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ERGODIC THEOREMS
FOR CERTAIN POWER BOUNDED OPERATORS

Diego Gallardo*

ABSTRACT. We consider invertible power bounded operators T
on an Orlicz space such that T or T~! is positive or T separates
supports. For a wide class of Orlicz spaces we prove individual
ergodic theorems and dominated ergodic theorems, and study the
ergodic Hilbert transforms.

1. Introduction

t (X, M, p) be a o—finite measure space and Ly = Lyg(X, M, ) an Orlicz space
sociated to an N-function ¢. In this paper we consider invertible linear operators
: Ly — L4 such that

1) / 6(IT*f)) du < C / s(fDde  (FeLys) (keD),
X X

th C > 0 independent of f and k, and such that either T or T~ is positive or else
separates supports (that is, T' maps functions with disjoints supports to functions
th disjoint supports). We prove that for a wide class of N-functions ¢, the almost
erywhere convergence and the norm convergence ot the Césaro-averages

1 n—1 )
2) = Z;Tf
3) Ly
’ n+1 =
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and of the sequences

(1.4) > ==

hold for every f € Ly.

The limit function Hpf € Ly of the sequence (1.4) is called the ergodic Hilb:
transform of f with respect to T'. We shall prove that the operator f — Hrf
bounded in L4; more precisely, there exists a constant C' > 0 such that

/ $(|Hf) du< C / 8(If1) du
X X

for every f € L.

In order to obtain the convergence of the averages defined by (1.2) and (1
(individual ergodic theorem) we shall prove that the ergodic maximal operator A
defined by

(1.5) Mpf = sup

mn>0

1 N
m+n+1 i_z_:mTf

is bounded in Ly (dominated ergodic theorem), which is of interest by itself. Likewi
for the existence of the ergodic Hilbert transform, we shall prove that the ergo
maximal Hilbert transform H7 is also bounded, where

(1.6) H}f =sup Z -’l%f- .

n21 loglij<n

In the L,—case, 1 < p < oo, and assuming that T and T-! are positive,
respective dominated ergodic theorem is proved by A. de la Torre in [11]. Likewi
for L, with 1 < p < 00, the boundedness of Hz is obtained by R. Sato in [9] and I

Now, we shall present the basic definitions and results concerning N-functic
and Orlicz spaces which shall be used in this paper.

An N-function is a continuous and convex function ¢ : [0,00) — R such t.
¢(s) >0, for s >0, 571 ¢(s) — 0 for s — 0 and 57! ¢(s) — oo for s — co.

The function ¢ is an N-function if and only if it has the representation

¢(S)=/Ossa
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re ¢ : [0,00) — R is continuous from the right, non decreasing, such that ¢(s) > 0
s > 0, ¢(0) = 0 and ¢(s) — oo for s — co. More precisely ¢ is the right derivative
v and will be called the density function of ¢.

Associated to ¢ we have the function p : [0, 00) — R defined by

p(t) =sup{s: ¢(s) <t}

ch has the same aforementioned properties of . The N-function 9 defined by

o=

alled the complementary N-function of ¢. Thus, if ¢(s) = p~1sP, p > 1, then
) = ¢~ 119 where pg=p+gq.

An N-function ¢ is said to satisfy the As—condition in {0,00) (or merely the

-condition) if
$(25)
sup ——= < 0.
s>g ¢(3)

If ¢ is the density function of ¢, then ¢ satisfies Ay if and only if there exists
onstant @ > 1 such that s(s) < a¢(s), s > 0. The complementary N-function
p satisfies the As—condition if and only if there exists a constant # > 1 such
t Bé(s) < sep(s), s > 0. As examples of N-functions which, together with their
1plementary N-functions, satisfy the Ags—condition we have

¢1(5) = sp: p > 1:

$a(s) =" (L +1og(1 +35)), p>1;
b3(s) = s* log"(1-+5s), p>1landk>0;

4’4(5) = /OSP

are p : [0,00) — [0,00) is defined by p(0) =0, p(t) = 27" if t € [27",27"*!) and
)=2""1ift € [2°1,2"), n a positive integer.

