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A CHARACTERIZATION OF THE DUALS OF SOME ECIIELON
KOTIHE SPACES OF BANACI VALUED FUNCTIONS

Cristina Jorddn Lluch and Juan Ramén Torregrosa Sinchez

ABSTRACT. In [8] Nyugen Phuong-Cac considers Koihe spaces
of vector valued functions in a Banach space X. In this work we
improve the duality result of [6]. [8], restricting ourselves 1o an
echelon Kothe space. We prove that the topological dual ol A7(X)
is the same as its o dual if and only if X’ has the Radon-Nikodym
property.

1. Echelon Kothe spaces of Banach valuced functions

Let (£, X, 1) be an arbitrary (inite measurc space where Y is a o algebra of subsets of
I and e is a posilive, -additive nieasure The vector spaces we use here are delined
over Lhe real field R and we use the standard notation of the theory of locally convex
spaces (sce [5]). N will be the set of natural pumbers and N will be a Banach space.
A function f : I~ -+ X is strongly measurable (or simply measurable) il there is a
sequence (fo)nz) of simple functions such that limy, || £, = f]| = 0 p~almost everywhere
(a.c.). We denote by Q(.X) the set of all X -valued measurable Tunctions on 1. We
will identify two functions fy and fo of Q(X) il fi(x) = fa(x) almost everywhere
on . The quotient set will be denoted by Q,(X). We will use the same synibol
to denote the elements of Q(X) and their equivalence classes, when there is no risk
of confusion. Given the function f € Q(N) (or any other in its class) we deline the
support of [ as

S(fy={relk:fle)#£0).
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Let (¢4)32, be an increasing sequence of measurable functions such that g.(x) > 0
Yk )i =1 - Y& =
for every x € IV, k € N and

p|({z€E:ge(z) =0} ] =0.
k=1

Ifp € R, p > 1, we define the echelon Kéthe space of order p as the space
AP = AP(I, 50 1. ge) of all measurable functions f: F - R such that

IS1IE = / [P gk dp < o for every k € N.
Jr

We also define A} = AL(F, Y4 pi, gx) of all measurable functions f : $(gx) — R such
that

/1% = / IS 1” gk dit < o0,
S(gx)

where X is the restriction ol ¥ to S(gr), sx is the restriction of ji to g and the
restriction of gg to S(gk) is denoted in the same way.

We will write A and Ay instead of A" and AL. We will always consider AP endowed
k k

with the toplogy defined by the collection of seminorms {i] - llg : & € N}. A7 will be

endowed with the toplogy defined by the norm || - |[k.

The a-duals of these spaces are the space (AP)® of all measurable functions

[ — R such that
/. ] gldu < o for every g € AP
JE
and the space (AL)* of all measurable functions [ : S(gi) — R such ihat
./h;'(m) Vglap < x for every g € AL.

‘T'he formula
(f.h) = / Shdp for f €AY, he (A")*
JE

N

ka1
).
Analogously given a Banach space X we define AP(X) = AP(E, YN g1, X) as
& Y8 | SRRy LY/
the space of all measurable functions f: E — X such that

delines a canonical bilinear form on the cartesian product ¥ x (AP

Sk = / [|Fi] gx dpt < o for every k €N
Jr
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endowed with the topology defined by the collection of seminorms {|| - ||¢ : k& € N}
and (.-\”(X))"l as Lhe space of all measurable functions f: £ — X’ such that

/ 'Sl Ngii die < o0 for every ¢ € AP(X).
JI
The formula

([.9) = /l._‘(f,.r/)f//t for f € AP(X), g € (AP(X))"

. .ope 5 . 44
defines a canonical bilinear forin on the carlesian product AP(X) x (A*(X))".

We also define the space ’\‘;'()&) = .\1:(.5'(_115,),2:;-./157.__(“7,/\") of all measurable
functions [ : S(ge) — X such that

1= [ W e < oo
MRAY

endowed with the topology defined by the norm || -||x. Then AP(X) is a Banach space
since the map

ekt ANX) — LP(S(gx)s e, X)
defined by
NOEFAY
is an isometry. Furthermore, AL(X7) inherits from LP(S(gk). pre, X) the well known
theorem which states that every 7 convergent. sequence in AL (X)) contains a g a.c.
convergent subsequence.,

I is simply checked that AP(X) is a Fréchet space. Morcover if ()%, converges
o fin AP(X) then (fu X (g1 converges 10 fxseg,y in AL(X). Thus by a diagonal
procedure we obtain an increasing subsequence ([, )72, convergent to f ji—ae..

