(c) 1989 Universitat de Barcelona

Classification, through coordinates, of M-bases in separable Banach spaces

ESTEBAN INDURAIN

Escuela Universitaria de Estudios Empresariales de Pamplona Universidad de Zaragoza, 31001, Pamplona, Spain

Received 6/NOV/87

ABSTRACT

We give an outlook to some properties concerning the expansive sequence of a vector with respect to an M-basis, in a Banach space. From this point of view, we analyze some kinds of M-bases.

1. Previous concepts. Background

Let $S = (a_n)_{n \in \mathbb{N}}$ denote a linearly independent sequence in a separable Banach space B. [·] stands for "closed linear span". Associated to S we define the following two closed subspaces:

1) Kernel of S:

$$K(S) = \bigcap_{n \in \mathbb{N}} [a_n, a_{n+1}, \ldots];$$

2) Strict kernel of S:

$$K_s(S) = \bigcap \{K(S') : S' \text{ infinite subsequence of } S\}.$$

S is said to be complete if [S] = B.

S is said to be minimal if $a_n \notin [a_{n+1}, a_{n+2}, \ldots]$ $(n \in \mathbb{N})$; equivalently if there exists in $[S]^*$ (dual of [S]) a sequence $(a_n^*)_{n \in \mathbb{N}}$, called conjugate, such that $a_m^*(a_n) = \delta_{nm}$ (Kronecker indices).

A minimal complete sequence with zero kernel is a $Markushevich\ basis$ (M-basis) of B.

For $T \subset \mathbb{N}$, let $W_T = [a_t; t \in T]$ and

$$W_T^* = \bigcap_{k \notin T} [a_1, \ldots, a_{k-1}, a_{k+1}, \ldots].$$

An M-basis S is a strong M-basis if $W_T^* = W_T$ $(T \subset \mathbb{N})$ [8, §8].

An M-basis $S = (a_n)_{n \in \mathbb{N}}$ is a basis with brackets of B if there exists an increasing sequence of natural numbers $(p_n)_{n \in \mathbb{N}}$ such that

$$x = \lim_{n} \left(\sum_{i=1}^{p_n} a_i^*(x) a_i \right),$$

for every $x \in B$.

If we can take $(p_n)_{n\in\mathbb{N}}$ as the whole \mathbb{N} , the sequence is a basis (or Schauder basis) of B.

If S is a basis such that the series

$$\sum_{i=1}^{\infty} a_i^*(x) a_i$$

converges unconditionally to x, for every x in B, then S is an unconditional basis (or absolute basis) of B. That is to say that, for every rearrangement $\sigma : \mathbb{N} \to \mathbb{N}$, the sequence $(a_{\sigma(n)})_{n \in \mathbb{N}}$ is a Schauder basis.

We say that a sequence $S = (a_n)_{n \in \mathbb{N}}$ in B is weakly convergent to x, if, for every $f \in B^*$ (dual of B), is $f(x) = \lim_{n \to \infty} f(a_n)$.

Theorem 1.1

(The weak basis theorem). Let $S = (a_n)_{n \in \mathbb{N}}$ be an M-basis of B. Then S is a basis if and only if, for every $x \in B$, the sequence

$$\left(\sum_{i=1}^n a_i^*(x) a_i\right)_{n \in \mathbb{N}}$$

is weakly convergent to x.

Proof. See [3]. For generalizations, see [4]. \square

Using a similar theorem on the concept of Schauder decompositions, the following can be proved [3,4]

Proposition 1.2

Let $S = (a_n)_{n \in \mathbb{N}}$ be an M-basis of B. Then S is a basis with brackets if and only if there exists an increasing sequence of natural numbers, say $(p_n)_{n \in \mathbb{N}}$, such that for any $x \in B$, the sequence

$$\left(\sum_{i=1}^{p_n} a_i^*(x) a_i\right)_{n \in \mathbb{N}}$$

is weakly convergent to x.

The next implications are all strict [8,9]:

unconditional basis ⇒ basis ⇒

basis with brackets \Rightarrow strong M-basis \Rightarrow M-basis.

