. First let us prove that i. is surjective. Given a proper map g : € — ] we
sl all ¢ q'truct inductively a proper heomotopy £': & > { — X such that "5 = g and
(X ) . Then ¥y will be proper and i.[F] = [g].

To dof'no i on the 0 skeleton X0, since the correspondence (i ) sag(V) —
mo(X) is one-ic-one for each 0—cell v of &, we can choose a path v : & — X frem
g(v) to some y € ¥. Deline #(v,1) = ().

Suppose that & has been defined on (X X Q) U (X" V¢ /) — 2/, n> 1 New
F can be properly extended on ihe n-skeleton as follows: For cach compact n—cell
we can proceed as in standard homotopy [16]. If ¢ is a noncompaci n—cell of ' with
characteristic map A, : £*1 x J — K, we zan consider ihe map

k1 (EmY % J ) U (Q(EM x J)) x ¢) M (K xo)u (vt e ) S x

and a homeomorphism L from E™ x J x I te "7 ! x J x | which maps

(B 1% Jx0)u (L x J)x 1)
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onto 1"~ J x 0. Let us denote 3 = ko L=1(0 x J x 0). Then from the faci that
Ko (L™ m=1yuxo : (1" x L, O™ % J),0 % J) — (X,V,3)

represenis the zero element of the group »,_1 (X, Y, 8) = 0, it fcllows casily that #
extends to e 3¢ { in the required way. Gf course we can extend #' over the other
noncompact n-cells in the same way. Ncote ithat in case of a noncompact 1 cell we
must take intc account that 7o(Y,8) — (X, ) is surjective, which is the righi
interpretation for the condition w(XN,Y,8) = 6. Because i is finite the inductive
procedure finally produces ihe desired proper homotopy £

i injectiver Lot f,g: K — ¥ be proper maps such that 7' :io f ~,i0g. Let
I. be the subcomplex (A % 0) U (X x 1) of ithe proper CW-complex K x i. Define
H(r,t) = I'(r) for cach (r,i) € Lx 7. Since mo(X,¥,y) = 0 = (X, Y, B) for each
n,y €Y,and B ray in ¥, we can use an argumenti similar to the one given above
to extend il to a proper homotopy /I : (X x T)x ! — X such that 7/ = ¥ and
(K x ) C¥. “hen I is a proper homotopy between f and ¢g. O

Let 7,7 be spaces and let [ : X — 7 be a weak proper homoicpy equivalence.

7y

if € is a finite proper CW-complex, ihen +f. : [& ], — [%,7], is a one-to-one

Corraspeil denca.

r'roof. Tiei Aty be the cylinder of f, and censider the inclusica y : ¥ — Ay given
by g(z) = p(x,3) and the retraction 1 a4y — ¥ defined in Prepositisn 5.5, which
is a proper homotopy equivalence. from Proposiiion 5.2, the hypothesis and the
fact thai f = rog, it follows that g is also a weak proper homotopy equivalence.
Applying Proposiiion 5.7 we oblain ihat g. : [X,X], — [&, ], is cue-ic-one.
Since r is 2 proper homotopy equivalence we also have that r, @ [X, 44,], — [X,Y],
is one-to-one. FTherefore we can conclude ihat f. = r. o0 ¢, is also one-to-cne O

The fcllowing resultl is the converse of Proposition 5.2 and it can be considerad
as the main Theorem of ihis section.

Let f: X — 'V be a proper map between linite propes C/-complexes. Then

[ is a proper homotopy equivalence if and only if f is a weak proper homotopy
equivalence.
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Proof. Suppose that f is a weak proper homotopy equivalence. From Theorem 3.8,
it follows that f. : [V, X], — [Y, Y], is a one-to-one correspondence, hence there is a
proper map b : ¥ — X such that foh ~, idy. Because f and idy are weak proper
homotopy equivalences we also have that h is a weak proper homotopy equivalence.
Applying again Tlieorem 5.8 we obtain that h. : [X,Y], — [X, X], is one-to-one.
Therefore there is f' + X — Y such that ho f' ~, idx. From the associative
property, it follows that

flep(foh)o [~y fo(hof)=, f.
ltence h is the proper homotiopic inverse of f. O

Remarks 5.10.

