A CHARACTERIZATION OF THE DUALS OF SOME ECHELON KÖTHE SPACES OF BANACH VALUED FUNCTIONS

Cristina Jordán Lluch and Juan Ramón Torregrosa Sánchez

ABSTRACT. In [8] Nyugen Phuong-Cac considers Köthe spaces of vector valued functions in a Banach space X. In this work we improve the duality result of [6], [8], restricting ourselves to an echelon Köthe space. We prove that the topological dual of $\Lambda^{p}(X)$ is the same as its α dual if and only if X' has the Radon-Nikodym property.

1. Echelon Köthe spaces of Banach valued functions

Let (E, Σ, μ) be an arbitrary finite measure space where Σ is a σ -algebra of subsets of E and μ is a positive, σ -additive measure. The vector spaces we use here are defined over the real field \mathbb{R} and we use the standard notation of the theory of locally convex spaces (see [5]). N will be the set of natural numbers and X will be a Banach space. A function $f: E \to X$ is strongly measurable (or simply measurable) if there is a sequence $(f_n)_{n=1}^{\infty}$ of simple functions such that $\lim_n ||f_n - f|| = 0 \mu$ -almost everywhere (a.e.). We denote by $\Omega(X)$ the set of all X-valued measurable functions on E. We will identify two functions f_1 and f_2 of $\Omega(X)$ if $f_1(x) = f_2(x)$ almost everywhere on E. The quotient set will be denoted by $\Omega_0(X)$. We will use the same symbol to denote the elements of $\Omega(X)$ and their equivalence classes, when there is no risk of confusion. Given the function $f \in \Omega(X)$ (or any other in its class) we define the support of f as

$$S(f) = \{x \in E : f(x) \neq 0\}.$$

Let $(g_k)_{k=1}^{\infty}$ be an increasing sequence of measurable functions such that $g_k(x) \geq 0$ for every $x \in E$, $k \in \mathbb{N}$ and

$$\mu\left(\bigcap_{k=1}^{\infty}\left\{x\in E:g_{k}(x)=0\right\}\right)=0.$$

If $p \in \mathbb{R}$, $p \geq 1$, we define the echelon Köthe space of order p as the space $\Lambda^p = \Lambda^p(E, \Sigma, \mu, g_k)$ of all measurable functions $f: E \to \mathbb{R}$ such that

$$||f||_k^p = \int_E |f|^p g_k d\mu < \infty$$
 for every $k \in \mathbb{N}$.

We also define $\Lambda_k^p = \Lambda_k^p(E, \Sigma_k, \mu_k, g_k)$ of all measurable functions $f: S(g_k) \to \mathbb{R}$ such that

$$||f||_k^p = \int_{S(g_k)} |f|^p g_k d\mu < \infty,$$

where Σ_k is the restriction of Σ to $S(g_k)$, μ_k is the restriction of μ to Σ_k and the restriction of g_k to $S(g_k)$ is denoted in the same way.

We will write Λ and Λ_k instead of Λ^1 and Λ_k^1 . We will always consider Λ^p endowed with the toplogy defined by the collection of seminorms $\{||\cdot||_k : k \in \mathbb{N}\}$. Λ_k^p will be endowed with the toplogy defined by the norm $||\cdot||_k$.

The α -duals of these spaces are the space $(\Lambda^p)^{\alpha}$ of all measurable functions $f: E \to \mathbb{R}$ such that

$$\int_{E} |f| |g| d\mu < \infty \qquad \text{for every } g \in \Lambda^{p}$$

and the space $(\Lambda_k^p)^{\alpha}$ of all measurable functions $f:S(g_k)\to\mathbb{R}$ such that

$$\int_{S(g_k)} |f|\,|g|\, d\mu < \infty \qquad \text{for every } g \in \Lambda_k^p.$$

The formula

$$\langle f, h \rangle = \int_E f \, h \, d\mu \quad \text{for } f \in \Lambda^p, \ h \in (\Lambda^p)^\alpha$$

defines a canonical bilinear form on the cartesian product $\Lambda^p \times (\Lambda^p)^{\alpha}$.

Analogously given a Banach space X we define $\Lambda^p(X) = \Lambda^p(E, \Sigma, \mu, g_k, X)$ as the space of all measurable functions $f: E \to X$ such that

$$||f||_k^p = \int_F ||f||^p g_k d\mu < \infty$$
 for every $k \in \mathbb{N}$

endowed with the topology defined by the collection of seminorms $\{\|\cdot\|_k : k \in \mathbb{N}\}$ and $(\Lambda^p(X))^{\alpha}$ as the space of all measurable functions $f: E \to X'$ such that

$$\int_E ||f|| \, ||g|| \, d\mu < \infty \qquad \text{for every } g \in \Lambda^p(X).$$

The formula

$$\langle f,g \rangle = \int_{\mathcal{F}} \langle f,g \rangle \, d\mu \qquad \text{for } f \in \Lambda^p(X), \ g \in \left(\Lambda^p(X)\right)^{\alpha}$$

defines a canonical bilinear form on the cartesian product $\Lambda^p(X) \times (\Lambda^p(X))^{\alpha}$.

We also define the space $\Lambda_k^p(X) = \Lambda_k^p(S(g_k), \Sigma_k, \mu_k, g_k, X)$ of all measurable functions $f: S(g_k) \to X$ such that

$$||f||_k^p = \int_{S(g_k)} ||f||^p g_k d\mu < \infty$$

endowed with the topology defined by the norm $\|\cdot\|_k$. Then $\Lambda_k^p(X)$ is a Banach space since the map

$$\varphi_k: \Lambda_k^p(X) \longrightarrow L^p(S(g_k), \mu_k, X)$$

defined by

$$\varphi_k(f) = f \, g_k^{1/p}$$

is an isometry. Furthermore, $\Lambda_k^p(X)$ inherits from $L^p(S(g_k), \mu_k, X)$ the well-known theorem which states that every τ_k convergent sequence in $\Lambda_k^p(X)$ contains a μ_k -a.e. convergent subsequence.