It is also interesting to note that an echelon Koithe space AP contains a lof of
characteristic functions and consequently a lot of simple functions (since by [61. pp.
161, given € > 0 and a set 3 € X of positive measure, Lhere is a subset 1 so that
xa € AP and p(I3 — M) < o).

Proposition 1. The set of simple functions in AT (X') with support in S(gx) is dense
in .-\’kf(,\’). Consequently the simple functions in A"(X) determine a dense subset in

AP(X).

Proof. Let us consider f € AL(.X) and ¢ > 0. For cach rn € N we can find 13, C S(gi)
so that p(S(ge) — Buw) < I/mand 0 # xp,, € AP By [1] 11.2.(1)

Jim / [[S1]7 s dpe = 0.
™S sy =1,
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Then there exists mg so that

[ P adn<es
$(g9k)—Bm,

Morcover by [1] 11.1.3 we contruct a series

nc
ol Y]
D= E TuXA,
n=1

where {4,152 Is a partition of Iy, so that

1
€

esssup ||f — SN < ——mm— .
I il 3 -[ﬂm,_, gk dpt

Therefore

/ IS = S'IP gr dps < /3.
Jn

mgy

Now by [1] 11.2.4 there is py € N such that

"

/ WP g dpe < €/3.
Uiz, 4

The function
po—1

fl = Z EnXA,

n=1

verifies thal,

/ LF - SillP g dpe = / WS = SullP gx dpe + / T AP g dp
v S(gn) ML ICTA L [ AN JUret a,

n=l

1 / [ = full? g dpt
Ui, A

—/ 11" g diye -l-/ . WS g dp
JS(gx)—Bmg . Up”_ An

+ / o I gk dpe
JUT g A

< £-+ < + &

3 3 3

=¢.

This completes the proof.
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2. a—duality

Let 17 be a set of measurable functions. We define 7' as the set of all measurable
functions ¢ : ' — R such that,

/ [/1lgl dpr < >0 for all f€T.
Ju:

I A is a Banach space we define 7(X) as the set of all measurable functions
: LD — X such thav ||fi] € 'I', and also (T(X))* as the set of all measurable
I )
functions g : I+ + X' such that

/ el dir < o0 for all J €1(X).
JE

[Uis easy to prove that (F(N))" = T(X'). In fact if g € (T(X)* and J ¢ 7',
then af ¢ T(X) for cach » ¢ X with {le]| = I; as

/mmuwm:/mmmm
JI JI1

is finite we have {|gj] € 7. I follows that g € T°(X’). On the other hand direel
verifications show that T(X7) C (T(X))d™.

I particular if 17 = L,(u) and p > 1, then (L,())" = L,() witl
Vptifa= 1:ifp = 1then (L () = L (p), [10]. pp. 366. Hence T(X) = Lp(p. X)
and (L0 X)) -2 Ly(p, X7) = (L (e X)) for every p > 1.

The next lemma is proved in [R]. pp. 605. for locally integrable functions defined
b o
in a I()('il”_\' (T(‘)I'I'Ipil(", spacao with a Radon measure,

Lemma 1. IFJ CT(N) and ge T, g > 0. then

/MW@:w%
JIE JE

/_(f(l), h(1)) dye

:he .\['}

where M is the set of all measurable Tunctions h - 1. — X' sueh that

(A< g(t) p—ace..
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Proof. Since .
! /

| >
! <fu>,hm>-d/:!|s/ 17O dp
S Sk

< / [ SN () dp,
JI

it is enough to prove that given

e< [ iiswilat
there is h ¢ M so that

¢ < !/l(j(l)ll(l)) (‘I/ll .

et e < O be sueh that X
i< / Hri gl dp.
JI
By the Lebesgue nonotone convergence theorem there is a non negative stmple func

{100
n

S Z as\n,

il

sueh that thesets Hyoi: 1200000 n. are pairwise disjoint and
el e / YUY () dp
Jr

-3 / O dp
BTl

< [ wwisolan
J
Now there is no loss of generality in assuming that a; > 0.0 1.2..... n.