1. “There is also a “pointed” version of Theorem 3.8, In this case we must
consider proper maps and homoiopics between rayed spaces of L2 form (47, 2). You
can give a proof of this rayed version following the process of this saction. Noie that
it is convenient to define the rayed cylinder of a proper map preserving base rays.

N

¢. Tor the standard Whitehead 'fheorem theie zre scveral examples which

show that two Cw-complexes X, ¥, have isomeiphic Huvewicz homctopy groups,
but X, ¥, do nci have the same homoiopy, iype. The following modificaiion of
[1¢, Example 1, p. 183] proves that the same occurs for proper hemciopy.

Let m, n be even and odd positive integers respectively, such that m > n > 1.
Let 5™ be the n-sphere and P™ the veal projeciive m—space. Consider the finite
proper CW-complexes

XK= ST P 5T} P D, Vo= 8m ) ProJf5M x P 8
it is inieresting Lc noie that X and ¥ are contraciible paih-connecied spaces with

one proper end, and it is easy io check that (X)) = ~,(¥7) for all g > 0. Noveriheless
for ¢ = m 4+ n + 1 the proper homology theory J.. satislies

R

Yy NN 0N
.!.'rn(iJ -_ (l

J'n.+‘m+1 (/‘f)

Jﬂ.+‘m+1(y) = IIn(Dn) # 0.
-

Therefore X and ¥ have different propei homotlopy type.
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6. Proper cellular approxirnation theorems

DEFINITION 6.1. Let X, Y, be proper CW-complexes. A map g:X — Yissaid to
be cellular if g(X™) C Y™ for all n > 0.

We are trying to establish in this section when a proper map [ : X — ¥
between CW-complexes admits a proper cellular approximation; that is, when there
is a proper cellular map g : X — ¥ such that 2, g. Yor a continuous map between
CW-complexes it is always possible to find a cellular approximation, for instance see
(16, 7.4]. Nevertheless, for proper maps between CW-com plexes do not necessarily
admit proper cellular appreximations as the following example shows:

Cn the semiopen interval J consider the proper CW-complex structure X given
by one 0-cell for each nonnegative integer n, and one compact 1 -cell [n.n+ 1] for
cach consecutive nonnegative integers, and the structure ¥ consisting of one 0-cell, §,
and one non-compact 1 cell J. Fhe identity map idy : X — ¥ has a continuous
cellular appreximation g : X — ¥ given by g(z) = 0 for all z € X, but id; does
not admit any proper cellular approximaiion because any cellular mag f1X - ¥
satisfies that ¥4 C f~'(0).

In ihis section, several theorems on the homotopoy groups , +, # of proper TW-
complexes are developed to prove finally a proper cellular approximation thesrem
Propositica 3.2

Lei X be a proper m dimensicnal CV/-complex. Then w, (07, X™=1, o) = O

for each xg € X™~1 and each integer n satisfying 1 < n < m.
Pronl I« LM osYm £t _ . b g e, 4 ;
Proof. Let {Am(LT )}‘TEAmUDm the family of m—cells of X. M y € A,,, denote
;o pm AL TN 3
Uy=h{z € £™:|2|| < 2/3},

Vy=hr{ce E™:|z| < 1/3}.

Andify e 3, denote
Uy=hy{(z,t) € B™ " d 2] < 2/3. t > 1/3},

Vy=hl {(z,0) € L™V J 1 ||z|| < 1/4, 1> 2/%}.

