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GLOBAL STABILITY OF SETS
FOR SYSTEMS WITH IMPULSES*

G. K. Kulev and D. D. Bainov

ABSTRACT. In the present paper the question of global stability
of sets of sufficiently general type with respect to systems of dif-
ferential equations with impulses is considered. It is proved that
the existence of piecewise continuous functions of the type of Lya-
punov’s functions with certain properties is a sufficient condition
for various types of global asymptotic stability.

1. Introduction

the recent years systems of differential equations with impulses have been an object
numerous investigations ([1]-[11]), related to the applications of these systems in
ysics, biology, control theory, etc. The necessity of consideration of such systems
ses from the study of real processes and phenomena which during their evolution
: subject to short-time perturbations in the form of impulses. The duration of the
tion of these perturbations is negligibly small in comparison with the total duration
the process.

In the present paper the problem of global stability of sets with respect to sys-
ns of differential equations with impulses is considered. In the investigations ac-
mplished piecewise continuous auxiliary functions are used which are an analogue
the classical Lyapunov’s functions. It is proved that the existence of such functions
th certain properties is a sufficient condition for various types of global asymptotic
wbility.

* Investigation accomplished with the financial support of the Committee for Sci-
ce of the Council of Ministers of the People’s Republic of Bulgaria, Grant No. 61
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We shall note that results related to the stability and global stability of sets
systems of ordinary differential equations without impulses -have been obtainec

[12]-[16].

2. Preliminary notes and definitions

Let R™ be an n—dimensional Euclidian space with a norm || - ||, scalar product |
and distance d(-,-) and let I = [0, o0].

Consider the following system of differential equations with impulses
Z—z = f(t,z), for (t,z)€o;;
Azy(1,0)eq; = Li(z), fori=1,2,...
wherez €R*, f: IxR* - R", [, :R* - R*,»; :R" - R,
oi={(t,z) eI xR": t =7(z)},
Azt o)eo; = 2(t+0) — z(t — 0).

Such systems are characterized by the fact that under the action of a short-t
force (impact, impulse) the mapping point (¢, z(t)) from the extended phase sf
I x R™ by meeting some of the hypersurfaces o; is transferred momentarily from
position (Z,z(t)) into the position (¢, z(t)+ I;(2(t))). Each solution z(t) of system
is a piecewise continuous function with points of discontinuity of first type at wl
it is left continuous, i.e. at the moment ¢; when the integral curve (¢, z(¢)) meets
hypersurface o; the following relations hold:

z(t; — 0) = z(t;),
Az, = z(t; + 0) — z(t; — 0) = Li(z(t:)).
Let M C I x R™. Introduce the notations:
M{)={zeR": (t,2) € M}, fort € I;

M(t,e)={ze€R": d(z, M(¥)) < €}, for € > 0,

where

de, M) = it [lz=y]
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the distance between = and the set M(t);
Gi={(t,z) e I xR": 1_1(z) <t < (x)}, fori=1,2,...

(ro(z) =0  for z € R")

o0
G = U Gi;
i=1
Sa={zeR": |z|| < a}, for o > 0;
Dy ={z €eR": d(z, M(t)) < o}, fora>0, tel.
Let tq € I, 2o € R™. Denote by z(t;tg,z¢) the solution of system (1) satisfying

e initial condition z(fg + 0;ty,z0) = zo and by J*(¢o,zo) denote the maximal
serval of the form (#p,w) in which the solution #(t;%p, zg) is defined.

We shall say that conditions (A) are satisfied if the following conditions hold:

A;. The function f(t,z) is continuous on I x R* and Lipschitz continuous with
respect to its second argument.

|f(t,z)]| <L <oofor (t,z) € I xR™ (L > 0).
As. For any i = 1,2,... the following inequality holds

As.

[

”L;(:l:l) - I,'(Itz)“ < d”:l)l — 172”, for Ty, T € R” (d > 0)

A,. The functions 7;(2) (i = 1,2,...) are continuous and the following relations
hold

O<nz)<mz) < -, for z € R™,

lim 7;(z) = o0  uniformly on R",
1—+00

glf n(z) —supri_i(2) >80 > 0.
n R"

We assume that for system (1) the phenomenon “beating” is not observed, i.e.
at the following condition (B) holds:

B. The integral curve of each solution of system (1) meets each of the hyper-
surfaces {o;} at most once.

Effective sufficient conditions which guarantee the absence of the phenomenon
reating” are given in [10] and [11].

