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ABSTRACT

We give an outlook to some properties concerning the expansive sequence of
a vector with respect to an M-basis, in a Banach space. From this point of
view, we analyze some kinds of M-bases.

1. Previous concepts. Background

Let S = (an)nen denote a linearly independent sequence in a separable Banach
space B. [-] stands for “closed lincar span”. Associated to S we define the following
two closed subspaces:
1) Kernel of S:
l"(‘s') = ﬂ [an,-, LTI ]

nel
2) Strict kernel of S:

K4(S) - n{ K(S"): §" infinite subsequence of S},

S is said to be complete if [S] = B.

S is said to be minimal if an ¢ [apnt1-0042,...] (n € N): equivalently if there
exists in [S]™ (dual of [9]) a sequence (a7 )nen- called conjugate, such that af,(a,) =
6 (Kronecker indices).
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A minimal complete sequence with zero kernel is a AMarkushevich basis
(M-basis) of B.
For I C N, let Wy = [ayt € 1] and

Wr = ﬂ lar,- @kt 0k41s.-.]
kgT
An M-basis S is a strong M-basis if W = Wy (T C N) [8, §8].
An M-basis S = (an)neN is a basis with brackets of B if there exists an increas-

ing sequence of natural numbers (py)nen such that

Pn

= lim Z a;(x)a; |y,
n

for every o € I3,
If we can take (pn)nen as the whole N, the sequence is a basis (or Schauder
basis) of I3.

IT'S is a basis such that the series

o

Z ay(r)a;

converges unconditionally to z, for every x in 5, then S is an unconditional basis
(or absolute basis) of B. That is to say that, for every rearrangement ¢ : N — N,
the sequence (@y(n))neN is a Schauder basis.
We say that a sequence S = (an)nen in B is weakly convergent to z, if, for
every f € B™ (dual of B),is f(x) = lilln flay).
n

Theorem 1.1

(The weak basis theorem). Let S = (a,)aen De an M-basis of B. Then S is a
basis il and only il, for every @ ¢ B. the sequence

n

Z a; (v)a;

i=1 neN

is weakly convergent to .

Proof. Sce [3]. For generalizations. see [1]. O
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Using a similar theorem on the concept of Schauder decompositions, the follow-
ing can be proved [3.4]
Proposition 1.2

Let S = (an)neN be an M-basis of B. Then S is a basis with brackets if and
only if there exists an increasing scequence of natural numbers, say (pn)neN, such
that for any x € B, the sequence

(i a;(x) a.,-)
i=1 neN

is weakly convergent to x.
'I'he next implications are all strict [8,9]:
unconditional basis = basis =

basis with brackets = strong M-basis => M-basis.
With respect to weak convergence, the following lemmas shall be needed in the
sequel:
Lemma 1.3

If S is weakly convergent to x, then x € K,(.5).

Lemma 1.4
In B reflexive, given an M-basis (an)nen and a general sequence (b, )nenN, the
[ollowing statements are equivalent :

(i) sup, ||bnll < 20, and limy, ap(by) = fm (n € N).
(ii) The sequence (b, )uen is weakly convergent to a vector b such that a,,(b) =
. (m € N).

Proof. Sece [7, p. 195]. O
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2. Coordinates and expansive sequences

Derinerion 2.1, Given an M-basis § = (a,)nen in B, with conjugate (a))neNs
and a vector x in B, the sequence (“;'(m))neN is called the coordinate sequence of
z relative to §. Tet 1 = {k € N : aj(z) # 0}. 1 T = (pn)nen (infinite), then the

sequence
n
Sy = Z ay, () ap,
neN

i=1

is called the expansive sequence of z relative to §.

DeriNrrioN 2.2, Given an M-basis § = (a,),en of B, the set
D(8) = | (Wi —wy)
I'cN
is called the deficiency of S. (T'his set gives an idea of how far is the M-basis of
being a strong M-basis).

Related to this concept, we have the

Proposition 2.3

x € D(S) il and only if Ty is infinite and K(S;) = {0}. Equivalently, when T,
is infinite, x ¢ D(S) if and only if K(S;) = [z].

Proof. See [1] or [6]. O

Remark. Notice that, T, being infinite, only two cases for K'(S,.) may arise: K(5;) =

{0} or K(S,) = [z].

3. A first classification

The expansive sequences of vectors € B characterize the strong M-bases and the
bases among the M-bases. This result was first stated for B reflexive in [6]. The
same without the restriction of reflexivity was stated in [2]. Finally, using a similar
idea, bases with brackets are also characterized.

The main result is given by
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Theorem 3.1

Let S = (an)nen be an M-basis of B. Then
(a) S is a strong M-basis if and only il K(Sz) = [z], for every x with Ty infinite.
(b) S is a basis if and only if i{,(S;) = [z] for every x with % infinite.