It is simply checked that $\Lambda^p(X)$ is a Fréchet space. Moreover if $(f_n)_{n=1}^{\infty}$ converges to f in $\Lambda^p(X)$ then $(f_n\chi_{S(g_k)})_{n=1}^{\infty}$ converges to $f\chi_{S(g_k)}$ in $\Lambda^p_k(X)$. Thus by a diagonal procedure we obtain an increasing subsequence $(f_{n_k})_{k=1}^{\infty}$ convergent to f μ -a.e..

It is also interesting to note that an echelon Köthe space Λ^p contains a lot of characteristic functions and consequently a lot of simple functions (since by [6], pp. 161, given $\epsilon > 0$ and a set $B \in \Sigma$ of positive measure, there is a subset M so that $\chi_M \in \Lambda^p$ and $\mu(B - M) < \epsilon$).

Proposition 1. The set of simple functions in $\Lambda^p(X)$ with support in $S(g_k)$ is dense in $\Lambda^p_k(X)$. Consequently the simple functions in $\Lambda^p(X)$ determine a dense subset in $\Lambda^p(X)$.

Proof. Let us consider $f \in \Lambda_k^p(X)$ and $\epsilon > 0$. For each $m \in \mathbb{N}$ we can find $B_m \subset S(g_k)$ so that $\mu(S(g_k) - B_m) < 1/m$ and $0 \neq \chi_{B_m} \in \Lambda^p$. By [1] 11.2.(4)

$$\lim_{m} \int_{S(g_k) - B_m} ||f||^p g_k d\mu = 0.$$

Then there exists m_0 so that

$$\int_{S(g_k)-B_{m_0}} ||f||^p g_k d\mu < \epsilon/3.$$

Moreover by [1] II.1.3 we contruct a series

$$S' = \sum_{n=1}^{\infty} x_n \chi_{A_n}$$

where $\{A_n\}_{n=1}^{\infty}$ is a partition of B_{m_0} , so that

ess sup
$$||f - S'||^p < \frac{\epsilon}{3 \int_{B_{m_0}} g_k d\mu}$$
.

Therefore

$$\int_{B_{m_0}} ||f - S'||^p g_k d\mu < \epsilon/3.$$

Now by [1] II.2.4 there is $p_0 \in \mathbb{N}$ such that

$$\int_{\bigcup_{n=y_0}^{\infty}A_n}\|f\|^p\,g_k\,d\mu<\epsilon/3.$$

The function

$$f_1 = \sum_{n=1}^{p_0-1} x_n \chi_{A_n}$$

verifies that

$$\int_{S(g_{k})} ||f - f_{1}||^{p} g_{k} d\mu = \int_{S(g_{k}) - B_{m_{0}}} ||f - f_{1}||^{p} g_{k} d\mu + \int_{\bigcup_{n=1}^{p_{0}-1} A_{n}} ||f - f_{1}||^{p} g_{k} d\mu + \int_{\bigcup_{n=1}^{\infty} A_{n}} ||f - f_{1}||^{p} g_{k} d\mu = \int_{S(g_{k}) - B_{m_{0}}} ||f||^{p} g_{k} d\mu + \int_{\bigcup_{n=1}^{p_{0}-1} A_{n}} ||f - S'||^{p} g_{k} d\mu + \int_{\bigcup_{n=1}^{\infty} A_{n}} ||f||^{p} g_{k} d\mu + \int_{\bigcup_{n=1}^{\infty} A_{n}} ||f||^{p} g_{k} d\mu + \int_{\bigcup_{n=1}^{\infty} A_{n}} ||f||^{p} g_{k} d\mu = \frac{\epsilon}{3} + \frac{\epsilon}{3} + \frac{\epsilon}{3}$$

This completes the proof.

2. α -duality

Let T be a set of measurable functions. We define T^{α} as the set of all measurable functions $g: E \to \mathbb{R}$ such that

$$\int_E |f|\,|g|\,d\mu < \infty \qquad \text{for all } f \in T.$$

If X is a Banach space we define T(X) as the set of all measurable functions $f: E \to X$ such that $||f|| \in T$, and also $(T(X))^{\alpha}$ as the set of all measurable functions $g: E \mapsto X'$ such that

$$\int_{E} ||f|| \, ||g|| \, d\mu < \infty \qquad \text{for all } f \in T(X).$$

It is easy to prove that $(T(X))^{\alpha} = T^{\alpha}(X')$. In fact if $g \in (T(X))^{\alpha}$ and $f \in T$, then $xf \in T(X)$ for each $x \in X$ with ||x|| = 1; as

$$\int_{E}\left|\left|g\right|\right|\left|\left|xf\right|\right|d\mu=\int_{E}\left|\left|g\right|\right|\left|f\right|d\mu$$

is finite we have $||g|| \in T^{\alpha}$. It follows that $g \in T^{\alpha}(X')$. On the other hand direct verifications show that $T^{\alpha}(X') \subset (T(X))d^{\alpha}$.

In particular if $T = L_p(\mu)$ and p > 1, then $(L_p(\mu))^{\alpha} = L_q(\mu)$ with 1/p + 1/q = 1; if p = 1 then $(L_1(\mu))^{\alpha} = L_{\infty}(\mu)$, [10], pp. 366. Hence $T(X) = L_p(\mu, X)$ and $(L_p(\mu, X))^{\alpha} = L_q(\mu, X') = (L_p(\mu, X))'$ for every p > 1.

The next lemma is proved in [8], pp. 605, for locally integrable functions defined in a locally compact space with a Radon measure.