With respect to weak convergence, the following lemmas shall be needed in the sequel:

Lemma 1.3

If S is weakly convergent to x, then $x \in K_{\mathfrak{g}}(S)$.

Lemma 1.4

In B reflexive, given an M-basis $(a_n)_{n\in\mathbb{N}}$ and a general sequence $(b_n)_{n\in\mathbb{N}}$, the following statements are equivalent:

- (i) $\sup_n ||b_n|| < \infty$, and $\lim_n a_m(b_n) = \beta_m$ $(n \in \mathbb{N})$.
- (ii) The sequence $(b_n)_{n\in\mathbb{N}}$ is weakly convergent to a vector b such that $a_m(b)=\beta_m$ $(m\in\mathbb{N})$.

Proof. See [7, p. 195]. □

2. Coordinates and expansive sequences

DEFINITION 2.1. Given an M-basis $S=(a_n)_{n\in\mathbb{N}}$ in B, with conjugate $(a_n^*)_{n\in\mathbb{N}}$, and a vector x in B, the sequence $(a_n^*(x))_{n\in\mathbb{N}}$ is called the coordinate sequence of x relative to S. Let $T_x=\{k\in\mathbb{N}: a_k^*(x)\neq 0\}$. If $T_x=(p_n)_{n\in\mathbb{N}}$ (infinite), then the sequence

$$S_x = \left(\sum_{i=1}^n a_{p_i}^*(x) a_{p_i}\right)_{n \in \mathbb{N}}$$

is called the expansive sequence of x relative to S.

DEFINITION 2.2. Given an M-basis $S = (a_n)_{n \in \mathbb{N}}$ of B, the set

$$D(S) = \bigcup_{T \in \mathbf{N}} (W_T^* - W_T)$$

is called the deficiency of S. (This set gives an idea of how far is the M-basis of being a strong M-basis).

Related to this concept, we have the

Proposition 2.3

 $x \in D(S)$ if and only if T_x is infinite and $K(S_x) = \{0\}$. Equivalently, when T_x is infinite, $x \notin D(S)$ if and only if $K(S_x) = [x]$.

Proof. See [1] or [6]. \square

Remark. Notice that, T_x being infinite, only two cases for $K(S_x)$ may arise: $K(S_x) = \{0\}$ or $K(S_x) = [x]$.

3. A first classification

The expansive sequences of vectors $x \in B$ characterize the strong M-bases and the bases among the M-bases. This result was first stated for B reflexive in [6]. The same without the restriction of reflexivity was stated in [2]. Finally, using a similar idea, bases with brackets are also characterized.

The main result is given by

Theorem 3.1

Let $S = (a_n)_{n \in \mathbb{N}}$ be an M-basis of B. Then

- (a) S is a strong M-basis if and only if $K(S_x) = [x]$, for every x with T_x infinite.
- (b) S is a basis if and only if $K_s(S_x) = [x]$ for every x with T_x infinite.

With respect to basis with brackets, consider the following construction: Given an increasing sequence $(q_n)_{n\in\mathbb{N}}$ of natural numbers, and x with $T_x=(p_n)_{n\in\mathbb{N}}$, set, for every $n\in\mathbb{N}$, h(n) as the greatest integer such that $p_{h(n)}< q_n$. (If there is no h(n) in that situation, pass to the next n and define h(n)=h(n+1)). We have now the

Proposition 3.2

Let $S = (a_n)_{n \in \mathbb{N}}$ be an M-basis of B and $x \in B$ with $T_x = (p_n)_{n \in \mathbb{N}}$ infinite. Then S is a basis with brackets if and only if there exists an increasing sequence of natural numbers $(q_n)_{n \in \mathbb{N}}$ such that the sequence

$$S'_x = \left(\sum_{i=1}^{h(n)} a_{p_i}^{\star}(x) a_{p_i}\right)_{n \in \mathbb{N}}$$

verifies $K_s(S'_x) = [x]$ (for any x with T_x infinite).

The ideas above may be used to construct M-basic sequences which are not strongly M-basic. (A completely different construction of such sequences appears in [8, §8]).