Sinee the last inequality  guarantees that f is Bochner iniegrable in ;.
P= 200 n.owe find a partition {G1 01 < g < g} oof 1 and a eollection of
veetors {ed 0 1< j < 0} in X.so tha

e
/ N ACA] L(’,\( dp < —— .
Jin, — '-| 2ua,
By the Hahn-Banach theorem there is ff ¢ X' so tha 7 = 1 and
(. ely = el | Let us see that

n,

S S :
-

¢ i=!
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is the required {unction.

1t is clear that h € Al'. Then il only rests to verify that

o< | [u@.nenan]

To this end

I/(f(l),h(l))r//ll= 2/ <2(ﬁ{x(;{+f—2frfx<;5,ll
JE Ju, \5D

i=1 j=1

zn: / <il: ('11 X ,'-> (l/‘[
JII i=1 '

i=1

v

n 3 T, |
-1 / wf—Z«hz.u 111} iy
i, j=1 :

i=1"

n T
RSN ¢
> Zui /” LH(:“I;\/G:' dn -3

i=1 vji=l

=1
.ﬂ 7
>y ai [ - ‘Zai [ (-
i—1 JH, i= 1 JH,
n T
>c:+f-—2:a,-/ f—-Xﬁ‘;xGi!
=1 Y i=1 '|
. C (
Zetemg-3
=dC.

> dy

n n n,
= (S [ Wldu= Y [ {171= X ety | do
i=1 JiL Ji, =1 '

n,

S et xes | | -

i=l

¢
1 — —
aj )

where we have repeatedly used the triangle inequalily and the fact that sums

",

N " oy
2 , Y X

235

are recuced in cach point only 1o one term because the sets GF are pairwise disjoint.

Theorem 2. Let AT(X) be an echelon Kéthe space. ‘Then (A7(X), (.\"'(X))") is a

dual pair with respect to the bilinear form

o= [ (rtadate) dn
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Proof. By [6]. prop. 1,if o # 0, » € A?(X), there is g € (A?)* so vhat (g,||||) # 0.

Since g = g7 — g7 we have (g, |l¢)) # 0 or (¢7,]l]!) # 0. lence we can suppose
g > 0. Then by lemma above, we gel v € (AP(X ) such that

/ (p.u)du £0.
Jr

Suppose now 0 # o € (AP(X)* = (A?)?(X'). Since A is perfect we know that
there is 0 # x4 € A? = ({(AP)™)® where A ¢ S({Jd]]) (see the proof of prop. | in [6],

pg. 161). Therefore
/ Xl
Ji

Then by lemma | there is o € AP(X") such that

0

dic # Q.

/ (p.0)du £10 and lig(1)) < xall) jt - awc..
JIE

Now there is no loss of generality in assuming the existence of a positive number ¢ > 0

such that i
/ (p.0)dpu = / (,0) dp > ¢.
I JA

The function  being measurable is the limit g a.e. of a sequence of X7 valued
simple functions (S,,);%, vanishing ontl of A. By FEgorov's theorem given the natural
number m. there is an element 13, ¢ X, 13, C A, so that (5,)0%, is uniformly
convergent 1o 2 in By, and p(A — By) < /e [1] 11.2.4 justifies the existence of an

m ¢ Nso that
I/ (. 0) (1/1‘ < -
|~ A By

Then, as va € AP. by the uniform convergence

N~

:— < / (9,0) dpr = lim / (Sn, @) dp.
2 Ui B,

n

Henee there is a simple function still denoted by S5,

k

Sy == L £

7=
with 1 C By, so that
f;< / (S, 0)dpn.
2 Jn,
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Turthermore i
[ et < [ e < .
i.e., 0 is Bochner integrable in £; and therefore by [1].11.2(6)
€ kn
2 < /B (Sn.0)dpu = Z <.’r§'"’,./”l o (I/l> )

i=1

Finally by (X", X") density of X in X7, there is a finite sel of vectors (yi)l—, in X
$0 that

p .
(
- < 3/,-./ (,-")(I/I> = / S,0)dn
<X (o], o) =, 5
where
.
S= % give, € AP(Y).
i