Lemma 1. If $f \in T(X)$ and $g \in T^{\alpha}$, $g \geq 0$, then

$$\int_{E} g \left\| f \right\| d\mu = \sup \left\{ \left| \int_{E} \langle f(t), h(t) \rangle \, d\mu \right| : h \in M' \right\}$$

where M' is the set of all measurable functions $h: L \to X'$ such that

$$||h(t)|| < q(t) \quad \mu - \text{a.e.}.$$

234

Proof. Since

$$\begin{split} \left| \int_{E} \langle f(t), h(t) \rangle \, d\mu \right| &\leq \int_{E} \left| |f(t)|| \, ||h(t)|| \, d\mu \\ &\leq \int_{E} \left| |f(t)|| \, g(t) \, d\mu, \right. \end{split}$$

it is enough to prove that given

$$c < \int_{E} ||f(t)|| g(t) d\mu$$

there is $h \in M'$ so that

$$c < \left| \int_{E} \langle f(t), h(t) \rangle \, d\mu \right| .$$

Let $\epsilon < 0$ be such that

$$c+\epsilon < \int_E \|f(t)\| g(t) d\mu.$$

By the Lebesgue monotone convergence theorem there is a non-negative simple function

$$S = \sum_{i=1}^{n} a_i \chi_{H_i}$$

such that the sets H_i , i : 1, 2, ..., n, are pairwise disjoint and

$$c + \epsilon < \int_{E} ||f(t)|| |s(t)| d\mu$$

$$= \sum_{i=1}^{n} a_{i} \int_{H_{i}} ||f(t)|| d\mu$$

$$< \int_{E} ||f(t)|| |g(t)| d\mu.$$

Now there is no loss of generality in assuming that $a_i > 0$, $i = 1, 2, \ldots, n$.

Since the last inequality guarantees that f is Bochner integrable in H_i , $i=1,2,\ldots,n$, we find a partition $\{G_i^j:1\leq j\leq n_i\}$ of H_i and a collection of vectors $\{e_i^j:1\leq j\leq n_i\}$ in X, so that

$$\int_{H_t} \left\| f(t) - \sum_{j=1}^{n_t} \epsilon_i^j \chi_{G_t^j} \right\| d\mu < \frac{\epsilon}{2na_t}.$$

By the Hahn-Banach theorem there is $f_i^j \in X'$ so that $||f_{i,\parallel}^j| = 1$ and $\langle f_i^j, e_i^j \rangle = ||e_{i,\parallel}^j||$. Let us see that

$$h = \sum_{i=1}^{n} a \colon \sum_{j=1}^{n_i} f_i^j \chi_{G_i^j}$$

is the required function.

It is clear that $h \in M'$. Then it only rests to verify that

$$c < \left| \int_{E} \langle f(t), h(t) \rangle d\mu \right|.$$

To this end

$$\begin{split} \left| \int_{E} \langle f(t), h(t) \rangle \, d\mu \right| &= \left| \sum_{i=1}^{n} \int_{H_{i}} \left\langle \sum_{j=1}^{n_{i}} e_{i}^{j} \chi_{G_{i}^{j}} + f - \sum_{j=1}^{n_{i}} e_{i}^{j} \chi_{G_{i}^{j}}, h \right\rangle \, d\mu \right| \\ &\geq \left| \sum_{i=1}^{n} \int_{H_{i}} \left\langle \sum_{j=1}^{n_{i}} e_{i}^{j} \chi_{G_{i}^{j}}, h \right\rangle \, d\mu \right| \\ &- \left| \sum_{i=1}^{n} \int_{H_{i}} \left\| f - \sum_{j=1}^{n_{i}} e_{i}^{j} \chi_{G_{i}^{j}} \right\| \|h\| \, d\mu \right| \\ &> \left| \sum_{i=1}^{n} a_{i} \int_{H_{i}} \sum_{j=1}^{n_{i}} \|e_{i}^{j}\| \chi_{G_{i}^{j}} \, d\mu \right| - \frac{\epsilon}{2} \\ &= \left| \sum_{i=1}^{n} a_{i} \int_{H_{i}} \|f\| \, d\mu - \sum_{i=1}^{n} a_{i} \int_{H_{i}} \left(\|f\| - \sum_{j=1}^{n_{i}} \|e_{i}^{j}\| \chi_{G_{i}^{j}} \right) \, d\mu \right| - \frac{\epsilon}{2} \\ &\geq \sum_{i=1}^{n} a_{i} \int_{H_{i}} \|f\| \, d\mu - \left| \sum_{i=1}^{n} a_{i} \int_{H_{i}} \left(\|f\| - \sum_{j=1}^{n_{i}} \|e_{i}^{j}\| \chi_{G_{i}^{j}} \right) \, d\mu \right| - \frac{\epsilon}{2} \\ &> c + \epsilon - \sum_{i=1}^{n} a_{i} \int_{H_{i}} \left\| f - \sum_{j=1}^{n_{i}} e_{i}^{j} \chi_{G_{i}^{j}} \right\| \, d\mu - \frac{\epsilon}{2} \\ &> c + \epsilon - \frac{\epsilon}{2} - \frac{\epsilon}{2} \\ &= c \end{split}$$

where we have repeatedly used the triangle inequality and the fact that sums

$$\sum_{j=1}^{n_i} e_i^j \chi_{G_i^j}$$

are reduced in each point only to one term because the sets G_i^j are pairwise disjoint.

Theorem 2. Let $\Lambda^p(X)$ be an echelon Köthe space. Then $(\Lambda^p(X), (\Lambda^p(X))^{\alpha})$ is a dual pair with respect to the bilinear form

$$\langle f, g \rangle = \int_E \langle f(x), g(x) \rangle d\mu.$$

Proof. By [6], prop. 1, if $\varphi \neq 0$, $\varphi \in \Lambda^p(X)$, there is $g \in (\Lambda^p)^\alpha$ so that $\langle g, ||\varphi|| \rangle \neq 0$. Since $g = g^+ - g^-$ we have $\langle g^+, ||\varphi|| \rangle \neq 0$ or $\langle g^-, ||\varphi|| \rangle \neq 0$. Hence we can suppose $g \geq 0$. Then by lemma above, we get $\psi \in (\Lambda^p(X))^\alpha$ such that

$$\int_{E} \langle \varphi, \psi \rangle \, d\mu \neq 0.$$

Suppose now $0 \neq \phi \in (\Lambda^p(X))^{\alpha} = (\Lambda^p)^{\alpha}(X')$. Since Λ^p is perfect we know that there is $0 \neq \chi_A \in \Lambda^p = ((\Lambda^p)^{\alpha})^{\alpha}$ where $A \subset S(||\phi||)$ (see the proof of prop. 1 in [6], pg. 161). Therefore

$$\int_{E} \chi_{A} \|\phi\| \, d\mu \neq 0.$$

Then by lemma I there is $\varphi \in \Lambda^p(X'')$ such that

$$\int_{E} \langle \varphi, \phi \rangle \, d\mu \neq 0 \quad \text{and } ||\varphi(t)|| < \chi_{A}(t) \; \mu - \text{a.e.}.$$