For this purpose, we need a strong M-basis not being a basis, in some Banach space B. That is not difficult: For instance, being $S = (a_n)_{n \in \mathbb{N}}$ a basic sequence in a reflexive Banach space, it can be proved [1] that the sequence $(a_n - a_{n+1})_{n \in \mathbb{N}}$ is a strong M-basis, but not a basis, of its closed linear span.

EXAMPLE 3.3 [5]. Let $S = (a_n)_{n \in \mathbb{N}}$ be a strong M-basis but not a basis of B. By 3.1, take $x \in B$ with T_x infinite and $K_s(S_x) \neq [x]$. For the sake of simplicity, take T_x as N. By 2.3 there exists a subsequence S'_x of S_x such that $K(S'_x) = \{0\}$. Set $S'_x = (a'_n)_{n \in \mathbb{N}}$, where

$$a'_n = \sum_{i=1}^{q_n} a_i^*(x) a_i,$$

and $q_1 < q_2 < \cdots < q_n < \cdots$.

Then, there exists $r \in \mathbb{N}$ such that $x \notin [a'_r, a'_{r+1}, \ldots]$. Set now $\hat{S} = (b_n)_{n \in \mathbb{N}}$, where

$$b_n = \sum_{i=q_r+1}^n a_i^*(x)a_i$$
 for $q_r < n \le q_{r+1}$.

Clearly, \hat{S} is an M-basis of $[a_n; n \in \mathbb{N}]$ and (relative to \hat{S}), $x \in W_T^* - W_T$, with $T = \{q_r, q_{r+1}, \ldots\}$ (infinite). Therefore, \hat{S} is not a strong M-basis.

4. On boundedness of expansive sequences, in reflexive Banach spaces

Let $S = (a_n)_{n \in \mathbb{N}}$ be an M-basis in B reflexive. Let $x \in B$ with T_x infinite, and $S_x = (b_n)_{n \in \mathbb{N}}$ (we shall write " b_n " for short). Paying attention to the boundedness of S_x , we distinguish three cases:

- 1) $\sup_n ||b_n|| < \infty$,
- 2) $\sup_n ||b_n|| = \infty$, but $(||b_n||)_{n \in \mathbb{N}}$ does not tend to infinity,
- 3) $\lim_n \|b_n\| = \infty$.

In case 1), by 1.4, it follows that S_x is weakly convergent to x, so by 1.3, $x \in K_s(S_x)$.

In case 2) there exists a subsequence $(b_{r_n})_{n\in\mathbb{N}}$ of $(b_n)_{n\in\mathbb{N}}$, weakly convergent to x.

In case 3) it is straightforward to notice that $(b_n/||b_n||)_{n\in\mathbb{N}}$ is weakly convergent to zero, therefore $K_s(S_x)=0$ since B is reflexive [9].

First case carries some consequences, including a characterization of bases, in reflexive B, equivalent to that in 3.1(b). We have :

Corollary 4.1

Let $S = (a_n)_{n \in \mathbb{N}}$ be an M-basis of B reflexive, and $x \in B$ with $T_x = (p_n)_{n \in \mathbb{N}}$ infinite. Then if $x \in D(S)$, for any rearrangement $\sigma : \mathbb{N} \to \mathbb{N}$ it holds that

$$\lim_{n} \left\| \sum_{i=0}^{n} a_{\sigma(p_{i})}^{\star}(x) a_{\sigma(p_{i})} \right\| = \infty$$

(we set $p_0 = 1$).

Corollary 4.2

Let $S = (a_n)_{n \in \mathbb{N}}$ be an M-basis of B reflexive. Then S is a basis if and only if, for every x with T_x infinite, the sequence $S_x = (b_n)_{n \in \mathbb{N}}$ is bounded, that is $\sup_n ||b_n|| < \infty$.

Proof. It follows directly from 3.1 and the definition of basis. \square

Remark. Similarly to 4.2, a characterization of bases with brackets might be given, using the boundedness on S'_x (see 3.2).