This function satisfies

/ (S.0)dn = / (S, 0)du # 0.
JI J B,

3. Duality and a duality

Theorem 1. Let AP(X) be an echelon Kéathe space. IFh € (AP(X))*, p > 1, then
the lincar form py defined on A'(X) by ho— 2 s an imimersion of (AP(X))*

(AP(Y)).

into

Proof. Since A?(X) is metrizable. it is enough to prove thal gy is locally bounded.

To this end, proceeding by contradiction, we suppose the existence of a hounded
sel B C A(X) and a sequence (fu))% ) in 3, so that for each n €N

I |

Proceeding as in [6]. pg. 167. we show that the sequence
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where z € X, lz|| = 1, is a Cauchy sequence in AT(X). 'Therefore S, converges 1o a
certain function ¢ in AP(X) and there is a subsequence in (5,)92, convergent to ¢
jt-a.c.. Then

o) = Z Hle(_z-l)” 2z p—ae.

Now
el = o

21

which contradicts the fact that b € (A?(X))
Finally we infer that if & # 1’ then pp, # @ by theorem 2.(2).
Theorem 2. Let AP(X) be an echelon Kéthe space, p > 1. If X' verifies the Radon-

Nikodym property and for cacl k the scalar [unctions g #£ 0 p a.c., we have that
given ¢ € (AP(X))” there is a uniquely determined function h in (AP(X))* such that

20f) == /’(f(J) hiz)ydp, for [ € AP(X).

Proof. 11 is easy to sce that there is kg € N such that v is continuous wilth the
N . \ oo AP e . e ' i ‘~ e N ; . 1 M s o H 3
induced topology of A{ (X). By proposition 1.(1), 2 can be extended in a continuous
way Lo .\{.-;“(X), still denoted by (2.

Since gg, # 0 jr-ae., the map fromn :\Qu()\’) into LP(u, X') such that it assigns to

. . . 1/p . . . . . .
[ the funclion f_r;k/)’ is an isometry and then we can define a continuous linear form
on L7(j,.X) such that

& (Fail") = #(0).

Therefore there is a function A" in L9(p. X') so that

(i1].§4)

|
_5_\
AN
—~
vy
——
=
=~
<
—
-~
—_—
=

According to the equality L7(p, N') = (LF(pe, X)*™

.

Consequently

ot = [ brilarie
Ju d

l di < x for f ¢ AP(X).

= g," 0 e (AP(X))"
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and evidently it satisflies the required conditions.
The uniqueness of b follows directly from theorem 2.(2).
Note that & is in the a-dual of certain AZD(X).
Theorem 3. Let A?(E, X, . gx. X) be an echelon Kéthe space, p > 1. If X7 satislics

the Radon-Nikodym property, given a lincar continuous form 2 in A’(X), there is a
uniquely determined function b in (AP(X))™ so that

S(f) = / (Fe) h(@) die for f € AP(X)
JIE
and there is an index ky such that S(hY C S(gr,) a.c..

Proof. Let 10(X) = 15 (S(gr), Lk gtk 2r, X) be the echelon Koéthe space where X
and g are the o algebra and measure induced by 20 and g oon S(gp) and
Zr(#) = gy 1 (@) for every x in S(gx) and r €NL

The mapping i 2 10(X) — AP(X) defined by i(f) = 0 ()nll;' — S(gx) and
ie(f) = f on S(gx) is continnous. The composition o iy € ( X))

Then by the above theorem there is hy € (l‘i:(/\'))” so Lhal.

< () = / (he. [} dne for f ¢ IR(X).