Now there is no loss of generality in assuming the existence of a positive number $\epsilon > 0$ such that

$$\int_{E} \langle \varphi, \phi \rangle \, d\mu = \int_{A} \langle \varphi, \phi \rangle \, d\mu > \epsilon.$$

The function φ being measurable is the limit μ a.e. of a sequence of X'' valued simple functions $(S_n)_{n=1}^{\infty}$ vanishing out of A. By Egorov's theorem given the natural number m, there is an element $B_m \in \Sigma$, $B_m \subset A$, so that $(S_n)_{n=1}^{\infty}$ is uniformly convergent to φ in B_m , and $\mu(A - B_m) < 1/m$. [1] II.2.4 justifies the existence of an $m \in \mathbb{N}$ so that

$$\left| \int_{A \in B_m} \langle \varphi, \phi \rangle \, d\mu \right| < \frac{\epsilon}{2} \; .$$

Then, as $\chi_A \in \Lambda^p$, by the uniform convergence

$$\frac{\epsilon}{2} < \int_{B_m} \langle \varphi, \phi \rangle \, d\mu = \lim_n \int_{B_m} \langle S_n, \phi \rangle \, d\mu.$$

Hence there is a simple function still denoted by S_n ,

$$S_n = \sum_{i=1}^{k_n} x_i^{**} \chi_{E_i}.$$

with $E_i \subset B_m$, so that

$$\frac{\epsilon}{2} < \int_{B_r} \langle S_r, \phi \rangle \, d\mu.$$

Turthermore

$$\int_{E_{\Lambda}}||\phi||\,d\mu<\int_{E}\chi_{A}\,||\phi||\,d\mu<\infty,$$

i.e., ϕ is Bochner integrable in E_i and therefore by [1].11.2(6)

$$\frac{\epsilon}{2} < \int_{B_m} \langle S_n, \phi \rangle \, d\mu = \sum_{i=1}^{k_n} \left\langle x_i^{**}, \int_{E_i} \phi \, d\mu \right\rangle.$$

Finally by $\sigma(X'', X')$ density of X in X'', there is a finite set of vectors $(y_i)_{i=1}^p$ in X so that

$$\frac{\epsilon}{2} < \sum_{i=1}^{p} \left\langle y_i, \int_{E_1} \phi \, d\mu \right\rangle = \int_{B_m} \langle S, \phi \rangle \, d\mu$$

where

$$S = \sum_{i=1}^{p} y_i \chi_{E_i} \in \Lambda^p(X).$$

This function satisfies

$$\int_{E} \langle S, \phi \rangle \, d\mu = \int_{B_{m}} \langle S, \phi \rangle \, d\mu \neq 0.$$

3. Duality and a duality

Theorem 1. Let $\Lambda^p(X)$ be an echelon Köthe space. If $h \in (\Lambda^p(X))^{\alpha}$, p > 1, then the linear form φ_h defined on $\Lambda^p(X)$ by $h \mapsto \varphi_h$ is an immersion of $(\Lambda^p(X))^{\alpha}$ into $(\Lambda^p(X))'$.

Proof. Since $\Lambda^p(X)$ is metrizable, it is enough to prove that φ_h is locally bounded.

To this end, proceeding by contradiction, we suppose the existence of a bounded set $B \subset \Lambda^p(X)$ and a sequence $(f_n)_{n=1}^{\infty}$ in B, so that for each $n \in \mathbb{N}$

$$\left| \int_{E} \langle f_n(x), h(x) \rangle \, d\mu \right| \ge n^3.$$

Proceeding as in [6], pg. 167, we show that the sequence

$$S_n = \sum_{i=1}^n \frac{||f_i||}{i^2} z,$$

where $z \in X$, ||z|| = 1, is a Cauchy sequence in $\Lambda^p(X)$. Therefore S_n converges to a certain function φ in $\Lambda^p(X)$ and there is a subsequence in $(S_n)_{n=1}^{\infty}$ convergent to φ μ a.e.. Then

$$\varphi(x) = \sum_{i=1}^{\infty} \frac{\|f_i(x)\|}{i^2} z \qquad \mu - \text{a.e.}.$$

Now

$$\int_{F} ||\varphi|| \, ||h|| \, d\mu = \infty$$

which contradicts the fact that $h \in (\Lambda^p(X))^{\alpha}$.

Finally we infer that if $h \neq h'$ then $\varphi_h \neq \varphi_{h'}$ by theorem 2.(2).

Theorem 2. Let $\Lambda^p(X)$ be an echelon Köthe space, $p \geq 1$. If X' verifies the Radon-Nikodym property and for each k the scalar functions $g_k \neq 0$ μ a.e., we have that given $\varphi \in (\Lambda^p(X))^{\alpha}$ there is a uniquely determined function h in $(\Lambda^p(X))^{\alpha}$ such that

$$arphi(f) = \int_E \langle f(x), h(x) \rangle \, d\mu, \qquad ext{for } f \in \Lambda^p(X).$$

Proof. It is easy to see that there is $k_0 \in \mathbb{N}$ such that φ is continuous with the induced topology of $\Lambda_{k_0}^p(X)$. By proposition 1.(1), φ can be extended in a continuous way to $\Lambda_{k_0}^p(X)$, still denoted by φ .

Since $g_{k_0} \neq 0$ μ -a.e., the map from $\Lambda_{k_0}^p(X)$ into $L^p(\mu, X)$ such that it assigns to f the function $fg_{k_0}^{1/p}$ is an isometry and then we can define a continuous linear form on $L^p(\mu, X)$ such that

$$\hat{\varphi}\left(fg_{k_0}^{1/p}\right) = \varphi(f).$$

Therefore there is a function h' in $L^q(\mu, X')$ so that

$$\varphi(f) = \hat{\varphi}\left(fg_{k_0}^{1/p}\right)
= \int_{E} \left\langle fg_{k_0}^{1/p}, h' \right\rangle d\mu
= \int_{E} \left\langle f, g_{k_0}^{1/p} h' \right\rangle d\mu$$
([1], §4)

According to the equality $L^q(\mu, X') = (L^p(\mu, X))^{\alpha}$

$$\int_{E} \left\| f g_{k_0}^{1/p} \right\| \, ||h'|| \, d\mu = \int_{E} ||f|| \, \left\| g_{k_0}^{1/p} h' \right\| \, d\mu < \infty \qquad \text{for } f \in \Lambda^p(X).$$

Consequently

$$h = g_{k_0}^{1/p} h' \in (\Lambda^p(X))^{\alpha}$$

and evidently it satisfies the required conditions.