EXAMPLE 4.3. Let $B = \ell_2$ (separable Hilbert space) and $S = (e_n)_{n \in \mathbb{N}}$ an or thonormal basis. Set $\hat{S} = (e_n - e_{n+1})_{n \in \mathbb{N}}$ (\hat{S} is a strong M-basis, but not a basis, of ℓ_2).

Let x be the vector

$$x = \sum_{n=1}^{\infty} \frac{e_n}{n}.$$

Its coordinate sequence relative to \hat{S} is

$$\left(\sum_{i=1}^n \frac{1}{i}\right)_{n \in \mathcal{V}}.$$

So $\hat{S}_x = (a_n)_{n \in \mathbb{N}}$, where

$$a_n = \sum_{i=1}^n \left(1 + \frac{1}{2} + \dots + \frac{1}{i}\right) \left(e_i - e_{i+1}\right).$$

and

$$||a_n|| > 1 + \frac{1}{2} + \dots + \frac{1}{n} - \infty.$$

Let now $\sigma: \mathbb{N} \to \mathbb{N}$ be a rearrangement and call $\hat{S}^{\sigma} = (e_{\sigma(n)} - e_{\sigma(n)+1})_{n \in \mathbb{N}}$. Then $\hat{S}^{\sigma}_x = (b_n)_{n \in \mathbb{N}}$, where

$$b_n = \sum_{k=1}^n \left(\sum_{i=1}^{\sigma(k)} \frac{1}{i}\right) \left(e_{\sigma(k)} + e_{\sigma(k)+1}\right).$$

It follows again that

$$||b_n|| \geq 1 + \frac{1}{2} + \cdots + \frac{1}{\sigma(n)}$$
 " $-\infty$.

This example suggests the

DEFINITION 4.4. A strong M-basis $S = (a_n)_{n \in \mathbb{N}}$ is said to be perfect if for every x with $T_x = (p_n)_{n \in \mathbb{N}}$ infinite, there exists a rearrangement $\sigma : \mathbb{N} \to \mathbb{N}$ such that, setting $p_0 = 1$, the sequence

$$\left(\sum_{i=0}^n a_{\sigma(p_i)}^*(x)a_{\sigma(p_i)}\right)_{n\in\mathbb{N}}$$

does not tend to infinity.

EXAMPLE 4.5. Let $B = \ell_2$ and $(e_n)_{n \in \mathbb{N}}$ an orthonormal basis. Set

$$S = \left(\sum_{i=1}^{n} e_i\right)_{n \in \mathbb{N}}.$$

S is a strong M-basis, but not a basis of ℓ_2 .

If

$$x = \sum_{i=1}^{\infty} x_i e_i,$$

the coordinate sequence of x relative to S is $(x_n - x_{n+1})_{n \in \mathbb{N}}$. Since

$$||(x_1-x_2)e_1+\ldots+(x_n-x_{n+1})(e_1+\ldots+e_n)||^2=\sum_{i=1}^n|x_i^2+nx_{n+1}^2-2x_{n+1}(x_1+\ldots+x_n),$$

and

(i)

$$\sum_{i=1}^{n} x_i^2 < ||x||^2 \qquad (n \in \mathbb{N})$$

(Bessel's inequality),

(ii) $nx_{n+1}^2 < 1$, for an infinite number of n's,

(iii)

$$|x_{n+1}x_1 + \ldots + x_{n+1}x_n| \le \left(\sum_{i=1}^n x_i^2\right)^{\frac{1}{2}} \left(nx_{n+1}^2\right)^{1/2},$$

it is easy to conclude that S is a perfect strong M-basis.

The second case has a particular similarity with the third case. Moreover, this yields a characterization of unconditional bases in B reflexive. We have:

Theorem 4.6

Let $S = (a_n)_{n \in \mathbb{N}}$ be an M-basis in B reflexive, and $x \in B$ with T_x infinite and $S_x = (b_n)_{n \in \mathbb{N}}$ such that $\sup_n ||b_n|| = \infty$.