If (X, M, p) is a o—finite measure space the Orlicz spaces Ly = Ly(X, M, p) and
= Ly(X, M, p) are defined by

L= {feim: | sashan <oo}

p={feM: fgelLiforalge Ly},
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where 1 is the complementary N-function of ¢. We have Ly, C L} and if ¢ satis
Aj then Ly = Ly. We have that L} is a Banach space with the norms - :

IIf||¢=sup{/legldﬂ: y€5¢},

where
Sy = {gGLw : /;¢(|9|)d#5 1},
and

| fll¢g) = inf {/\ >0: /X¢(A‘1 |fldp < 1}

which are called the Orlicz norm and the Luxemburg norm respectively. Both no
are equivalent, actually

I£llcey < NAlle < 2115 lley-
If ¢(s) = sP with p > 1 then Ly = Ly = Ly, ||f||(¢) = ||fllp and |lglly = |
where pg=p+q.

The convergence f, — f in [L},]| - ||4] implies the mean convergence

dm [ - fau=0

but, in general, mean convergence only implies norm convergence when ¢ satisfies
If ¢ and ¢ satisfy Ay then [Lg,]| - [i(4)] is reflexive.
The proof of most of above-mentioned results can be found in [5] or in IV-1
(8]. |

We shall also use in this paper the following interpolation theorem:

Theorem 1.7. Let {X,M,u) and (Y,F,v) be two o-finite measure spaces, «
N-function satisfying, together with its complementary N-function, the A,—cond
andlet T : L. + L, — 9(Y) be a quasi-additive operator which is simultaneous
weak type (r,r) and (s,s) where 1 <r < g4, py < 8 < 00 and g4, pg are given b,

q—l = lim _ log h¢(8) — inf _ log h¢(s)
$ T ,.ot logs o<s<l  logs
_ . —loghy(s) —log hy(s)
1 _ L4 - ¢
Py = jm, logs Sol logs

where ¢'1(t)
R = SR )
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ten, T' maps L4(p) into Ly(v) and there exists a constant C such that

/ H(Tfl)dv < C / $(I11) du
Y X

- every f € Ly(p).

A direct proof of Theorem 1.7 can be found in [2].

In the following, we shall always assume that

.8) (X, M, p) is a o—finite measure space and ¢, together with its complementary
function, satisfy the Aj—condition.

2. Results in the case either T or T-! positive

heorem 2.1. (Dominated ergodic theorems) Assume (1.8) and let T : Ly — Ly be
| invertible linear operator such that either T or T~ is positive and

2) / $(T*f)du < C / s(fhdn  (feLy) (ke),
X X

ith constant C > 0 independent of f and k. Then, there exists a constant A such
at

3) /X $(Mrf)dp < A /X s(fhde  (feLy)

4) Jotmpausa [ smd et
here My and Hy are defined by (1.5) and (1.6) respectively.
roof. In this proof we follow the idea given by de la Torre in [11].
It is enough to prove the theorem in the case T~! positive.
For every integer L > 1 we consider the truncated operator Mr i defined by

1 U
m+n+1 Z s

i=—m

.5) Mprf=

max
0<m,n<L

k> 0and 0 < m,n < L we have My f < T~* My (T* f) and therefore it follows
om (2.2) that

5) [ #arenansc [ smands  E20
X X
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and consequently for every integer N > 1 we get
N
[ strananson > [ ottt dn
k=1

For a given function F defined in Z and k € Z let

MF(k) = _— F(k
(k)= sup_ m"‘““,-z_:m (k+3)| ,
1
M) = g, T 3 T

For a given f € Ly and z € X let F, be defined by F;(k) = T* f(z). Then, we ha
N
(2.7) / (Mg f)dp < CN? /X > (ML Fo(k)) du(z).
X _ k=1

The operator M is of weak type (1,1) with respect to counting measure on
since 7 : Z — Z, (k) = k + 1 preserves the measure, and on the other hand i
obvious that M is bounded on £,. Then, it follows from the interpolation theor
1.7 that there exists a constant C’ such that

Y S(MF(k) <C'Y (F(K))  for F € M().