The uniqueness of h follows directly from theorem 2.(2).

Note that h is in the α -dual of certain $\Lambda^p_{k_0}(X)$.

Theorem 3. Let $\Lambda^p(E, \Sigma, \mu, g_k, X)$ be an echelon Köthe space, $p \geq 1$. If X' satisfies the Radon-Nikodym property, given a linear continuous form φ in $\Lambda^p(X)$, there is a uniquely determined function h in $(\Lambda^p(X))^{\alpha}$ so that

$$\varphi(f) = \int_{E} \langle f(x), h(x) \rangle d\mu \quad \text{for } f \in \Lambda^{p}(X)$$

and there is an index k_0 such that $S(h) \subset S(g_{k_0})$ a.e..

Proof. Let $\Gamma_k^p(X) = \Gamma_k^p(S(g_k), \Sigma_k, \mu_k, \varphi_r, X)$ be the echelon Köthe space where Σ_k and μ_k are the σ algebra and measure induced by Σ and μ on $S(g_k)$ and $\varphi_r(x) = g_{k+r-1}(x)$ for every x in $S(g_k)$ and $r \in \mathbb{N}$.

The mapping $i_k : \Gamma_k^p(X) \to \Lambda^p(X)$ defined by $i_k(f) = 0$ on $E - S(g_k)$ and $i_k(f) = f$ on $S(g_k)$ is continuous. The composition $\varphi \circ i_k \in (\Gamma_k^p(X))'$.

Then by the above theorem there is $h_k \in (\Gamma_k^p(X))^{\alpha}$ so that

$$\varphi(i_k(f)) = \int_{S(g_k)} \langle h_k, f \rangle \, d\mu \qquad \text{for } f \in \Gamma_k^p(X).$$

Proceeding as in [6], pg. 169, we have

$$\int_{S(g_k)} \langle h_k, f \rangle \, d\mu = \int_{S(g_k)} \langle h_{k+1}, f \rangle \, d\mu \quad \text{for } f \in \Gamma_k^p(X).$$

This equality combined with the fact that the restriction of h_{k+1} to $S(g_k)$ is an element of $(\Gamma_k^p(X)7bigr)^{\alpha}$ and theorem 2.(2, shows that $h_{k+1}(x) = h_k(x) \ \mu$ -a.e. on $S(g_k)$. Then we can define a function h on E, $h(x) = h_k(x)$ if $x \in S(g_k)$ and h(x) = 0 if $x \in E - \bigcup_{k=1}^{\infty} S(g_k)$ changing the values of h_k on a set of zero measure if it is necessary.

If $f \in \Lambda^p(X)$, it is easy to see that

$$f = \lim f \chi_{S(\sigma_k)}$$
.

Then

$$\varphi(f) = \lim_{k} \int_{S(g_k)} \langle f, h_k \rangle d\mu.$$

According to the fact that φ is continuous, there is an $\epsilon > 0$ and a $k_0 \in \mathbb{N}$ so that if $f \in \Lambda^p(X)$ and

$$\int_{E} ||f||^{p} g_{k_0} d\mu < \epsilon,$$

then $|\varphi(f)| \leq 1$.

We consider $B = E - S(g_{k_0})$ and $\alpha = \mu(B)$. If $\alpha = 0$ directly h = 0 on $E - S(g_{k_0})$. Then if $\alpha > 0$, as we did in proposition 1, we can construct a sequence $(A_n)_{n=1}^{\infty}$ of subsets of B pairwise disjoint such that

$$A_n \subset B - \bigcup_{i=1}^{n-1} A_i,$$

$$\mu\left(B - \bigcup_{i=1}^{n} A_i\right) < \frac{\alpha}{2^n}$$

and $\chi_{A_n} \in \Lambda^p$. Then

$$\mu\left(B - \bigcup_{n=1}^{\infty} A_n\right) = 0.$$

Given n_0 we write

$$A_{n_0} = \bigcup_{r=1}^{\infty} \{ t \in A_{n_0} : ||h(t)|| \le r \}$$

where we call B_{r,n_0} each of these subsets.

Let r be a fixed natural number. Given $x_0 \in X$ and $m \in \mathbb{N}$ and $M \subset B_{r,n_0}$, $M \in \Sigma$ we have $m\chi_M x_0 \in \Lambda^p(X)$. Then by Hille's theorem ([1], pg. 47)

$$1 \geq |\varphi(m\chi_M x_0)|$$

$$= \left| \int_E \langle m\chi_M x_0, h \rangle d\mu \right|$$

$$\Rightarrow m \left| \int_M \langle x_0, h(t) \rangle d\mu \right|$$

$$= m \left| \left\langle x_0, \int_E \chi_M h(t) d\mu \right\rangle \right|.$$

Therefore

$$\left|\left\langle x_0, \int_M h(t) \, d\mu \right\rangle\right| = 0 \quad \text{for } x_0 \in X.$$

Consequently

$$\int_M h(t) d\mu = 0 \quad \text{for } M \subset B_{r,n_0},$$

and, by [2], pg. 175, h(t) = 0 μ -a.e. on B_{r,n_0} . Then we obtain h(t) = 0 μ -a.e. on $E - S(g_{k_0})$.

It follows that

$$\varphi(f) = \int_{S(g_{k_0})} \langle f, h_{k_0} \rangle \, d\mu = \int_E \langle f, h \rangle \, d\mu \qquad \text{for } f \in \Lambda^p(X),$$

and since $h_{k_0} \in (\Gamma_{k_0}^p(X))^{\alpha}$ we easily obtain $h \in (\Lambda^p(X))^{\alpha}$.

Finally proposition 2.(2) justifies the uniqueness of h.