Then, there exists a rearrangement $\sigma: \mathbb{N} \to \mathbb{N}$ such that

$$\lim_{n} \left\| \sum_{i=1}^{n} a_{\sigma(i)}^{*}(x) a_{\sigma(i)} \right\| = \infty.$$

The proof leans on the concept of inclination $\nu(E,F)$ between two closed subspaces E and F of B:

$$\nu(E, F) = \inf_{\substack{x \in E, ||x|| = 1 \\ y \in F}} ||x + y||.$$

In a reflexive B, being E^p a subspace of finite dimension p, it is not difficult to notice that, for any M-basis $(a_n)_{n\in\mathbb{N}}$, it follows

$$\lim_{n} \nu(E^{p}, [a_{n}, a_{n+1}, \ldots]) = 1.$$

Proof of Theorem 4.6. Only in order to make easy the notation, put $T_x = N$. Let $0 < K_1 < K_2 < \ldots < K_n < K_{n+1} < \ldots$ with $\lim_n K_n = \infty$. By hypothesis, there exists $p_1 \in \mathbb{N}$ such that

$$\left\| \sum_{i=1}^{p_1} a_i^*(x) a_i \right\| > K_1.$$

Now

$$\nu\left(\left[\sum_{i=1}^{p_1}a_i(x)a_i\right],\left[a_n,a_{n+1},\ldots\right]\right)\stackrel{n}{\longrightarrow}1,$$

so that there exists $p_2 > p_1$ with

$$\nu\left(\left[\sum_{i=1}^{p_1}a_i^*(x)a_i\right],[a_{p_2},a_{p_2+1},\ldots]\right)>\frac{1}{2}.$$

Hence for any $i \geq p_2$, we have

$$\left\| \sum_{h=1}^{p_{1}} a_{h}^{*}(x) a_{h} + \sum_{j=p_{2}}^{i} a_{j}^{*}(x) a_{j} \right\| \geq \left\| \sum_{h=1}^{p_{1}} a_{h}^{*}(x) a_{h} \right\|$$

$$\times \nu \left(\left[\sum_{h=1}^{p_{1}} a_{h}^{*}(x) a_{h} \right], \left[\sum_{j=p_{2}}^{i} a_{j}^{*}(x) a_{j} \right] \right)$$

$$\geq \left\| \sum_{h=1}^{p_{1}} a_{h}^{*}(x) a_{h} \right\|$$

$$\times \nu \left(\left[\sum_{h=1}^{p_{1}} a_{h}^{*}(x) a_{h} \right], [a_{p_{2}}, a_{p_{2}+1}, \ldots] \right)$$

$$\geq \frac{K_{1}}{2}.$$

Now, consider

$$M = \max \left\{ \|a_{p_1+1}^*(x)a_{p_1+1}\|, \dots, \left\| \sum_{i=p_1+1}^{p_2-1} a_i^*(x)a_i \right\| \right\}$$

Since

$$\sup_{i\geq p_2}\left\|\sum_{j=1}^{p_1}a_j^*(x)a_j+\sum_{h=p_2}^ia_h^*(x)a_h\right\|=\infty,$$

fix $p_3 > p_2$ such that

$$\left\| \sum_{j=1}^{p_1} a_j^*(x) a_j + \sum_{h=p_2}^{p_3} a_h^*(x) \right\| > K_2 + M.$$

We have obtained the following conditions:

$$\left\| \sum_{i=1}^{p_1} a_i^*(x) a_i \right\| > K_1 > \frac{K_1}{2},$$

$$\left\| \sum_{i=1}^{p_1} a_i^*(x) a_i + a_{p_2}^*(x) a_{p_2} \right\| > \frac{K_1}{2},$$

 $\left\| \sum_{i=1}^{p_1} a_i^*(x) a_i + \sum_{h=p_2}^{p_3} a_h^*(x) a_h \right\| > K_2 + M \ge K_2 > \frac{K_1}{2},$ $\left\| \sum_{i=1}^{p_1} a_i^*(x) a_i + \sum_{h=p_2}^{p_3} a_h^*(x) a_h + a_{p_1}^*(x) a_{p_1} \right\| > (K_2 + M) - M = K_2 > \frac{K_1}{2},$