Let L be the closed subsei of X given by £ = J, V, and let W, be the open subset
of X defined by W, = U, N (X — L) for cach y € 4,, U B,,.
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Given a representative map f @ (1*,01",%) — (X, X™ ", o) of an clement of
7o (X, X™ 1 xy) we can consider the open covering

{(F"YUNS (X —L):q € Am U By)

of 1. Now we can subdivide I™ 1o obtain a new finite regular CW-complex structure
Al such that cach cell of A1 is mapped by [ cither in ¥ — L or in some U.,. Since,
for cach v € A, 1Y, relracts to $™=1 by strong deformation, and, if 7 € By
W, retracts also to R™~'. a homotopy F from [ to g : Al — X can be (.Ollhil‘l‘l(?l(“,(]
such that ¢ maps the cells contained in f~1(U,) into .. If f(z) € U, then F(z,l) €
i for every 1 € 1 and I is stationary in f~!(X — L). The construction of this [’
can be done inductively on the dimension of the skeletons of Af in a similar way to
the standard case [16]. Consequently [f] = [g] € ma(X, X™ 1, 20), but [g] = i.[g]
where i, i mp(X — L, X"71) — mp (K. A™ ) and 7 (X = T, Xm=l) = 0 because

Xm=1 g a strong deformation ratract of X — L. Hence [f] =0. O

Note 6.3. Attaching cells of dimension grea‘ler ihan 1 does not increase the number
of path-components. Then, for each m > 1, i. : mp(X ™~ 1) — m(X) is a surjective
map. This fact will be denoted by mo(X, X ""') =0.

.

~ . A, ooy
woTChaly 5.4

Let X a proper CiW-complex. Then w1 (X, X", x9) =0 foreachr < n, 29 € /

Corcllary 3.8

et X be a proper UW-complex such that X™ admits a ray a. Then

a) Ta(X, X" a) — mp (X, X" q-) is surjective forn 2> 1.

b) T,—1(X, X" a) — 71 (X, X", a) is & isomorphic for 2 < g < n.
Proposiiion 8.8

Let X be an m- dimensional proper {V-complex such that every cell of X™~ !

meets only a finite number of m-cells. Then for each ray « in X m=1
Tn-1 ( X * N ! e ) =0

for every n satislying 2 < n <m - 1.
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Proof. "The notations hZ', U.,, V.. L. of the proof of Proposition 6.2 will be considered
again.
Let
. ln—l N g1t o, . v owvm=—1
f.( I(-I.()( PASD )." X nl)_'(/\.,/\. ,(1)

be a representative proper map of an element of 7, _; (X, X ™=, a). Then

{/7'CD) (X =) rve d,uB,)

is an open covering of

o5

jr=! %) = LJ (!n,—l % [k,:’f + 1])
k=0

Vor each &, there oxists a subdivision of {"~! x [k, k 4+ 1] such that every cell is
contained in an open subsot of the covering above. All these subdivisions together
give a stiucture of n dimensional cegular CW-complex 34 in /"~ x J satisfving
that cach cell of 4/ is contained in some open subset of the covering,.

For cach noncompaci cell of X with characteristic map h™ : E™-! x J — X
let us cowsider the increasing sequence of compact subsots of X,

A C A (05} Selli

whose union is AZ(£™=! x J). Since f is a proper map there exists an increasing
sequence of compaci subseis

pnn—1 N o0
{7 < 0,4 ) Yoo
whare di_," € R, such that

JTHRD (= J0, X)) € 1t x [0, 4.

In the following paragraph, we are going to construct a proper map g : 4/ — %
satislying for cach r cell 05(£™) of A4 that, il @L( L") C f71(X = 1), then Glon(Er) =
Jior(gry: and, if O5(~7) € f1(U,), then g o Op(L") C W,. aiorcover, there is a
proper homotopy I from [ to g relative to (/™" 3¢ J) which has the following
properties: if f(x) € U, then F(x,1) € U, for all ¢, and, if f(z) € X — L, then &
is stationary at x. The construction is made inductively on the skeletons of A7 as
follows:



Propeir CW-complexes LN

Given a § -cell vof 44,1 f{v) € X — -, we define g(v) = f(v) and the homotopy,
which is dencted by &, by #(v,t) = f(v) for cach L € 1. Il f(v) € U, with v € A,
because {7y is path-connected, there exisis a path from f(v) to a point g(v) in W,
and the homotopy I is defined by the path chosen. If f(v) € U., withy € B, U, is
also path-connected, however, to obtain a proper homotopy £, we must choose an
adequate path. Whether v ¢ /™~1 3 [0,d], then f(v) ¢ A7 (£™~! x [0, X]), and,
because U, NAT (K™~' x (N, +2c)) is path-connected, there exists a path from f(x)
to a point. g(v) of 1V, N AL (L™~ x (¥, +0c)) and the homoiopy is defined again
by the path. if v € /"' % [0,d?] since f(v) € U, NAT(E™1 3 (0,+2c)) we can
proceed as above for & = 0.

Suppose that /' has been defined on ai™=!, r < n, satislying the required
conditions. Then for an r—cell OR(7"™) of af, il $J(E") C f[~Y(X = L), then g = f
on ¢p(ik") C 7N (US), with v € A,,. Ylpy(sr-1) can be extended to a map ¢ of
@%(#7) into ¥, in the same way that in Proposition 6.2, and the same oceurs for
the homotopy from f to g ou ¢G5 ), if

S(ET) C (1" x gy — (" x [0,dY)),

then
foda(~"yC U,n (h.;;"(.v”ﬂ""‘1 XJ) - hl;‘(E""1 X [(),./‘."])),

which will be denoted by U\, and
go (S Yy culynw,,

which will be denoted by /! ,. Note thai, if ¥ = 0, i), is contractible, and,
for ¥ # 0, !,y retracts i 5™=2 but noi in a proper way. Sincer < n<m— 1,
it follows thai m._1(¥7! ) = 3 for every 17, therefore g can be extended to H(E").
On the otheir hand, since 7r,.(£;",’”-‘_,) =0, &' can be extended to a homectopy in U_’, N
from fl;l,{l;(]:“r) €5 glor(pry. in the case that ¢p(E™) N (7"71 % [0,42]) # B we have
that j o @p(~") C Uy and we can proceed as above for V = .

The hemetopy # : 7" x J X I — X just constructed is continuous and satisfies
the required conditions, but ii is necessary o prove that # is proper. Tor this let,
us consider the notatlions:

hi{z € ™ : ||z|| < 1/2} if § € sAm,
R {(z,0) € ™=t s d el < 1/2,t > 1/2} ifne By,

i= U

NEAMUBy,
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Note that X — L is a closed subset of X ('ontaincd in X — L.
Now let 7 be a closed-compact subset of X, then by Proposition 3.4 it follows

that

K = U (KnkME™)U(KN(X =1)).
finite
Because the subset K'N(X — 1) is closed compact in X and by the construction of #
it follows that the closed subset P~ Kn(X —L))is contained in f~Y(KN(X—-L))xT
which is compact because f is proper. Hence F=1(K n (X — L)) is compact. For

v € A

YK nRT(E™) SR (E™) x
which is compact because fis peoper. “or y € B3], by Proposition 3.4, K NAX(X™)
is compact in hIY(X™), ihen there exisis & € N such that

K Ohm(E™) C hm(E™1 x [0, K]).

Hence
f! (_-.'\" n Iz.Z;"(Z"‘)) cI"1x [0,:[1)].

Now taking into account ihe consiruction of F', this implics that

Foiwary(s™) c 1™ x [0,dY] x 7.

=1

Then F K N AhZ(X™)) is compact and consequently /' is proper.
Y o
Finally, since cach ¢ vll ef £™~1 maeis only a finite number of m- cells it follows
that A™~! is = sirong proper deformaiisu retract of X —int .. Therefore [f] = [g]

represents the zero element of +,_ (X, X"~ ). O

Note 6.7. 11 all m- cells of # are compack, {ollowing the proof of Proposition 6.6, it

follows thai 7, (X, ¥™~1 &) = 0 for 2ach n salisfying 2 <n <m-—1.