kel v ke

If 1 <k < N then

MpF(k) = ML(F X{—p41,0+N)(k) < M(F x[-£+1,0+n])(k)

and therefore

L4+N
(2.8) Z¢(MLF(Ic)) <C' 3 $(Fk)), for F e M)

k=-L+1

It follows from (2.2), (2.7) and (2.8) that for every L > 1 and f € Ly we han

/ $(Mr L f)du < C2C' N1 (2L + N) / 8(f) dus
X X

and thus we obtain (2.3) with A = C?C".
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The proof of (2.4) is an adaptation of the proof of (2.3). For this, for every L > 1
consider the truncated operator Hy ; defined by

. r
Hf ;f = max Z Tf

0<|i|<n

d, as in the case My 1, for every integer N > 1 we obtain
N
9) J #i s <N Y [ gt 0 ) an
X k=1vX
Now, we consider the operators on 9(Z) defined by

H*F(k) — Sup Z f(k_'-Hl
721 o 2lil<n

5 F(k+ i)

0<}i|<n

* -
HLF(k) = 19neL

is well-known that H* is bounded on every £, with 1 < p < 0o (see [3]). Then, it
lows again from interpolation theorem (1.7) that there is a constant C” such that

D BH'F(R) <C" Y $(|F(k)l),  for F € M(Z)

kez kez

1 therefore (2.9) shows that

N
/X G(Hp, f)du < C -1 /X 3 HHLR() du(o)

L+N

< cCC' Nt ¢ |Fz(k)l)d z)
/X; ( m
<C?C"N- (L4 W) L $(11) d,

ere F;(k) = T*f(z), so that we obtain (2.4) with A = C2C”. Thus, the proof is
nplete.

ieorem 2.10. In the conditions of theorem 2.1, for every f € Ly there exist f, f*
1 Hrf in Ly such that the following conditions are satisfied:
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a)
hm Z Tf—f| =0,
(4)
1 n-1 ) B
nlin;o =~ ?;;T’f(z) = f(z) ae.
b)
n oo = 0,
i=-n €))]
n_'oo Tl ZT’f(x) f*(z) a.e.
c)
. ™
nl-l—vnolo Z zf HTf = 0’
o<)i|<n ()
. T f(z) _
Jim E : = Hrf(z) a.e.
0<|i|<n
Moreover, there exists a constant A such that
(2.11) [ oEnshausa [ s0shdn  orseLy

Proof. 1t follows from (2.2) that
IT* flicgy < max(1,C) |Ifllgy,  for f € Ly and k 2 0.

Since T is a power bounded linear operator, that is, the powers T, & > 0,
uniformly bounded in V = [Lg, || - ||()], and V is a reflexive space, then, the Cé

averages
1 n-1
I k
Ruf == kE_oT f

converge in norm for all f € L, (see Theorem 2.1.2 in [6]).

The norm convergence implies that Ly is the closure of the direct sum of the
of fixed points and the space (I — T)Ly (see 2.1 in [6]). On the other hand, since
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function complementary of ¢ satisfies A,, there exists a constant 8 > 1 such that

3(s) < s p(s) for s > 0, where p is the density function of ¢, which implies that the
iction s — s ¢(s) increases strictly for s > 0 and consequently ¢(st) < s® ¢(t)
0<s<landt>0,so that

/X 3 e~ T du s 377 /X S(|T" o)) di

<c (Z n—f’) /. #tal) da

n=1

< oo.

nce n~ 1 T"g(z) — 0 a.e. for n — oo and thus R,f — 0 a.e. if f = g — Tg since
it R, f =n~1(g—T"g).
Therefore, we have that {R, f} converges almost everywhere for all f in a dense

sset of Ly. Then, the almost everywhere convergence for every f € Ly follows from
3) and the Banach principle since

A
lim sup p{reX: Rpf(z)>A}< lim ——=
A=+00 "1"(4’)51 { ( ) } A—00 ¢(A)

lere R is defined by

0,

1n—1 .
ST

1=0

RL.f = sup
n=1

Since T~ satisfies the same hypothesis as T, then b) follows from a).