 $\left\| \sum_{i=1}^{p_1} a_i^*(x) a_i + \sum_{h=p_2}^{p_3} a_h^*(x) a_h + \sum_{j=p_1+1}^{p_2-1} a_j^*(x) a_j \right\| > (K_2 + M) - M = K_2 > \frac{K_1}{2}.$

We iterate the above process starting from

$$b_2 = \sum_{i=1}^{p_3} a_i^*(x) a_i,$$

whose norm is bigger than K_2 , and continue to

$$b_3 = \sum_{h=1}^{p_5} a_h^*(x) a_h = b_2 + \sum_{j=p_4}^{p_5} a_j^*(x) a_j + \sum_{r=p_3+1}^{p_4-1} a_r^*(x) a_r.$$

In this step, the succesive partial sums have a norm bigger than $K_2/2$, and the last one, b_3 , has a norm exceeding K_3 .

The process goes on indefinitely.

Finally, the rearrangement

$$\sigma = \begin{pmatrix} 1, \dots, p_1, p_1 + 1, \dots, p_2, p_2 + 1, \dots, p_3, p_3 + 1, \dots, p_4, p_4 + 1, \dots, p_5, \dots \\ 1, \dots, p_1, p_2, \dots, p_3, p_1 + 1, \dots, p_2 - 1, p_4, \dots, p_5, p_3 + 1, \dots, p_4 - 1, \dots \end{pmatrix}$$

satisfies the conditions required by 4.6. \square

Finally we characterize unconditional bases:

Corollary 4.7

Let $S = (a_n)_{n \in \mathbb{N}}$ be an M-basis in B reflexive. The following statements are equivalent:

- (i) S is an unconditional basis,
- (ii) For every $x \in B$ and any rearrangement $\sigma : \mathbb{N} \to \mathbb{N}$, it follows that

$$\sup_{n}\left\|\sum_{i=1}^{n}a_{\sigma(i)}^{*}(x)a_{\sigma(i)}\right\|<\infty,$$

(iii) For every $x \in B$ and any rearrangent $\sigma : \mathbb{N} \to \mathbb{N}$ it follows that the sequence

$$\left(\left\|\sum_{i=1}^n a_{\sigma(i)}(x)a_{\sigma(i)}\right\|\right)_{n\in\mathbb{N}}$$

does not tend to infinity.

Proof. It follows directly from 4.5. \square

5. Conclusion

Applying succesively stronger properties on expansive sequences, we classify (from M-basis to unconditional basis) the M-bases in B reflexive. If B is not reflexive a classification is given, from the M-bases to the Schauder basis, passing through the basis with brackets.

References

- E. Indurain, A. Plans and A. Reyes, Notas Sobre Geometría de Sucesiones en Espacios de Banach, Monografía No. 19, Departamento de Matemáticas, Universidad de Extremadura, Badajoz, 1987.
- E. Indurain and P. Terenzi, A characterization of basic sequences in Banach spaces, Rend. Ac. dei XL 40 (1986), 207-212.
- 3. J. T. Marti, Introduction to the Theory of Bases, Springer, Berlin, 1969.
- 4. J. Orihuela, On the equivalence of weak and Schauder bases, Arch. Math. 46 (1986), 447–452.

- 5. A. Reyes, Aspectos Reticulares y Geométricos de Sistemas de Veciores en Espacios de Banach y de Hilbert. Problema de la Intersección, Ph. D. Dissertation, University of Zaragoza, Zaragoza, 1980.
- 6. A. Reyes, A geometrical characterization of Schauder basis, Arch. Math. 39 (1982), 176-179.
- 7. H. H. Schaeffer, Espacios Vectoriales Topológicos, Teide, Barcelona, 1974.
- 8. I. Singer, Bases in Banach Spaces, Springer, New York, 1981.
- 9. P. Terenzi, Biorthogonal systems in Banach spaces, Riv. Mat. Univ. Parma 4(4) (1978), 167-204.