J5(g)
Proceeding as in [6}. pg. 169, we have
/ (he. [ du = / (hepr . f)du for f & 1T(X).
S S(gn) S5(gn)

This equality combined with the fact that the restriction of lyqy 1o S{ge) is an
clement of (I'L(X)Thigr)” and theorem 2.(2, shows that hgyi(x) = he(x) e on
S(gr). Then we can define a function b on £, h() = he(z) il 2 G S(gs) and h{x) =0
e c - UA\=| S(gx) changing the values of by on a set of zero measure if it is
NECESSary.

IF e AP(X). it is casy Lo see that
S =lm fys)-
Then

Ly

A=t [ ()
IS0
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According to the fact that ¢ is continuous, there is an ¢ > 0 and a ks € N so
that il f € A?(X) and

/ [1filP gk, dpe < €,
JE
then [#(f)] < L.

We consider B = E'—S(gx,) and o = p(B). If a = 0 directly b = 0 on E—S(gs, ).
Then il @ > 0, as we did in proposition 1, we can construct a sequence (An), of
subsels of B pairwise disjoint such that

and x4, € A”. Then

{iven ng we write
"‘\"n = U {I ¢ "1".1) : ”h(l)” S 7'}
r=1

where we call By, each of these subsoets.

Let » be a fixed natural nuruber. CGiven xy € X and i € N and M C Brng s
M€ Xowe have myar #a € AP(X). Then by Hille’s theorem ([1], pg. 47)

> lp(myag rcl
i (mxar zo, h) (l/l’
IA

:m (wa, h{)) dp

M

< / xarh( )(‘1//>’.
I

<.1:.,;.. /1([)(I/l>
Ja

=

Therelore

=10 for 2y € X.
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Consequently

/ () du =0 for M C Brp,,
J M

and, by [2], pg. 175, h(t) = 0 p—ae. on By ,,. Then we obtain A(1) = 0 p-a.e. on
L — S(-(]-‘-‘n)'

It follows that
() = /9'( ) dy = /, Uy dn for [ € AP(X),
50k b

and since hy, € (17 (X)) we casily obtain h ¢ (AP(X))”.

Finally proposition 2.(2) justilies the uniqueness of h.

Theorem 4. Let AP(F, Y. pu.ge. X) be an echelon Kéthe space. If the o -dual of
A'(X) is the topological dual of AP(X) then X' has the Radon-Nikodym property,

Proof. Suppose (.\"(.\'))' = (AP(X))" and let G2 X — X’ be a p—conlinuous vector
measure of bounded variation. We shall show that if [ € X has positive - measure.
then G has a Bochner integrable Radon-Nikodym derivative on asel B € £, B C Ly.
with p(B) > 0. Then. by 1111125, the proof will be complete. Thus lot Fy € X
have positive g -measure. Applying the Halm decomposition theorem to the sealar
measures |G and Mp for a large cnough positive integer M produces a subset I3 of
Lo B¢ X p(B3) > 0, such that |G(F) < Mu(E) for all ;¢ Y. with 12C 3. Fhen
we can choose a positive integer k so that (3N S(gk)) > 0. 'Then as we can write

o

B'NS(g) = U {I € B S (gr) gDy C 1/ r, l]}

r=1
there is an r ¢ N such that
(B — it G B0 S(gey gt € [1 /1 rl} >0
and we can choose a subset 3 of 32, 3 € Y. p(B) > 0. such that yu € AP,
Now we define for a simple function
1
f = L rixyy,.

i=1

where o € XU B, e X and BNk =0 lor i # .

n

- X((ﬂfffl;'; ). .1':>.

i
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‘Then using

/ ge dp > / inf{ge(t) st € BLY dp > (1/r) p(F; 0 13)
E.nB Jenn

we have

I[(f)| = Z((ﬂi'(l:'i N I.f),a:,-)
il

= X <_l— Gl Ny, ( / Ik (I/I) :1:,->
izl / Ik d/l JI':.."l”
JIE B

i=1

< Z Mup(L; N0 B) ”( / , (I/l)a'-i'
N JgE )
/ q ! N\J NG |
gk djt
rnb

n H 9 |
< ’\Ii"Z (/I . I (l/l) :l.'ii
= rixe,| g dp
” I izl

IA

i/p . t/yq
\Ir(/ 11" g (I/1> (/ -‘/k"/’)
Ju B

14
My (sup _(M.(l)) p( £ NS k-

te 3!

