ESPACIOS L_p Y TEOREMAS DE CONVERGENCIA PARA INTEGRALES VECTORIALES

Rafael Bravo de la Parra

ABSTRACT. This paper deals with the study of a bilinear integral, which is an extension of Bartle *-integral for locally convex spaces. Attention is focused on the construction of spaces L_p , and theorems of convergence of integrable functions.

1. Introducción

El propósito de este artículo es construir unos espacios L_p de funciones integrables en el sentido de la integral de tipo Bartle desarrollada por Sivasankhara [6], y por Rao Chivula-Sastry [5], así como presentar algunos teoremas de convergencia.

Con este fin se desarrolla brevemente en la sección 2 la teoría de integración bilineal entre e.l.c. antes aludida; en la sección 3, siguiendo a Dobrakov [4] en el desarrollo de la teoría de espacios L_p para su integración bilineal entre espacios de Banach (Dobrakov [3]), se construyen los espacios del tipo L_p : L_p^B , \hat{L}_p^B y L_p , $1 \leq p < \infty$; y por último, en la sección 4 se establece un teorema de la convergencia dominada en L_p^B , con generalización a L_p y \hat{L}_p^B , así como unos teoremas del tipo del clásico teorema de Vitali, en el caso de ser el espacio de llegada de la integral un Fréchet.

2. Integral de Sivasankhara

Denotaremos por Σ a una σ -álgebra de subconjuntos de un conjunto Ω , por X, Y y Z a tres e.l.c., de los cuales X y Z se suponen separados y completos, y por

P, Q y R a tres familias generadoras de seminormas de X, Y y Z respectivamente. Denotaremos por $(x, y) \to xy$ a una aplicación bilineal continua de $X \times Y$ en Z, y por m a una medida contablemente aditiva definida sobre Σ y con valores en Y, que satisface la *-propiedad (siguiendo la notación de [6]), es decir, que para cada $r \in R$ existe una medida finita no negativa ν_r definida sobre Σ tal que $||m||_{B,r} << \nu_r$ para todo $B \in \mathcal{B}$, siendo \mathcal{B} la familia de todos los subconjuntos acotados y absolutamente convexos de X y $||m||_{B,r}$ la semivariación de m definida por:

$$||m||_{B,r}(E) = \sup r\left(\sum_{i=1}^n x_i m(E_i)\right), \qquad (E \in \Sigma)$$

donde el supremo está tomado sobre todas las particiones finitas de E, $\{E_i\}_{i=1}^n \subset \Sigma$ y todas las familias finitas de elementos $\{x_i\}_{i=1}^n \subset B$. Como es habitual, un conjunto $E \in \Sigma$ se dice m-nulo si y sólo si:

$$||m||_{B,r}(E) = 0$$
 para todo $B \in \mathcal{B}$ y toda $r \in R$.

Siguiendo la notación habitual de Grothendieck, para cada $B \in \mathcal{B}$, denotaremos por X_B al subespacio vectorial de X engendrado por B, y consideraremos en él la topología asociada al funcional de Minkowsky p_B de B en X_B .

Dada una sucesión de funciones $\{f_n\}$, $f_n:\Omega\to X_B$ para todo $n=1,2,\ldots,$ y una función $f:\Omega\to X_B$, denotaremos por

$$\{f_n\} \stackrel{(m,B)-\mathrm{c.t.p.}}{\longrightarrow} f,$$

la convergencia en casi todo punto de $\{f_n\}$ a f, lo que implica la existencia de un conjunto E m-nulo tal que $p_B(f_n(t) - f(t)) \rightarrow 0$ puntualmente en $\Omega - E$.

Este tipo de convergencia implica la convergencia casi uniforme (ver 2.29. de [6]), que denotaremos por

 $\{f_n\}^{(m,B)-\text{c.u.}}f,$

y que consiste en lo siguiente: dado $\epsilon > 0$ y $r \in R$, existe un conjunto $E \in \Sigma$ tal que $||m||_{B,r}(E) < \epsilon$ y $p_B(f_n(t) - f(t)) \to 0$ uniformemente en $\Omega - E$.