Now, for f € Ly let {Snf} be the sequence given by (1.4). It follows from (2.4)
at for almost everywhere convergence it is enough to prove that {S,, f} converges
. for all f in a dense subset of [Lg, || - ||(4)]-

It is easy to verify that if f = g —Tg, with g € Ly, then

n—-1
Saf =g+Tg—n"2(T"Hg+T"g) -

i=1

i+1 —i
e T e+
We have

L;ﬂln‘lm“g +T"g))du < 5 3 on~” /X ST+ g]) + (1T "g1)) du

<aC (Zn-f’) JRoL

S
1]
-
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where a is a constant in the Aj—condition for ¢, and hence

lim =1 (T**'g+ T "g)(z) =0 ae.

n-—+ 00

On the other hand, let h, € Ly and h € M be defined by

 [Titg + Tig|
hn = Z i(i+1) !

2T g(2) + T-ig(=
)= 5 ) T,

For every positive integer n we have

halls < C liglls D i7% =b < oo,

iEN

where C' = 4 max(1, (), and therefore

/|hv|du= lim/ |hpv]dp <b
X N—0 X

for every v such that )
[ wtwhan<t,
X .

where 9 is the N-function complementary of ¢. This proves that A € Ly and cc
quently {h,} converges almost everywhere. Therefore we get the almost everyw
convergence of {S, f} for every f € L.

Now, let
Hyf(z) = lim S, f(z);
it follows from (2.4) that Hr f € Ly and ¢(|Sn f — Hr f|) is dominated by ¢(2 Hy,

Ly; therefore, the Lebesgue dominated convergence theorem shows that

Jm [ 65,5~ Hrflydu=0

and consequently
lim ||S.f — Hrf)| =0,
n—00

since ¢ satisfies Ao.

Lastly, (2.11) follows trivially from (2.4). Thus, the proof is complete.
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In [4] Kan gives a non trivial example of an operator that satisfies the correspond-
z hypothesis of Theorem 2.1 in the case ¢(s) = 57, 1 < p < oo; exactly T : £, — £,
= U+1tS where U{z;} = {zr41}, t is a real with 0 <t < 1 and S{z;} = {yx}
rtere yp = 0if k # —~1 and y; = z; if k = —1 ({, is the Ly,—space on the set of
tegers with counting measure). The operator T is positive but 7! is not. This
ample is valid in the case £4; exactly, if z = {zx} we have

DT 2)l) <27 (1 4+1) Y d(lexl),

kez keZ

DU ) < o™ Y d(lzkl),

kezZ keZ

1ere « is a constant in the As—condition of ¢ and m is such that (1 —¢)~1 < 2™.

3. Results in the case of a Lamperti operator

is well-known that every positive linear operator on a normed space of functions
"9 that has a positive inverse separates supports. On the other hand there exist
rerators T satisfying the hypothesis of the theorems of Section 2 such that T' does
*t separate supports (in the infinite dimensional case); precisely, the operator T' of
e example above is in this situation. Hence, it is of interest to obtain the same
sults for the case in which T separates supports.

A bounded linear operator separating supports is called a Lamperti operator.

Certain isometries on Ly are Lamperti operators. For example, if T': Ly — Lg
a positive linear operator such that

1) Jooursidu= [ saspdn  tor re Ly

ien T is a Lamperti operator.

Indeed, condition (3.1) implies that ||Tf]|s) = ||fll(¢) for every f € Ly and thus
is an isometry. On the other hand, given f and g in LI with disjoint supports we
we

/ §(Tf + Tg)dp = / ($(TF) + $(Ta)) du
X X

1d therefore ¢(Tf + T'g) = ¢(Tf) + ¢(T'g) since ¢(s +t) > ¢(s) + ¢(t) for s, > 0.
his shows that the supports of T'f and T'g are disjoint since ¢(s +t) = ¢(s) + ¢(t)
and only if s¢ = 0. Thus T is a Lamperti operator.
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The same result holds for linear operators satisfying (3.1) not necessarily posi:

but with ¢ such that s — ¢(y/s) is strictly convex or concave (this follows fi
Theorem 2.1 in [7]).