With respect to basis with brackets, conside~ tae following consiruction: Given
an increasing sequence (¢n)nen of natural numbers, and z with T3 = (Pn)nen, set,
for every n € N, h(n) as the greatest integer such that py,y < gn. (If there is no
li(») e that situation, pass to the next n and define h(n) = h(n+1)). We have now
the

Proposition 3.2

Let S = (an)nen be an M-basis of B and ¢ € B with 1y = (pn)neN infinite.
Then S is a basis with brackets il and only if there exists an increasing sequence of
natural numbers (qn)neN such that the sequence

h(n)
St = Z a, () ay,

i=1 neEN

verifies K4(S.) = [z] (for any = with T, infinite).

The ideas above may be used to construct M-basic sequences which are not
strongly M-basic. (A completely different construction of such sequences appears in
[8, §8]).

For this purpose, we need a strong M-basis not being a basis, in some Banach
space B. That is not difficult: For instance, being S = (an)neN a basic sequence in
a reflexive Banach space, it can be proved [1] that the sequence (@n — @ng1)neN is
a strong M-basis, but not a basis, of its closed lincar span.

xamreLe 3.3 [6]. Let S = (an)nen be a strong M-basis but not a basis of 3. By
3.1, take z € B with 7%, infinite and K4(S9;) # [x]. For the sake of simplicity, take
1, as N. By 2.3 there exists a subsequence 5% of S, such that K(S%) = {0}. Set
Sl = (¢!)nen. wWhere

In

al, = Z af(x)a;,

and g1 < g2 < oo < g < 0t
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Then, there exists v € N such that z ¢ [a!,al,,,...]. Set now § = (by)nen,

T
where
n

b, = Z a;(x)a; for ¢, < n < qrqy.
i=qr+1
Clearly, § is an M-basis of [an; n € N] and ( relative to §) , z € Wi — Wy, with
T --{qr,q:41,...} (infinite). Therefore, S is not a strong M-basis.

4. On boundedness of expansive sequences, in reflexive Banach spaces

Let S5 = (an)neN be an M-basis in 13 reflexive. Let z € B with 7, infinite, and
Sz = (bn)neN (we shall write “b,” for short). Paying attention to the boundedness
of S, , we distinguish three cases :

1) sup,, |[bn]] < o0,

2) sup,, [lb]] = x, but (]|be||)nen does not. tend to infinity,

3) limg ||bn|l = oo.

In case 1), by 1.4, it follows that S, is weakly convergent, to z, so by 1.3
x € K (S5).

In case 2) there exists a subsequence (br, )nen Of (by)neN, weakly couvergent
lo z.

In case 3) it is straightforward to notice that (bn/|bnl), e is weakly convergent
to zero, therefore K,(Sz) = 0 since B is reflexive [9].

First case carries some consequences, including a characterization of bases, in
reflexive 13, equivalent to that in 3.1(b). We have :

2

Corollary 4.1

Let § = (an)nen be an M-basis of B reflexive, and x € B with T, = (Pn)neN
infinite. Then if & € D(S), for any rearrangement o : N — N it holds that

=

n
2 Ui (E)op)

=0

lim
n

(we set po - 1).

Corollary 4.2

Let S = (an)nen be an M-basis of B reflexive. Then S is a basis if and only
if; for every x with I’y infinite, the sequence S, = (bn)nen is bounded, that is
sup,|[bn]l < <.
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Prool. It follows directly from 3.1 and the definition of basis. O

temark. Similarly to 4.2, a characterization of bases with brackets might be given,

using the boundedness on 7. (see 3.2).

Fxavrre 4.3, Let B = €, (separable Ililbert space) and S = (¢,)nen an or

thonormal basis. Set § = (e, — Crt1)neN (S is a strong M-basis. but not a basis,
of {2).

Let & be the vecetor

¢n

n=1

s coordinate sequence relative o 8 is

So S = (a,)nens where

n | |
y = (l+§++ —.) (('i—(:‘i+|).

il

\ !
and
fanll > 14 2o g =
a, — e = e
ft 2 "

Let now @ : N -— N be a rearrangement and call 57 = (eg0,) — €o(n)41)neN-

Then 57 = (by)neN- where

n '7“\') [
b, - L Z 7 (f'n(A-) CCa(k) g I)-
k-1 i1
It follows again that
bl > NI
), ‘,> - e —— TS &N
1o 2 a(n)

This example suggests the
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DEFINITION 4.4. A strong M-basis § = (an)nen is said to be perfect if for every
& with T = (pn)nen infinite, there exists a rearrangement o : N — N such that,
setting pg = 1, the sequence

n

Z a;(p.-)(m)“a(p.-)

i=0 neN

does not tend to infinity.

EXAMPLE 4.5, Let B = £, and (e )neN an orthonormal basis. Set

n

S = Z €;

i=1 neN

S is a strong M-basis, but not a basis of £,.