IA

Since Lis evidenily linear on the simple functions in A7(.X) this shows that {
is continuous on the simple funcvions in A?(X) and therefore has a bounded linear

extension to A”(X ) and by Hahn-Banach theoremn to A7(X).

By hypothesis. there is ¢ € AP(X)” such that
I(f) = /(f=!I> dpe for [ € \P(X).
JE

But.
G N B)(z) = laxy)

= /I(J g) dp

(fo)e
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forallze X and Fe X, & C B.
Consequently

G(Eﬂl}):/ gdp for £ € X.
E

This completes the proof.
‘Then we have shown

Theorewn 5. (.'\1”(/\'))“l = (.-\”(X))’ if and only if X' has the Radon-Nikodym

property.
Now we characterize the equicontinuous sets of ((AP(X))".
In (A7(X))"™ we show the equivalence
NS < |lg() jL—a.e. il and only il
e des [ aliatian o n e arcx).
In fact if we 5111)[);)s;: the second in.c,(;nulily and we consider
W(A) = nfx € B (1@ > o)} > 0.
with the function h = x4, A’ C A, A’ € X, where x4+ € AP and [la]l = 1 we have
/‘ Wiillall dpe < /1 g1l ilAeif dpe
which coutradicts the fact that, in A, ||f(z)|] > llg(=)|.

By theorems above (A”(X))' = (A?(X))" when X’ has the Radon-Nikodym
property. ‘Then in that case, as Iy @ AP(X) -» AR(X) defined by Ii(f) = Jisge) 18
conlinuous, its transposed I} maps (.\”(X))“ into (.-‘\”(X))a injectively because

L (AP(X)) = AZ(X).

Let us see that, if f € (.\’[_(/\'))”, [E(f) is the function [ equal io Jon S(ge) and
equal to zero on 1 — S(y). Il h ¢ AP(X)

<l,:.(f),h> = (f I;_;(h))
_ / (. () dp
J5()

[y
JS5(gx)
(f. h).
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Then 14(f) = f.
Theorem 6. Let M be a subset of (A?(X)). We suppose that X' has the Radon-
Nikodym property.
Then if p =1 the following conditions are equivalent:
1) Al is equicontinuous.

2) There are k € N and an cquicontinuous set M’ of (AR(X)) so that
M= 1M,

3) There are k € N and C' > 0 so that ||f]|| < Cygx for every [ € M.
If p> 1 the following conditions are equivalent:
1) M is 7 equicontinuous.

2) There are k € N and an cquicontinuous set M’ of (A}(X))” so that
M= LAY,

3) There are k € N and o > 0 so that for all f € M, S(f) C S(gi) and if

1/p+1/g=1
1/q
sup / Ik gk—"/” du =a < cc.
JeM \JS(gx)

Proof. 1)—2) Il p > 1 by 1) there are ¢ > 0 and & € N so that M ¢ V° where
V= {fG AP(X) :/ ISP gx dpe < c}.
E

We consider an clement z of X so that ||z = 1. If h € M and A = I5 -~ S(gi),
we have hx == 0. Tn fact il b is nol zero g ae. on A in the same way as in prop. 1
we have thal thereis D C A, 1) ¢ X, such that

(1) >0, xnh £0, and yp € AP,

Then if we consider

D= U {zcD:1/m<h) < m} = U Dy,
m=1 mz:1

we oblain Dy, € X, 1Dy, C D, such that b is Bochner integrable in D,,. Hence for
every n € N nzyp,, € V. But h € V°. Then |(h, z xp,. )| must be zero for every
m N Then by 23 pg. 175, by = 0 which is a contradiction.
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Now il is enough to prove that A/ C W°, where M’ is the set of restrictions to
S{gi) of the clements of A, and

lv:{feﬂLU:/ WWWMM<<}-
S(gx)

We consider h € AT, h # 0, and f € W. By the theorem (1.1) there is a sequence
(fn) C AP(N) so that

li'll‘n L(fn)=f jt — e on S(ge)

and

Iirll'n fn)y=17 in [.\'Z(X), TR,J.