Theorem 4. Let $\Lambda^p(E, \Sigma, \mu, g_k, X)$ be an echelon Köthe space. If the α -dual of $\Lambda^p(X)$ is the topological dual of $\Lambda^p(X)$ then X' has the Radon-Nikodym property.

Proof. Suppose $(\Lambda^p(X))' = (\Lambda^p(X))^{\alpha}$ and let $G: \Sigma \to X'$ be a μ -continuous vector measure of bounded variation. We shall show that if $E_0 \in \Sigma$ has positive μ -measure, then G has a Bochner integrable Radon-Nikodym derivative on a set $B \in \Sigma$, $B \subset E_0$, with $\mu(B) > 0$. Then, by [1] III.2.5, the proof will be complete. Thus let $E_0 \in \Sigma$ have positive μ -measure. Applying the Hahn decomposition theorem to the scalar measures |G| and $M\mu$ for a large enough positive integer M produces a subset B' of E_0 , $E' \in \Sigma$, $E' \in \Sigma$, $E' \in \Sigma$, with $E' \in \Sigma$. Then we can choose a positive integer $E' \in \Sigma$ so that $E' \in \Sigma$ with $E' \in \Sigma$. Then we can choose a positive integer $E' \in \Sigma$ so that $E' \in \Sigma$ with $E' \in \Sigma$.

$$B' \cap S(g_k) = \bigcup_{r=1}^{\infty} \left\{ t \in B' \cap S(g_k) : g_k(t) \in [1/r, r] \right\}$$

there is an $r \in \mathbb{N}$ such that

$$\mu(B'_r) = \mu\{t \in B' \cap S(g_k) : g_k(t) \in [1/r, r]\} > 0$$

and we can choose a subset B of B'_r , $B \in \Sigma$, $\mu(B) > 0$, such that $\chi_B \in \Lambda^p$.

Now we define for a simple function

$$f = \sum_{i=1}^{n} x_i \chi_{E_i},$$

where $x_i \in X$, $E_i \in \Sigma$ and $E_i \cap E_j = \emptyset$ for $i \neq j$,

$$l(f) = \sum_{i \in I}^{n} \langle G(E_i \cap B), x_i \rangle.$$

Then using

$$\int_{E,\cap B} g_k \, d\mu \ge \int_{E,\cap B} \inf \left\{ g_k(t) : t \in B_r' \right\} d\mu \ge (1/r) \, \mu(E_i \cap B)$$

we have

$$\begin{aligned} |l(f)| &= \left| \sum_{i=1}^{n} \left\langle G(E_{i} \cap B), x_{i} \right\rangle \right| \\ &= \left| \sum_{i=1}^{n} \left\langle \frac{1}{\int_{E_{i} \cap B} g_{k} \, d\mu} G(E_{i} \cap B), \left(\int_{E_{i} \cap B} g_{k} \, d\mu \right) x_{i} \right\rangle \right| \\ &\leq \sum_{i=1}^{n} \left| \frac{M \mu(E_{i} \cap B)}{\int_{E_{i} \cap B} g_{k} \, d\mu} \right| \left| \left(\int_{E_{i} \cap B} g_{k} \, d\mu \right) x_{i} \right| \\ &\leq M r \sum_{i=1}^{n} \left\| \left(\int_{E_{i} \cap B} g_{k} \, d\mu \right) x_{i} \right\| \\ &= M r \int_{B} \left\| \sum_{i=1}^{n} x_{i} \chi_{E_{i}} \right\| g_{k} \, d\mu \\ &\leq M r \left(\int_{B} ||f||^{p} g_{k} \, d\mu \right)^{1/p} \left(\int_{B} g_{k} \, d\mu \right)^{1/q} \\ &\leq M r \left(\sup_{t \in B_{+}^{r}} g_{k}(t) \right)^{1/q} \mu(E)^{1/q} ||f||_{k}. \end{aligned}$$

Since l is evidently linear on the simple functions in $\Lambda^p(X)$ this shows that l is continuous on the simple functions in $\Lambda^p(X)$ and therefore has a bounded linear extension to $\Lambda^p(X)_{|B^l}$ and by Hahn-Banach theorem to $\Lambda^p(X)$.

By hypothesis, there is $g \in \Lambda^p(X)^{\alpha}$ such that

$$l(f) = \int_{L} \langle f, g \rangle d\mu$$
 for $f \in \Lambda^{p}(X)$.

But

$$G(E \cap B)(x) = l(x\chi_E)$$

$$= \int_E \langle x, g \rangle d\mu$$

$$= \left(\int_E g \, d\mu \right)(x)$$

for all $x \in X$ and $E \in \Sigma$, $E \subset B$.

Consequently

$$G(E \cap B) = \int_E g \, d\mu$$
 for $E \in \Sigma$.

This completes the proof.

Then we have shown

Theorem 5. $(\Lambda^p(X))^{\alpha} = (\Lambda^p(X))'$ if and only if X' has the Radon-Nikodym property.

Now we characterize the equicontinuous sets of $((\Lambda^p(X))^{\alpha})$.

In $(\Lambda^p(X))^{\alpha}$ we show the equivalence

$$||f(x)|| \le ||g(x)|| \mu - \text{a.e.}$$
 if and only if

$$\int_{E} ||f|| \, ||h|| \, d\mu \le \int_{E} ||g|| \, ||h|| \, d\mu \qquad \text{for } h \in \Lambda^{p}(X).$$

In fact if we suppose the second inequality and we consider

$$\mu(A) = \mu\{x \in E : ||f(x)|| > ||g(x)||\} > 0,$$

with the function $h = \chi_{A'}x$, $A' \subset A$, $A' \in \Sigma$, where $\chi_{A'} \in \Lambda^p$ and ||x|| = 1 we have

$$\int_{A} ||f|| \, ||h|| \, d\mu \le \int_{A} ||g|| \, ||h|| \, d\mu$$

which contradicts the fact that, in A, ||f(x)|| > ||g(x)||.