If -
L = Z X;€e;,

i=]
the coordinate sequence of z relative to § is (2, — £rn41)neN.
Since

n
[(zi=z2)er+.. .+ (2n—zpp1 e +. . .4e)|]* = Z :1:?+n.1:'f,+,—23:.,L+|(:1:|+...+:1:,.,,)._

i=1
and

(i)

n
Z xf < |22 (n €N)
i=]
(Besscl's inequality),
(ii) n:::%_,_, < 1, for an infinite number of n’s,

(iii)

K=

/o
N L2 2 1/2

[Engi12r 4 oo+ Tpgrza| < 2 x; (n:Lr,H_,) .
i=1

it is casy 1o conclude that S is a perfect strong M-basis.

The second case has a particular similarity with the third case. Moreover, this
vields a characterization of unconditional bases in 3 reflexive. We have :
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Theorem 4.6

Let S = (an)nen be an M-basis in B reflexive, and = € I3 with T, infinite and

Sy = (bn)neN such that sup,, ||b,|| = oc.

Then, there exists a rearrangement o : N — N such that

n
li,ﬂ," ”Z ag(i)(T)as(i)

The proof leans on the concept of inclination v(F, F) between two closed sub-
spaces I~ and F oof I3:

v(E, )= inf |z + .

1
zel,|zj=1
yer

In a reflexive B, being 1P a subspace of finite dimension p, it is not difficult to
notice that, for any M-basis (e, )neN, it follows

limv(E?,[an, ang1,...]) = 1.
n

Proof of Theorem 4.6. Only in order to make easy the notation, put T, = N. Let
0< Ky <Ky;<...< K, < [{p41 <...with lim, K, = co. By hypothesis, there
exists p; € N such that

> K.

HZ aj(x)a;
i=1

P1
v ( [Z a'i(w)"‘ijl ’ [(l-n, Grg1s-- ]) L’l )
i=1

so that there exists py > py with

P
a 1
v ([2 a:('r)a,:| .[a.,,.z.u,,._,ﬂ,...]) > 5

Now
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Hence for any i > p,, we have

P1 i p1
Y ai(@an+ Y aj(@agl| > (Y ai(z)an
h=1 j=pa2 h=1
4! H
X v [Z a,"t(:l:)a,,] , Z aj(z)a;
h=1 i=p2
P1
> Za}'{(m)ah
h=1
P1
X v ([Z a',';(:c)a;,] @pas@pytisy .. ])
h=1
K
7
Now, consider
p2—1
M =max ¢ |lay 41 (2)ap, 41]l,-- -, Z a;(z)a;
i=p+1
Since
P1 i
sup Za;(m)aj + Z ap(z)ay|| = oo,
i2p2 j=1 h=p4
fix ps > py such that
P P3
Za;(m)a.j + Z ap(x)|| > Ko+ M.
! i=1 h=p2

We have obtained the following conditions:
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Za’{(z)a, > Ky > —1—2—
i=1
1 -
k
Zul(r)a.,- +ay,(z)ap, || > —\2—1 ,
i=1

. K
Za,(z)a, + Z ap(z)an|| > K2+ M > K2 > Tl,

h=pq
K
Za Jai + Z ay(x)ap +"m( Yap || > (Ko +M)—M = K, > TI’
|1— h= P2
L ey K4
Z z)a; + Z ay(z)ap + Z aj(z)a;l| > (Ko + M) - M = K, > <5
i=1 h=p2 j=p1+1

We iterate the above process starting from

pa
b, = z a;(x)a;,
i=1

whose norm is bigger than K3, and continue {o

Ps pa-1
by = E ap(z)ap = by + E z)aj + E ay(x)a,.
h=1 i=pa r=py+1

In this step, the succesive partial sums have a norm bigger than K, /2, and the
last one, by, has a norm exceeding K.

The process goes on indefinitely.

I'inally, the rearrangement

o= L....ptymi + 1,000, PP+ Lo opasps 1o paapa --|-],...,p5,...)
) ..., P1-P2see - piopi+ Looco,p2— Lpyyeeapsepat 1, 0,pa— 1o

satisfies the conditions required by 4.6. O



52 INDURAIN

Finally we characterize unconditional bases :

Corollary 4.7

Let S = (an)nen be an M-basis in B reflexive. The following statements are
equivalent:

(i) S is an unconditional basis,

(ii) For every ¢ € B and any rcarrangement o : N — N, it follows that

n

> al(@)asgy

i=1

sup
n

< o0,

(iii) For every & € I3 and any rearrangent o : N — N it follows that the sequence

( ).

Proof. Tt follows directly from 4.5 . O

n

D iy (2)aag)

does not lend to infinity.

5. Conclusion

Applying succesively stronger properties on expansive sequences, we classify (from
M-basis to unconditional basis) the M-bases in B reflexive. If B is not reflexive a
classification is given, from the M-bases to the Schauder basis, passing through the
basis with brackets.
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