2.1. Definición [6]. Sea $B \in \mathcal{B}$. Una función $f: \Omega \to X_B$ se dice (m, B)-medible si existe una sucesión $\{f_n\}$ de funciones simples valoradas en X_B tal que

$$\{f_n\}$$
 $\xrightarrow{(m,B)-\text{c.t.p.}} f$.

2.2. Definición [6]. Sea $B \in \mathcal{B}$. Una función $f: \Omega \to X_B$ se dice que es (m, B)-integrable si y sólo si $\text{Im}(f) \subset X_B$ y existe una sucesión $\{f_n\}$ de funciones simples

valoradas en X_B (las funciones simples y sus integrales se definen de la forma habitual) tal que:

i.

$$\{f_n\} \stackrel{(m,B)-\text{c.t.p.}}{\longrightarrow} f.$$

ii. dados $\epsilon > 0$ y $r \in R$, existe $\delta = \delta(\epsilon, r) > 0$ tal que:

$$r\left(\int_{E}^{\cdot} f_n \, dm\right) < \epsilon$$

para todo $n \in \mathbb{N}$ y $E \in \Sigma$ con $||m||_{B,r}(E) < \delta$.

Cualquier sucesión de funciones simples que satisfaga las condiciones i. y ii. se dice que asegura la (m, B)-integrabilidad de f.

La condición ii. se puede comprobar que es equivalente (1.19.,[2]) a la condición de que la sucesión de medidas

$$\left\{ \int_{\cdot} f_n \, dm \right\}_{n=1}^{\infty}$$

sea uniformemente contablemente aditiva.

Si f es una función (m, B)-integrable y $E \in \Sigma$, se define:

$$\int_{E}^{(B)} f \, dm = \lim_{n} \int_{E} f_{n} \, dm$$

donde $\{f_n\}$ es cualquier sucesión de funciones simples que asegure la (m, B)-integrabilidad de f.

Una función $f: \Omega \to X$ se dice que m-integrable si y sólo si es (m, B)-integrable para algún $B \in \mathcal{B}$.

Si f es m-integrable y $E \in \Sigma$, se define:

$$\int_E f\,dm = \int_E^{(B)} f\,dm$$

para cualquier $B \in \mathcal{B}$ tal que f sea (m, B)-integrable.

3. Espacios L_p

Definiremos primeramente los espacios L_1 , e indicaremos la generalización a los espacios L_p con 1 .

Primero vamos a definir las semivariaciones de la medida para una función f, lo que nos permitirá, más adelante, elegir las funciones que formarán nuestros espacios L_1 , así como dotar a estos últimos de una topología localmente convexa.

3.1. Definición. Sean $B \in \mathcal{B}$, $r \in R$, f una función (m, B)-medible, y $E \in \Sigma$. Se define la semivariación de la medida m para la función f y el conjunto E como:

$$||m||_{B,r}(f,E) = \sup_{g} \left(r \int_{E} g \, dm\right)$$

donde el supremo se toma sobre las funciones simples g tales que $\operatorname{Im}(g) \subset X_B$, y $p_B(g(t)) \leq p_B(f(t))$ para todo $t \in E$. Sea también $||m||_{B,r}(f) = ||m||_{B,r}(f,\Omega)$ la seminorma $L_1^{B,r}$ de f.

Pasamos a enunciar en la siguiente proposición algunas propiedades de estas semivariaciones, que se demuestran inmediatamente.

- 3.2. Proposición. Sean $B \in \mathcal{B}$, $r \in R$, f función (m, B)-medible y $E \in \Sigma$.
 - a) $||m||_{B,r}(f,\cdot)$ es una función de conjunto monótona y contablemente subaditiva en Σ .
 - b) $||m||_{B,r}(af, E) = |a| ||m||_{B,r}(f, E)$ para todo escalar a.