By theorems above $(\Lambda^p(X))' = (\Lambda^p(X))^{\alpha}$ when X' has the Radon-Nikodym property. Then in that case, as $I_k : \Lambda^p(X) \to \Lambda^p_k(X)$ defined by $I_k(f) = f_{|S(g_k)|}$ is continuous, its transposed I_k^t maps $(\Lambda^p(X))^{\alpha}$ into $(\Lambda^p(X))^{\alpha}$ injectively because

$$\overline{I_k(\Lambda^p(X))} = \Lambda_k^p(X).$$

Let us see that, if $f \in (\Lambda_k^p(X))^{\alpha}$, $l_k^t(f)$ is the function \hat{f} equal to f on $S(g_k)$ and equal to zero on $E - S(g_k)$. If $h \in \Lambda^p(X)$

$$\langle I_k^I(f), h \rangle = \langle f, I_k(h) \rangle$$

$$= \int_{S(g_k)} \langle f, I_k(h) \rangle d\mu$$

$$= \int_{S(g_k)} \langle f, h \rangle d\mu$$

$$= \langle \hat{f}, h \rangle.$$

Then $I_k^t(f) = \hat{f}$.

Theorem 6. Let M be a subset of $(\Lambda^p(X))^{\alpha}$. We suppose that X' has the Radon-Nikodym property.

Then if p = 1 the following conditions are equivalent:

- 1) M is equicontinuous.
- 2) There are $k \in \mathbb{N}$ and an equicontinuous set M' of $(\Lambda_k^p(X))^{\alpha}$ so that $M = l_k^t(M')$.
- 3) There are $k \in \mathbb{N}$ and C > 0 so that $||f|| < Cg_k$ for every $f \in M$.

If p > 1 the following conditions are equivalent:

- 1) M is τ equicontinuous.
- 2) There are $k \in \mathbb{N}$ and an equicontinuous set M' of $(\Lambda_k^p(X))^{\alpha}$ so that $M = I_k^l(M')$.
- 3) There are $k \in \mathbb{N}$ and $\alpha > 0$ so that for all $f \in M$, $S(f) \subset S(g_k)$ and if 1/p + 1/q = 1

$$\sup_{f\in M}\left(\int_{S(g_k)}\|f\|^q\,g_k^{-q/p}\,d\mu\right)^{1/q}=\alpha<\infty.$$

Proof. 1)—2) If $p \ge 1$ by 1) there are $\epsilon > 0$ and $k \in \mathbb{N}$ so that $M \subset V^{\circ}$ where

$$V = \left\{ f \in \Lambda^p(X) : \int_E ||f||^p \, g_k \, d\mu < \epsilon \right\}.$$

We consider an element z of X so that ||z|| = 1. If $h \in M$ and $A = E - S(g_k)$, we have $h \chi_A = 0$. In fact, if h is not zero μ a.e. on A in the same way as in prop. I we have that there is $D \subset A$, $D \in \Sigma$, such that

$$\mu(D) > 0$$
, $\chi_D h \neq 0$, and $\chi_D \in \Lambda^p$.

Then if we consider

$$D = \bigcup_{m=1}^{\infty} \{x \in D : 1/m \le ||h(x)|| \le m\} = \bigcup_{m=1}^{\infty} D_m$$

we obtain $D_m \in \Sigma$, $D_m \subset D$, such that h is Bochner integrable in D_m . Hence for every $n \in \mathbb{N}$, $nz\chi_{D_m} \in V$. But $h \in V^{\circ}$. Then $|\langle h, z\chi_{D_m} \rangle|$ must be zero for every $m \in \mathbb{N}$. Then by [2], pg. 175, $h\chi_D = 0$ which is a contradiction.

Now it is enough to prove that $M' \subset W^{\circ}$, where M' is the set of restrictions to $S(g_k)$ of the elements of M, and

$$W = \left\{ f \in \Lambda_k^p(X) : \int_{S(g_k)} ||f||^p g_k d\mu < \epsilon \right\}.$$

We consider $h \in M'$, $h \neq 0$, and $f \in W$. By the theorem (1.1) there is a sequence $(f_n) \subset \Lambda^p(X)$ so that

$$\lim_{n \to \infty} l_k(f_n) = f$$
 μ – a.e. on $S(g_k)$

and

$$\lim_{n} I_{k}(f_{n}) = f \qquad \text{in } \left[\Lambda_{k}^{p}(X), \tau_{k}\right].$$

Then there is n_0 so that if $n \ge n_0$ by Minkowski inequality

$$\left(\int_{S(g_{k})} \|f_{n}\|^{p} g_{k} d\mu\right)^{1/p} \leq \left(\int_{S(g_{k})} \|f_{n} - f\|^{p} g_{k} d\mu\right)^{1/p} + \left(\int_{S(g_{k})} \|f\|^{p} g_{k} d\mu\right)^{1/p}$$

$$< \epsilon - \left(\int_{S(g_{k})} \|f\|^{p} g_{k} d\mu\right)^{1/p} + \left(\int_{S(g_{k})} \|f\|^{p} g_{k} d\mu\right)^{1/p}$$

$$= \epsilon.$$

Hence $f_n \in V$.

By Fatou's lemma

$$0 \le |\langle h, f \rangle|$$

$$< \int_{S(g_k)} |\langle f, h \rangle| \, d\mu$$

$$= \int_{S(g_k)} \liminf_{r} |\langle h, f_n \rangle| \, d\mu$$

$$\le \liminf_{n} \int_{S(g_k)} |\langle f_n, h \rangle| \, d\mu$$

$$< 1.$$

Hence by lemma 1 $h \in (\Lambda_k^p(X))^{\alpha}$ and $h \in W^{\bullet}$, because every $r \in \Lambda_k^p(X)$ is absorbed by W. Then $M' \subset W^{\bullet}$.

2) \longrightarrow 3) If $h \in M$, h is zero on $E - S(g_k)$, and there are $k \in \mathbb{N}$ and $\epsilon > 0$ so that $M' \subset W^{\bullet}$, where

$$W :: \left\{ f \in \Lambda_k^p(X) : \left(\int_{S(g_k)} ||f||^p \, g_k \, d\mu \right)^{1/p} \le \epsilon \right\}$$

for every $p \ge 1$. Let us suppose p = 1. If $f \in \Lambda_k^p(X)$, $f \ne 0$, the function

$$\frac{\epsilon}{\int_{S(g_k)} ||f||^p g_k d\mu} f$$

belongs to W. Hence if $h \in M'$, and we consider an element z of X, so that ||z|| = 1, we have by lemma 1

$$\int_{S(g_k)} ||h|| \, ||f|| \, d\mu \le \frac{1}{\epsilon} \int_{S(g_k)} ||f||^p \, g_k \, d\mu$$

$$= \frac{1}{\epsilon} \int_{S(g_k)} ||f||^p \, ||g_k z|| \, d\mu,$$

for all $f \in \Lambda^p(X)$, $f \neq 0$. Then

$$||h|| < \frac{1}{\epsilon} ||g_k z||$$

for every $h \in M$.