Remark 6.8. Tet X be a preper CwW-complex of finite dimension greater than 1.
If we atltach r—cells to X', r > 2, then the number of proper ends of X dees not
increase, therefore the map wo( X', a) ~— wo(X,a) is surjective. Consequently for
cach V > 1 the map wo( X", &) — wo( X, ) is also surjective and the same occurs
for 7(X™,a) — 79(X,a). These facis will be briefly denoted by mo(X, X", ¢) =

0= ‘!'0(,".\{, X"a).

Ceoroilary 8.2

Let X ke a proper CVW-complex wiih finite dimension greater than n. If cach
k-cell (k > n) of X mo"ts only a finite number of (k 4+ 1) cells of X then for 2ach
ray o in X%, r._(X, X" a) =0 lfor cach r sastisfying 1 < r < n.
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Lemme §.iG

et X be a finite path-connected proper CW-complex with only one proper
end satisfying that the Alexandrofl compactilication X is conic at 0o (sce Proposi-
tion 3.4). Then for cach n > 3, given a proper map [ : (=t x J, o™ x J)) —
(X, X™) there exists a proper map g : I"~1 x J — X™ such that [ ~, g through a
proper homotopy I satisfying I1 (9(J" " x J)x 1) C X™.

Proof. First nole that because 71 (X, X™, a) = 0 for each ray ain X™ and mo(X) =0
it follows that me(X™) = 0. According tc Corollaries 6.4 and 6.9 we have that
(X, X", a(0)) = 0 for cach ¢ satisfying 0 < ¢ < n and 7;-1(X, X™, ) = 0 for cach
i satisfying 0 < i < n. Applying the exact sequences of Section 2, we also have that
mi_1(X. X", 0) = 0 for cach i salisfying 0 < i < n. Now we can apply ihe Theorem
of Hurewicz type given at [8] to obtain the epimorphism

P s ‘Il'n—](X'ant“) - H"(X’ )(n)

whose kernel is the subgroup generated by the elements of the form £ — u * { where
€€ Mpy(X, X", a), u€ (X" a)and u=* denotes the action of u on &,

On the other hand, from Corollary 4.5 we have that I[;(X, X") = Ji(X,X") =0
for all i < n. Now let us consider the following cominutative diagram:

— 0= (X, X" e(0) — mo(X,X™a) — T-1(X, X" a) —
Jfﬁr J'PT lP‘ll‘
G = (XL AN — 0= Ju(X, X)) — 0= Fh(X, X)) —
— (K, X™a(0) =0 —
\-r/)n-
(X, XM =0 —

‘Then we obtain that 7,1 (X, X", a) = S‘zl}-‘l(){, X7, ) is generated by the elements
of the form € — ux & where £ € 7 (X, X", @), u € (X", e) and u*§ denctes the
action of u on £. Thercfore the quotient 7, (X, X ")/ (X, X", a) is trivial.
Ilowever (his quotient is isomorphic to ihe set of free proper homotopy classes of
proper maps of pairs of the form f : (7 =1 J, O(I"~1xdJ)) — (X,X™) by [18, Li1.3].
Now the result holds trivially. O
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Theorem 6.11
Let X be a finite regular proper CVW-complex. Then for n > 3, given a proper
8 pror I g
map
f: (I-n—l X -I, a(ln—l X J)) N (X., ‘X—w.)’
there exist a proper map
g: "M xJ — X"

such that [ ~, g through a proper homotopy T satislying that
TOU" ' xJ)x I c X™.

Prool. 'The proper map [ induces the continuous map f* : (I"~! x J)* — X*
between the respective Freudenthal’s compactifications. The unique freudenthal’s
end of 1"~ x J is transformed by f* into a vertex v of the finite regular CW-complex
X" (see Prop. 3.8). Consider the subcomplex Y = stv (start of v) of X*. Then
there is p € N such that f(7"~! x [p,+2¢)) C Y — {v} which is a path-connected
subcomplex ol X with one proper end and will be denoted by Af. Note that Af is
under conditions of Lemma 6.10.
Now the restriction

£ (P {ph, 0477 x {p}) — (M, ™)

represents an element of x,_1(A, ") = 0. Because m,_1(M,M") = 8, there is
a homotopy defined on I"~! x {p} which can be extended by the absolute proper
homotopy extension property to obtain a homotopy

i I, 4o0) X T — M

such fhat
Iy = fll““x[p,+oc-)v
o1t xp,+oc)x 1) c ™

and
1"(5)(]"‘I X ;'p,-{—oo)) x {1}) c M".