We shall note that condition (B) is satisfied, for instance, in the particular case
hen mi(x) = t;, ¢ = 1,2,..., ¢ € R”, i.e. the impulse effect is realized at fixed
oments.
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We shall say that conditions (C) are satisfied if the following conditions hold
C;. For each t € I the set M (t) is not empty.

Ca. There exists a compact set Q C R™ such that M(t) C @ for any t € I.

Cj;. For any compact subset F of I x R” there exists a constant K > 0 depend
on F so that if (¢,z),(t',z) € F then the following inequality holds

ld(z, M(t)) — d(z, M(#))] < K [t .
We shall say that condition (D) is satisfied if the following condition holds:
D. Each solution x(t;%g, 2o) of system (1) which satisfies the estimate
d(z(t,;t0,20), M(t)) Sh < oo  fort e Jt(to,z0)

is defined in the interval (2o, 00).

We shall give definitions of stability of the set M with respect to system (1).

Definition 1. The set M is called:
a) Stable with respect to system (1) if

(Vto € I) (Va > 0) (Ve > 0)(36 = 6(t, , €) > 0) (Vzo € S, N M(20,6))
(vt J+(t9,zo)) : z(t;to, mo) € M(1,€).

b) t (a)-uniformly stable with respect to system (1) if the number é from pc
a) does not depend on t; (on «).

¢) Uniformly stable with respect to system (1) if the number 6 from poini
depends only on e.

We shall give definitions of boundedness of the solutions of system (1) w
respect to the set M. ‘

Definition 2. The solutions of system (1) are called:

a) Equi-M-bounded (equi-bounded with respect to the set M) if:
(Yto € I) (VYo > 0) (Vi > 0) (38 = B(to, @, 1) > 0)
(V.’l?o €S, N D,,,t,,)(Vt € J+(t0, :L‘Q)) : .’L'(t;to,zo) (S M(t,ﬂ)

b) t (a)-uniformly M-bounded if the number 8 from point a) does not dep:
on tp (on a).
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c¢) Uniformly M—bounded if the number § from point a) depends only on 7.

Finally we shall give deﬁniﬁons of global asymptotical stability of the set M with
spect to system (1).
efinition 3. The set M is called:

a) Globally equi-attractive with respect to system (1) if
(Vto € I) (Va > 0)(¥Vn > 0) (Ve > 0) (3o = a(tg, @, n,€) > 0)
(Vzo € Sa N Dy 1,) (VE > o+ 0,8 € JT(to, z0)) : 2(t;t0.z0) € M(2,€).
b) t (a)-uniformly globally attractive with respect to system (1) if the number
o from point a) does not depend on tq (on a).
¢) Uniformly globally attractive with respect to system (1) if the number o
from point a) depends only on 7 and e.

iefinition 4. The set M is called:

a) Globally equi-asymptotically stable with respect to system (1)if M is a
stable set and a globally equi-attractive set of system (1) and the solutions
of (1) are equi-M-bounded.

b) t (a)-uniformly globally asymptotically stable with respect to system (1) if
M is a t (o)—uniformly stable and ¢ (a)-uniformly globally attractive set of
system (1) and if the solutions of system (1) are ¢ (a)—uniformly M-bounded.

¢) Uniformly globally asymptotically stable with respect to system (1) if M is
a uniformly stable and uniformly globally attractive set of system (1) and if
the solutions of system (1) are uniformly M —bounded.

d) Exponentially globally asymptotically stable with respect to system (1) if
(Fec > 0) (Va,n > 0) (3K (o, ) > 0) (Vo € I) (V2o € So N Dy 4,)

(Vt € J+(to,.’l?0)) : d(I(t;to,(I)o),M(t)) < I{(a,n) d(xo,M(tO)) E—C(t_tﬂ)

emark 1. If condition Cs holds, then for any & > 0 there exists a number > 0
ich that Sq C Dy ¢ for all t € I and, conversely, for any 7 > 0 one can find a number
> 0 such that D, ; C S, for all ¢t € I. This shows that the M-boundedness of the
Jlutions of system (1) defined in definition 2 is equivalent to the I x O—boundedness
f these solutions (O is the origin in R"), i.e. to boundedness in the usual sense [11].
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Remark 2. If condition C; holds, then the numbers § from definition 1, a),
from definition 2, a) and o from definition 3, a) can be chosen independent of t
number «. Hence, for instance, if the set M is globally equi-asymptotically stal
with respect to system (1), then M is an a—uniformly globally asymptotically stal
set of system (1).