If p > 1, let h be in M'. If $r \in L^p(S(g_k), \Sigma, \mu, X)$ then $rg_k^{-1/p} \in \Lambda_k^p(X)$. As for every r of the unit ball of $L^p(S(g_k), \Sigma, \mu, X)$, $\epsilon rg_k^{-1/p} \in W$ and $h \in M' \subset W^{\circ}$, we see that $\epsilon hg_k^{-1/p}$ is an element of the unit ball of $(L^p(S(g_k), \Sigma, \mu, X))'$. Then

$$\left(\int_{S(g_k)} ||h||^q g_k^{-q/p} d\mu\right)^{1/q} \le \frac{1}{\epsilon} \quad \text{for } h \in M'.$$

3)—1) If p = 1 it is clear that

$$M \subset \left\{ f \in \Lambda^p(X) : \int_E ||f|| g_k d\mu \le 1/\alpha \right\}^{\circ}.$$

If p > 1, by Hölder's inequality, if $h \in M$ and $f \in V$, where

$$V = \left\{ f \in \Lambda^p(X) : \left(\int_E ||f||^p \, g_k \, d\mu \right)^{1/p} < 1/\alpha \right\},\,$$

we have, proceeding as in [6], pg. 187,

$$\begin{split} \langle h, f \rangle &= \int_{E} \langle h, f \rangle \, d\mu \\ &\leq \int_{S(g_k)} \left\| h g_k^{-1/p} \right\|^{\frac{1}{p}} \left\| f g_k^{1/p} \right\| \, d\mu \\ &\leq \left(\int_{S(g_k)} ||h||^q \, g_k^{-q/p} \, d\mu \right)^{1/q} \left(\int_{E} ||f||^p \, g_k \, d\mu \right)^{1/p} \\ &\leq 1 \end{split}$$

Hence $M \subset V^{\circ}$.

Corollary 7. If $\Lambda^p(E, \Sigma, \mu, g_k, X)$ is an echelon Köthe space,

$$(\Lambda^p(X))^{\alpha} = \bigcup_{k=1}^{\infty} I'_k ((\Lambda^p_k(X))^{\alpha})$$

if X' has the Radon-Nikodym property.

Proof. It is immediate because $(\Lambda^p(X))^{\alpha}$ is the dual of $\Lambda^p(X)$.

Finally we study a property that characterizes the reflexive echelon Köthe spaces.

Proposition 8. Let $\Lambda^p(E, \Sigma, \mu, g_k, X)$ be an echelon Köthe space, $p \geq 1$. $\Lambda^p(X)$ is reflexive if and only if Λ^p and X are reflexive.

Proof. For the sufficiency, if p = 1 by [7], pg. 226, Λ^1 is a reflexive Montel space. Then by [9] $\Lambda^1(X)$ is reflexive.

If p > 1, $L^p(\mu, X)$ is reflexive by [1], pg. 100. Then so is $\Lambda_k^p(X)$ by the isometry with $L^p(S(g_k), \mu_k, X)$, and thus the projective limit $\Lambda^p(X)$ is also reflexive.

For the necessity, suppose that $\Lambda^p(X)$ is reflexive. We can obtain an element B of Σ , $\mu(B) > 0$, such that $\chi_B \in \Lambda^p$.

We consider now the closed subspace $\{x \chi_B : x \in X\}$ of $\Lambda^p(X)$, that is trivially isomorphic to X. Then X is reflexive.

In addition, if p > 1, by the first part $\Lambda^p(X)$ will be reflexive and so Λ^p_k by the isometry with the closed subspace $\{x_0f : f \in \Lambda^p_k\}$ of $\Lambda^p(X)$, where $x_0 \in X$ is fixed and $||x_0|| = 1$. As Λ^p is the projective limit of the Λ^p_k , we have that Λ^p is reflexive. If p = 1, it is easy to see by standard methods (see [4], pg. 340) that $\Lambda^p(X) \cong \Lambda \hat{\otimes}_{\pi} X$. Hence, if $\Lambda(X)$ is reflexive, Λ and X are also reflexive.

References

- [1] J. Diestel and J. J. Uhl, Vector Measures, American Mathematical Society, Providence, 1977.
- [2] N. Dinculeanu, Vector Measures, Pergamon, New York, 1967.
- [3] N. DUNFORD AND J. SCHWARTZ, Linear Operators, Part 1, Interscience, New York and London, 1958.
- [4] Jarchow, Locally Convex Spaces, Teubner, Stuttgart, 1981.

- [5] G. KÖTHE, Topological Vector Spaces, Springer, New York, 1969.
- [6] J. A. LÓPEZ MOLINA, The dual and bidual of an echelon Köthe spaces, Collect. Math. 2 1980), 159-191.
- [7] J. A. LÓPEZ MOLINA, Reflexividad de los espacios escalonados de Köthe, Rev. Real Acad. Ci. Madrid 75 (1981), 213-232.
- [8] N. Phuong-Cac, Generalized Köthe function spaces, I, Proc. Camb. Phil. Soc. 65 (1969), 661.
- [9] R. C. Rosier, Dual spaces of certain vector sequence spaces, Pacif. J. Math. 46 (1973), 487-501.
- [10] A. C. ZAANEN, Integration, North-Holland, Amsterdam, 1967.

Received 9/NOV/87

Cristina Jordán Lluch Departamento de Matemática Aplicada E. U. Informática de Valencia (UPV) Camino de Vera s/n Valencia SPAIN

Jua Ramón Torregrosa Sánchez Departamento de Matemática Aplicada E. T. S. I. Industriales de Valencia (UPV) Camino de Vera s/n Valencia SPAIN