Now from i.emma 86.10 there exists

G: (1" x [p,4+00) x L,o(UI™ " X [p,+2¢)) x [) — (44, :™)
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such that Fy = Gg and G;(I"~! % [p,+2¢)) C 4i™. Let H be the proper homotopy
on "1 x [p,+2¢0) defined by the composition of I and G. We can extend I to
A" =" x [0,p]) by the AFHEP in such a way that

(" % 0D U@ x [0,p])) x 1) € X™.

Finally because 7, (X, 5™) = 0, sce Corollary 6.4, it follows that Il can be extended
on 1"~ 3 [0, p]. The proper homotopy T satisfies that Iy = [,

moa"'xJyxI)cXx®
and

mnr-txJycx".oO

Let X be a finite proper CW-complex. If cach noncompact cell 7 can be sub-
divided by a compact cell o, in two new cells 7., 7,, which are compact and non-
compact respectively, and the new cells satisly that L =Ua,, K = J ™ are proper
CWecomplexes such that the cellular structures of K and the product L x J are
isomorphic, X is said to be of cylinder type at infinity.

Propesition 6.12
If X is a finite proper CW-complex of cylinder type at infinity with only one

proper end, then for each ray a in X%, r(X, X%, a)=0.

Proof. Since X is of cylinder iype at infinite, then we can subdivide the noncompact
cells of X in the way doseribed above. Using the same notation that [18] and
13, Corollary 1.1.6], we have

w(X,0) ~ A(X,x) ~7 (L),
w (X% a) ~ M(Z2 o) = m(LY).

Since m(L,LY) = 0, it follows that m(L') — m(L) is surjective. Therefore
i, (X2,0) = w (X, a) is also surjective. Now [rom the exact sequence

co o (K a) — (X, a) & (X, X% a) — 1';'0(2‘(2,0) — .

because m( X2, a) = {+}, we obtain that = (X, X2,a)=0.
Finally in the exact sequence

«— wa(N, X%, a(0)) — 1 (X, Xt a)— 7r|(X,.?‘{'",m) Lk

by Corollary .1, we have that my(X. X2,0(0)) =0. Hence 7 (X, Xt a)=0.0
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Proposition €.13
If X is a finite regular pmper CW -complex with only one proper end, then for
cach ray o iu X2, (X, X% a)=0.

Prool. First we can suppose that the dimension of X is less than or equal to &. Tn
this case from the Schonflies Theorem [17, p. 26] we can argue to conclude ihat
X is of cvlmdcr type at infinite. Then Proposition 6.12 is applied to obtain that
7 ( X, A ,(V) 0.

in the general case, we can consider the exact sequence associated with the
triplet (X, X3, X2, a)

=T /‘!{3y1{2s0’ — .&‘/\.’2.0{ — (X, X, a)— ...
H v 1 i ?
By Corollary 6.5 we know that s X X3 a) = 0. Therelore 7 (X X2 a)=90.0
P p » Y 1 9 ’

Thecrem 8,14

Let X and Y be finite CW-complexes such that either Y is regular or ¥ is of
cylinder type at infinity and let f : X — Y be a proper map such that Jia is cellular
for some subcomplex 3 of X. Then there is a cellular proper map g : X — Y such
that gjar = flur and g is properly homotopic io [ relative to M. (Proper cellular
approximation theorein).