In the further considerations we shall use the class V; of piecewise continuc
auxiliary functions V : I x R® — R which are an analogue of Lyapunov’s functic

[8].

Definition 5. We shall say that the function V : I x R® — R belongs to the class
if the following conditions hold:

1. The function V is continuous on G and is locally Lipschitz continuous w:
respect to its second argument on each of the sets G;.

2. V(t,z) =0 for (t,z) € M and V(t,z) > 0 for (t,z) ¢ M.
3. For each i =1,2,... and for any point (to,zo) € 0; the limits

V(to —0,2¢) = . x)li»l(l;lu o) V(t,z),

(t,2)EG;

Vit = I
( o+0, 170) (tfz)—l’I(Itlo,Zo) V(t’ Z),
(tlz)eGi-}-l

exist and are finite, and the equality
V(to — 0,1‘0) = V(to, z0)

holds.

4. For any point (¢,z) € 0; (i = 1,2,...) the following inequality holds

V(t+0,z+ L(z)) < V(L z).

Let V € Vy. For (t,z) € G we set

V(l)(t, z) = limsup h™! [V(t +he+hf(t )~ V(t,x)].
h—0t

From condition 1 of definition 5 it follows that if « = z(t) is a solution of syst
(1), then the equality

V(t,z) = DYV (t,z)
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I1ds, where

D*V(t,2) = limsup b [V(t + h,a(t + b)) — V(t, 2(2))]

the upper right Dini derivative of the function V (¢, z(?)).

Moreover, if the function V' € V, satisfies the condition
Viy(t,z) <0 for (t,2) €G

d if z(t;t0,20) is a solution of system (1), then the function V(¢,z(¢;t0,zo)) is
>notonely decreasing on J ¥ (tp, zp).

Denote by K the class of all continuous and strictly increasing functions a : I — I

ch that a(0) = 0.

3. Main results

the next considerations we shall use the following lemma.

:mma 1. Let condition A4 hold and let the function V : I x R® — R belong to
e class Vy. Then for any choice of the numbers ty € I, a > 0, § > 0, there exists a
:mber K(to,@,n) > 0 such that for (to,z0) € So N D, the following inequality holds

V(to + 0, 2:0) S K(to,a,n). ' (3)

'oof . Suppose that the assertion is not true. Then there exist numberst, € I, a > 0,
> 0, and a sequence {z;}{° C R™ so that (to,zx) € Sa N Dy ¢, for k=1,2,... and
e following inequality holds

V(to+0,z¢) > &, fork=1,2,... 4)

Since the sequence {z} is bounded, then out of it we can choose a convergent
bsequence. We shall use the same notation for the members of this subsequence.
t limg_ 00 T = xp.

Let (tg,%0) € G; for some i € N, i.e.
7','_1(.1:0) <ty < T,'(:Co).

1en since

Ti—1(xg) = klingo Ti-1(zk)
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and

Ti(20) = Mm 7i(zy),
for all sufficiently large values of & we have
Tic1(zk) < tg < Ti(®m0)
which shows that (¢9, zx) € G;. From the continuity of V (¢, z) on G; it follows th
klinolo V(tg+0,2z) = klin;o V(to,zx) = V(to, zo)

which contradicts inequality (4).

Let (to,z0) € o; for some ¢ € N, i.e. 7;(zo) = to. Then the following relati

hold .
klg{.lo Ti—1(zr) = 1i—1(20)

< T,'(.'EQ)
=1p
= 7i(2o)
< Ti41 (zo)
= lim T,'+1(:Ek).
k—o0
These relations show that the following three cases are bossible:
1. For infinitely many members {zx;}32, of the sequence {zx} we have (to, z&,
G;. Then from the left continuity of the function V(¢,z) we obtain
]Ilfgo V(to + 0: zkj) = Jllflgo V(tOJ zk,’)
= V(t - 0, :BQ)
= V(tD, 1'0)7
which contradicts inequality (4).