Then there is ng so that if n > ng by Minkowski inequality

. 1/p . 1/p 1/p
( [ s dﬂ) < ( [ =11 «m) 4 ( [ s dﬂ)
J5(gn) J5(gx) L S5(gx)
i 1/p
<€—(/ IWVMWJ +(/ iMWwWJ
JS5(gn) JS(gk)

=(.

Hence [, € V.

By Fatou’s lemima
0 < [k )]

</ [{f.hY dp

S(ax)

= / liminf [{h, £} dpe
MEICTO

< liminf [{fu, 1) dp2
" S5k
< 1.

Henee by lemma 1 h € (AL(X))” and b € 11°, because every r G AL(X) is absorhed
by W. Then M7 C Ve,

2)—3) I h e M. his zero on K - S{g), and there are & € Nand ¢ > 0 so that

M c 1. where
. 1/p
Wl fc \’;(\) : (/ NS gk (l/l) <
JE k)
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for every p > 1. Let us suppose p=1. If f € AP(X), [ +# 0, the function

C

/ 1SN & dpa
<5(gx)

belongs to W, Ience if b € M, and we consider an elemenl z of X, so that ||z]| = 1.
o ' H
we have by lemma 1

/

1
[omimans s [ wie e
F(gn) € J5()

J5(g
1

T / SN Nlge 2] dye.
¢ Jsgn)
for all f€ AP(X), f#0. Then
b1
i < = llgwl)

for every h € M.

Wp>1det bobein M0r € LP(S(gx), B, X) then 'rg;'/” € AL(X). Asfor
every r of the unit ball of LP(S(gk), Y1, X), ¢ r_q,?l/" ClWand he M C W we
Y7 is an clement of the unit ball of (L7 (S(gx). N gt X))'. Then

1/q
" - 1
/ [|A1i7 g, Iy <= for e M.
v k) ' €

3H—1) I p=1itis clear that

Mc {f € A(X): /1 /1 gr dpie < I/(v} .

IFp > 1, by Hélder’s inequality, if h € M and f € V, where

1/p
b= {f € AP{X): (/ LA™ gk (l/t) < l/ﬂ},
I

we have, proceeding as in [6], pg. 18T,

(h.f)= / (h. I du

JIF

sce that ¢ hy,

trgitr ” dp

]/’i » .‘./1;
< / |7 g, " (1/1) ( / /1P g rl/l)
JS(an) JE

< I

[ || -1/l
< gy 1
./.5.‘(11:\-) L ‘

Hence M ¢ VO,



DuaLs oF SOME KOTHE SPACES 247

Corvollary 7. If AT (E, X, 11,9, N) is an echelon Kothe space,

(AP(X G I ((AL(X))%)

k=1
if X' has the Radon-Nikodym property.
Proof. Tt is immediate because (AP(X))* is the dual of A?(X).
Finally we study a property that characterizes the reflexive echelon Kothe spaces.

Proposition 8. Let AP(L, X, 1, g, X) be an echelon Kéthe space, p > 1. AP(X) s
reflexive if and only if A and X are reflexive.

Proof. Lor the sulliciencey, if p = 1 by [7], pg. 226, A' is a reflexive Montel space.
Then by [9] AY(X) is reflexive.

If p> 1, LP(p1, X) is reflexive by [1], pg. 100. Then so is AL(X) by the isometry
with LP(S(gr), stk X), and thus the projective limit AP(X) is also reflexive.

For the necessity, suppose that A?(X) is reflexive. We can oblain an element B
of X, u(B) > 0, such that x; € A,

We consider now the closed subspace {& x5 1 ¢ € X} of AP(X), that is trivially
isomorphic to X. T'hen X is reflexive.

In addition, if p > 1, by the first part A?(X) will be reflexive and so AL by the
isometry with the closed subspace {xof : f € AL} of AP(X), where 2o € X is fixed
and [Jzo|| = 1. As AP is the projective limit of the AT, we have that A? is reflexive. If
p =1, it is casy Lo sce by standard methods (sce [4], pg. 310) that AP(X) = AQ. X
Hence, if A(X) is reflexive, A and X are also reflexive.
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