Proof. Consider the proper map £ : (X x0)U(4f x I) — Y given by ¥(z,0) = f(z)
for each z € X and F(m,t) = f(m) for cach m € M and t € I. 'The map £ will be
properly extended to X x I by induction and the top level map F; will be cellular.
For cach G -cell @ of X which is not contained in M there exists a path o in ¥
from f(a) to sume vertex v of Y, see Note 6.3. Define g{a) = v and ihe homotopy ¥
is defined at a by the path «. Now suppose that 4" has been extended to X! x I
and #£(X" 1 x 1) c ¥ ! (n > 1). Given an n-cell hZ(E™) of X which is not
contained in Ad, we define k: (% Q)U@E"xT) - Y by k= F o(h% xidy). If "
is compact k represents an element, of r,(¥,Y™) which is irivial by Corollary 6.4,
therefore k extends to a continuous map G : Emx I — ¥ such that G(E" x 1) C ¥,
and an exteasion F': h3(£™) x I — ¥ can be defined such that £o (kT xidy) = G.
' X" is not compact we can consider a homecomorphism

LBV x T —s IV g i

which maps
(L™ J x0) U (O(E™ x J) x T)
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onte " 1x Jxdand £"" 1 xJ x Lonto ("~ xJ x 1)U (8(I" x J)x I). Then,

kol iyyxo: (1" % T x0,81" " x J) x 0) = (Y, Y™

is a proper map. Yor n = 1, B(t) = kol~1(0,1, () represenis a proper end of Y. Since
wo(Y!) — mo(Y) is a surjective map, then there is a proper homotopy H : J X1 — I
such that Ho = 8 and {#(J x 1) C Y. Then Hipxy represents an element of
mo(Y, Y1, 8(6)) = 0. Therefore a new proper homotopy G : 19 x J x I — Y such
that

G|1°><Jxo = (k ol™! )|l°><.l><0

and
C((1°x s x HU(II® x J)x I)) C V!

can be constructed. ¥or n = 2, we apply either Proposition .13 or Proposition
6.12 depending if ¥ is either regular or cylinder type at infinity respectively, and
for n > 3§ the Theorem 6.11 can be used. !n all the cases there is a proper map
G:I"xJx 7T —7Y satisfying

Y — -1
Glm=rxaxo = kol gy

and :
Gt xdxHU@UE T xJ)xI)cyn"

is obtained.

Therefore, forn > 1, (Gol): E»~1 x J % F — ¥ is a proper extension of k and
satisfies that G o l(E™ ! % J x F) C Y™ This map induces a proper extension of
Fto hG(E™ x J) x T suck that # o (kY X id;) = G and F(AT(E™ x J)x i) C V™.
Finally we can assert that the extersion #: X X I — ¥ oblained by this inductive
process is proper bacause X is a finite proper C#W-complex. [

Hemarks 6.15.

1. Let X and ¥ be standard CW-complexes and suppose that X is finite, then
since X is compact there is a proper cellular approximation for any proper map
[ X Y.

2. Let X be alocally finite standard C'1#-complex of finite dimension and ¥ a
locally finite standard CVV-complex. In this case there is no proper cellular approx-
imation theorem. For example, let X = [0,+0c0) be the CW-complex whith a 0—cell
for cach nonnegative integer », and a 1-cell [n,n + 1] for each pair of consecutive
nonnegative integers, and let ¥ be the CW-complex defined as follows. First a 1-cell
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al is attached to a single C cell o2, let X! be the CW-complex obtained. Secondly a
2-cell o? is attached to X! by identifying all the boundary to a point in the interior
of a!. Afterwards we proceed by induction attaching an (n + 1)-cell to a point in
the interior of the corresponding n—cell. The resulting space V satisfies that there
are proper maps of the form f : X — ¥ and there are no proper cellular maps of
the formg: X - VY.

3. if X is a finite proper CW-complex and Y is a locally finite standard CW-
complex of finite dimension, then there is proper cellular approximation for any
proper map f: X — ¥. This can be proved similarly tc the proof of Theorem §.14
and by using that v,_ (¥, Y™™ 1,¢) = 0 for cach n satisfying 2 < n < m - 1, sce
Note §.7.
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