2. For infinitely many members {zj, }3";1 of the sequence {z } we have (to, z
G,‘+1. Then
lim V(to + 0, :L'kj) = lim V(to, .’L'kj)
J—oo j—+o00
= V(to+0,z0)
< 00,
which contradicts inequality (4).

3. Only a finite number of members {zx;}$2; of the sequence {z;} are :
that (to, zx;) € Gi or (to, Tx;) € Giy1. Without loss of generality we can assume
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,Z) € o; for each k£ € N. From inequality (4) and the left continuity of the function
t,z) at the points (¢, z;) it follows that there exist sequences {(tf,k),y,(,k))}?zl

=1,2,...) such that
(tglk)i y1(1k)) € Gia

Jim (89,9 = (to, 21)

1
V(tgk)+0,ygf))2k fork=1,2,....
€en
lim (7, 4) = (to, o).
nce

lim V(™ +0,557) = lim V(E, (™)
n—oo n—oo

= V(to - 0,1‘0)

= V(tO) 1:0),

ich contradicts the inequality

V(A +0,55) > n.

This completes the proof of Lemma 1.

We shall find sufficient conditions for global asymptotical stability of the set M
th respect to system (1).

weorem 1. Let conditions (A), (B), C1), (Cs) and (D) hold and functions V € Vg
4 a € K exist such that

(i) a(d(z, M(t))) < V(t,z) for (t,x) € I x R® and a(r) — oo as r — co.

(i1) V(l)(t,:c) < —cV(t,z) for (i,z) € G where ¢ > 0 Is a constant.

Then the set M is globally equi-asymptotically stable with respect to system (1).
oof. Let € >0, a > 0, to € I. From the condition V(tg,z) = 0 for z € M(¢o) it

lows that there exists a number 6 = §(%o, a, €) > 0 such that if ¢ € S, N M (Lo, §)
n V(tg +0,2) < a(e).

Let xp € Sq N M (20, 6). Using successively (i), (it) and (2) we obtain
a(d(z(t;te,z0), M(t))) < V(t,z(t;t0,z0))
< V(to+0,z0)
< a(e)
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for t € J*(tg,zp). From condition (D) it follows that J*(¢g,zo) = (to,0), he
z(t;to, o) € M(t,€) for all t > g, i.e. the set M is stable with respect to system |

Let ¢ >0, > 0,7 > 0and ¢, € I. From (ii) and (2) there follows the inequa

V(t,z(t;to, 2z0)) < V(to+ 0,20) exp[—c (t — to)].

Let
N(to,n,a) = sup{V(to + 0, z0) : zo € Sa N Dy 1, }
and 1 N( )
_ \ = tO;n)a
o= o(ty,@,1,€) > " In —a(c) .

Then from (i) and (5) it follows that for ¢ > to + o the following inequalities h

a(d(z(t; o, 20), M(1))) < V (¢, z(t; 20, %0))
< V(to +0,z0) exp[—c(t — to)]
< a(e),

which means that the set M is globally equi-attractive with respect to system (1
Finally we shall prove that the solutions of system (1) are equi-M—-bounded

In fact, let £y € I, « > 0 and 5 > 0. From lemma 1 it follows that there exis
number K (tp,,n) > 0 such that if £ € S, N Dy 1., then V(2o + 0,2) < K(to, a
From the condition a(r) — oo for r — oo it follows that there exists a nun
B = B(to, @,n) > 0 such that a(8) > K(to, o, 7).

Let zg € So N Dy 4, and let z(t) = x(t;t0,20) be a solution of system (1). T
from (i), (ii) and (2) we get

a(d(z(t), M(1))) < V(¢t,2(2))

< V(to + 0, :L‘())

< K (tO; @, 7’)

< a(p)
for each t € J¥ (g, 20). From condition (D) it follows that J*(tg,zq) = (to,00). *
shows that

d(z(t;to,z0), M(t)) < B fort>tg,

hence the solutions of system (1) are equi-M—-bounded.