In order to obtain the same results as in Section 2 for operators separating s
ports, we need an structural theorem for Lamperti operators which permits to use
methods used in the proof of Theorem 2.1. In Theorem 4.1 of [7], Lamperti proves
structural theorem for certain isometries. In [4] Kan notices that Lamperti’s res
may be adapted to Lamperti operators on Ly, 1 < p< oo. We observe that the sa
happens for Lamperti operators on L4 carrying out a similar method; exactly we h

Proposition 3.2. For every Lamperti operator T' on [Lg, |l - |]] there exist a
endomorphism T of the measure algebra (X, M, u) and a M—measurable functior
with support 7X, such that Tf = hPf for every f € Ly, where P is the posii
linear operator, on the space of M-measurable functions, induced by T (in the c
(X) < oo, 7 is defined by TE = supp T'xg and h = T1). Conversely, if Tf = h.
f € Ly, then T separates supports.

The operator P is characterized by condition Pxg = xrg, E € M. Ot
properties of P, which will be used later, are |Pf| = P|f| and P(fg)=PfPg, f:
g in M.

Theorem 3.3. Assume (1.8) and let T : Ly — Ly be an invertible linear opera
separating supports such that

Jsurtmansc [ g,
X X

with constant C > 0 independent of f € Ly and k € Z. Then, the results of Theore
2.1 and 2.10 hold.

Proof. 1t follows from Proposition 3.2 that Tf = hPf for every f € Ly, wh
h is a M-measurable function and P is the positive linear operator induced b;
o—endomorphism 7 of (X, M, ) and thus, for every ¥ > 0 and f € L4, we have t]
T*f = hy P*f, where hy = h Ph P?h ... P*~1h. For a given L > 1 let Mr, be-
operator defined by (2.5). We can decompose X into a finite family of disjoint s
{Emn} such that

Mrif= ) XBu.|Rmafl,

0<m,n<L

1 o~
Bonf =g DTS

i=-m
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Given f € Ly and k > 0 we have

PE(Mrof)= Y. Xex(Ema)P*(Bmaf)l

0<mn<L

< max IPk(Rm,,,f)l,

T 0<m,n<L

ice the sets 7¥(E,, ,) are disjoint. Therefore

|T*(Mzr,L )l = |he| P*(Mr,L)

k
< o BAX |he P*(Rm,n f)I

= Jmex | R, (T* )]

= My, (T*f)

d thus we get

/ $(Mrpf)du < C / $(T*(Mr £ 1)) dp
X X
<cC /X (Mr,1(T* f)) dp.

In this way, we obtain the same inequality (2.6) obtained in the proof of Theorem
[ and the argument used there can be used here to obtain (2.3). The same happens
the proof of (2.4), once we get inequality (2.9), and in order to obtain (2.9) it is
ough to prove that

(T (B0 )| < Hpp(T*f)  for every f € Ly and k 20,

iich is obtained carrying out the same ideas that in case My .

Once we have the boundedness of Mt and Hy, then, the almost everywhere
nvergence and the norm convergence of the averages defined by (1.2), and of the
quences defined by (1.4), are proved following the proof of Theorem 2.10. Taking
;0 account that T~! also separates supports, we have the convergence of the averages
fined by (1.3). Last, the boundedness of the ergodic Hilbert transform follows
vially from the boundedness of Hy.

A justification of the assumption that 7! separates supports is the following.
t h and P be the given in Proposition 3.2. We have that A{z) # 0 a.e. since
composing X into an at most countable family of sets E,, with u(E,,) < oo and
nsidering A, = {z € En, : h(z) = 0} we get that for every m there exists a function
, € Ly such that xa4,, = h Pf, and therefore pu(A,,) = 0. Then, it follows from
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Proposition 3.2 that for every f and g in Ly we have that fg = T-1((T'f Tg)/h) a
thus if Tf and T'g have disjoint supports the same holds for f and g, which pror
that 7-! separates supports.

Final remark. The results obtained in this paper can be applied to certain isometr
on Ly. For example, if T' is an invertible linear operator such that either 7 or T
is positive and T satisfies (3.1), then the conclusions of Theorems 2.1 and 2.10 ho
Likewise, it can be proved that if T satisfies (3.1) and T is positive (not necessar
invertible), then, we have the boundedness (2.3) for the maximal ergodic opera
R} and thus we obtain the almost everywhere convergence of the averages defined
(1.2). However, this does not yield anything new since the only Orlicz spaces, wh
have non-trivial isometries, are the L,-spaces (see [1]).

Acknowledgements. The author is indebted to Professor A. de la Torre for his generc
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