This completes the proof of theorem 1.
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1eorem 2. Let conditions (A), (B), (Cy), (Ca) and (D) hold and functions V € V
d a,b,c € K exist such that

(1) a(d(z,M(t))) < V(t+0,z) < b(d(x, M(t))), for (t,z) € I x R*
where a(r) — oo for r — oo.
(i) Viy(,z) < —c(d(z, M(1))), for (t,2) € G.
Then the set M is uniformally globally asymptotically stable with respect to
stemn (1).

oof. Let € > 0 be given. Choose the number 6. = 6(¢) > 0 so that b(6) < a(¢). Then
x>0, € I and zo € Sa N M(to,§) using successively (i), (ii), (2) we obtain
a(d(z(t;to, zo), M(t))) < V(t,z(t;t0, 20))
< V(to+0,z0)
< b(d(zo, M(t0)))
< b(6)
< a(€)
:t € Jt(to,z0). Hence J*(tg,z0) = (fo,00) and z(¢;t0,z0) € M(t,€) for any ¢ > g
iich means that the set M is uniformly stable with respect to system (1).
Let ¢ > 0 be given. Choose the number § = §(¢) > 0 so that b(§) < a(e).

Let 9 > 0,

b(n)
c(6(e))’

> 0,1t €1, zg € So N Dy, and z(t) = z(¢;t0,20) be a solution of system (1).
ssume that for any t € [to,to + o] the inequality d(z(t), M(t)) > 8(¢) holds. Then
ym (ii) we obtain

o=o(n,€) >

/t Vi (s, 2(s)) ds < —c(8(6)) [t — to]- (6)

On the other hand, if {¢;}{2; are the moments at which the integral curve of
e solution z(t) meets respectively the hypersurfaces {o;}, then from (2) we obtain,
rt € (t,tesa],

t—0

/ V(l)(s z(s)) ds—Z/ - V(1)(5 z(s))ds + v V(l)(s,:c(s)) ds

k

= Z[V(t,-, z(t;)) — V(ti-1 + 0, z(t; 4 0))]

i=l
+V(t,z(t)) — V(e + 0,2(tx +0))
> V(t,2(2)) - V(to + 0, 20).
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From this inequality and (6) we deduce
V(t, 2(t)) < V(o +0,20) — e(8) [t —to]  for ¢ € [to,t0 + o],
whence for ¢t =ty + o we have
V(t,z(t)) < V(to+ 0,20) — c(8) o < b(n) — ¢c(6) o < 0,

which contradicts (i).

Hence there exists a number ¢’ € [to, %o + o] such that
d(z(t'), M(t")) < é(e).
Then for ¢ > ', hence for any ¢ > {9 + o as well the following inequalities hold

a(d(a(t), M(1))) < V(t, 2(t))
<V(Z,a(t))
< b(d(=(t)), M(t)))
< b(8)
< ae),

ie. 2(t;to,z0) € M(t,€) which shows that the set M is uniformly globally attract
with respect to system (1).

Finally we shall prove that the solutions of system (1) are uniformly M-bound

Let n > 0 be given. Choose 8 = f(n) > 0 so that a(8) > b(n). This is possi
in view of the condition a(r) — oo for r — 0.

Let to € I, @ > 0 and 29 € So N Dy 4,. Applying successively (i), (ii) and (2)
obtain
a(d(z(t;to,z0), M(t))) < V(t,2(t;t0, 20))

< V(to+0,z0) -
< b(d(z0, M(t0)))
< b(n)
< a(p)
for ¢t € J* (%o, z0). Hence J*(tp,00) = (t0,00) and z(t;t0,z0) € M(t,¢€) for t > to.
This completes the proof of theorem 2.

Corollary 1. Let the conditions of theorem 2 hold, condition (ii) being replaced
the condition :
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(111) f/(n(t,l’) <-c V(t,.‘l:), for (t,:l)) €G,
where ¢ Is a constant.

Then the set M is uniformly globally asymptotically stable with respect to sys-
m (1).

The assertion is an immediate consequence of theorem 2. But if we make use of
V (¢, z(t;t0,z0)) < V(to + 0, z0) exp[—c(t — to)] for t > g,
st inequality following from (iii) and (2), then the proof can be carried out as the

‘0of of theorem 1.

Analogous to the proof of the theorem 2 is the proof of the following two theorems:

heorem 3. Let the conditions of theorem 2 hold, condition (i) being replaced by
te condition

(iv) a(d(z, M())) < V(t+0,z) < b(d(z, M(2)),}|z|]), for (¢t,z) € I x R?,
where a € K, a(r) — oo for r — 0o and the function b : r — b(r,s) € K for

any s > 0 fixed.

Then the set M is t—uniformly globally asymptotically stable with respect to
rstem (1).

‘heorem 4. Let the conditions of theorem 2 hold, condition (i) being replaced by
1e condition

(v) a(d(z, M(t))) < V(t +0,z) < b(d(x, M(t))), for (t,z) € I x R,
where a € K, a(r) — oo for r — oo and the function b : r — b(t,r) € K for
anyt € I fixed.

Then the set M is a—uniformly globally asymptotically stable with respect to
rstem (1).

‘heorem 5. Let conditions (A), (B), (C;), (C3) and (D) hold and a function V € V
rist such that
(i) d(z, M) < V(t,2) < K(7, @) d(z, (1)),
fora>0,7>0,tel, z€SsNDy;.
(i1) V(l)(t,:c) < —c¢V(t,z) for (t,z) € G where ¢ > 0 is a constant.

Then the set M is exponentially globally asymptotically stable with respect to
vstem (1).

'roof. As in the proof of theorem 2 it can be proved that the solutions of system (1)
re uniformly M-bounded. Hence each solution z(t;tg,zo) is defined in the interval
0, OO), to € 1.
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Let « > 0,9 >0, €I, g € Sq N Dy 4,. From (ii) and (2) we obtain

V(t,z(t;to, 20)) < V(to + 0,20) exp[—c(t —t5)]  for t > .

Then from (i) it follows that, for ¢t > #:

d(z(t;to, xo), M(1)) < V(¢,2(t; 10, 20))
< V(to+0,z0) exp[—c(t — to)]
< K(n, &) d(zo, M(to)) exp[—c (t —to)].

Theorem 5 is proved.

4. Examples

Example 1. Consider the system of differential equations with impulse effect at fix
moments :

dz _ [ [B(t)+ A(t)]z forz>0,t#¢; |
d |0 forz<0,t#¢
_ ) L(=z) forz >0
Aji=t; = {0 forz <0

where z € R”, B(t) and A(t) are (n x n)-matrices of continuous functions on I a
B(t) is diagonal and A(t) is skew-symmetric, I;(z), i = 1,2,..., are continuous &
such that z + I;(z) > 0 and ||z + Li(z)]| < 0 for z > 0 (z > 0 (z < 0) means tt
z; > 0 (z; < 0)for i = 1,2,...,n, where z; is the i~th component of the veci
z € R™). ‘

The moments {t;} of impulse effect form a strictly increasing sequence, i.e.
O<ti<tz<---<t; < -+
and

lim ¢; = co.
11— 00

Let M =1 x {x € R* : z < 0}. Consider the function

_ J{z, =) for z >0
V(t’“’)‘{o for 2 < 0
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en
/ _J2(=Bt)z) . forz>0,t#t;
Wl)(t)x)_{o formso,t¢ti
. 2
V(ti + 0,z + Li(z)) = {l)lz + L)l ?c:i : z g
nce

V(i +0,z+ I,-(:c)) < V(t,', 2:).
Let B(t) = diag(b1(t), ba(t),...,ba(t)) and b;(t} < —v; < Ofori=1,2,...,n and
I

Since d(z, M (t)) = ||z|| for ¢t € I and = > 0, then the conditions of theorem 2 are
tisfied.

itt

Hence the set M is uniformly globally asymptotically stable with respect to
stem (7). '

xample 2. Consider the system

‘Z_’t” =a(t)y+b(t)z (=2 + y?)
% =—a)z+b(t)y(z*+3°), t#t (8)

Azyy—y, = ¢ z(t;),
Ay|t=i,' = y(tl)1
here the functions a(t) and b(t) are continuous on I, b(t) < —v < 0, -1 > ¢; <0,

1<d;<0,fori=1,2,...,0< % <tz < ... and limj,oct; = oo. Let M =
t,0,0):t € I}.

The function V(t,z,y) = z? + y? satisfies the conditions of theorem 2. In fact,
Vot z,y) = 2b(t) (2* +97)* < —y (& +47)*  t#
V(40,2 + iz y+diy) < (1+c)?2® + (1+di)?y* S V(E,2,0).

Hence the set M is uniformly globally asymptotically stable with respect to
'stem (8).
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