c)

$$\inf_{t \in E} p_B(f(t)) ||m||_{B,r}(E) \le ||m||_{B,r}(f,E) \le \sup_{t \in E} p_B(f(t)) ||m||_{B,r}(E).$$

d) Si g es una función (m, B)-medible y existe $F \in \Sigma$ con $||m||_{B,r}(F) = 0$, tal que $p_B(g(t)) \leq p_B(f(t))$ para todo $t \in E - F$, entonces se tiene que

$$||m||_{B,r}(g,E) \leq ||m||_{B,r}(f,E).$$

e) $||m||_{B,r}(f,E)=0$ si y sólo si

$$||m||_{B,r}(\{t \in E: p_B(f(t)) > 0\}) = 0.$$

f) Si f es una función (m, B)-esencialmente acotada, es decir, existe F m-nulo tal que $p_B(f(t))$ está acotado en $\Omega - F$, entonces se tiene:

$$||m||_{B,r}(f,E) \leq ||f||_{\infty}^{B} ||m||_{B,r}(E)$$

para todo $E \in \Sigma$, donde $||f||_{\infty}^{B}$ es el supremo esencial (definido de forma habitual).

g) Para todo a > 0 se verifica

$$||m||_{B,r}(\{t \in E: p_B(f(t)) \ge a\}) \le a^{-1} ||m||_{B,r}(f,E).$$

Siguiendo a Dobrakov [4] se puede demostrar que las semivariaciones se expresan también de la siguiente forma:

$$||m||_{B,r}(f,E) = \sup_g r \left(\int_E g \, dm \right)$$

donde el supremo se toma sobre las funciones g (m, B)-integrables para las cuales $p_B(g(t)) \leq p_B(f(t))$ para todo $t \in E$, y deducir de ello la desigualdad triangular de las seminormas $L^{B,r}$.

3.3. Definición. Sean $B \in \mathcal{B}$, $r \in R$ y una función f(m, B)—medible. Diremos que $||m||_{B,r}(f,\cdot)$ es continua en Σ si y sólo si dada una sucesión de elementos de Σ , $\{E_n\}_{n=1}^{\infty}$, tal que $E_n \supset E_{n+1}$ para todo $n \in \mathbb{N}$, y $\bigcap_{n=1}^{\infty} E_n = \emptyset$ (lo cual denotaremos por $\{E_n\} \downarrow \emptyset \subset \Sigma$), entonces

$$\lim_{n}||m||_{B,r}(f,E_n)=0.$$

Para cada $B \in \mathcal{B}$, denotaremos por M_1^B al espacio localmente convexo formado por las funciones (m, B)-medibles con normas $L_1^{B,r}$ finitas para todo $r \in R$, dotado de la topología asociada a estas seminormas:

$$\{||m||_{B,r}(\cdot): r \in R\}.$$

La elección de un primer espacio L_1 como el formado por las funciones de M_1^B que poseen semivariaciones $\{||m||_{B,r}(\cdot,\cdot): r \in R\}$ continuas, está apoyada en la siguiente proposición que demuestra que estas funciones forman la adherencia de las funciones simples, valoradas en X_B , en el e.l.c. M_1^B .

Es inmediato comprobar que las funciones simples valoradas en X_B pertenecen a M_1^B y tienen sus semivariaciones continuas.

3.4. Proposición. Sea $B \in \mathcal{B}$. La adherencia de las funciones simples, valoradas en X_B , en el e.l.c. M_1^B es el conjunto de las funciones (m, B)-medibles que tienen las semivariaciones $||m||_{B,r}(\cdot,\cdot)$ continuas para toda $r \in R$.

Demostración. Si f es una función (m, B)-medible perteneciente a la adherencia de las funciones simples, valoradas en X_B , en M_1^B es inmediato comprobar que tiene sus semivariaciones continuas por tenerlas cualquier función simple.

Supongamos ahora que f es una función (m, B)-medible tal que sus semivariaciones $||m||_{B,r}(f,\cdot)$ son continuas para todo $r \in \mathbb{R}$.

Fijados $r \in R$ y $\epsilon > 0$, por ser f(m, B)-medible existe una sucesión $\{f_n\}$ de funciones simples valoradas en X_B tal que

$$\{f_n\}^{(m,B)-\text{c.t.p.}}f,$$

y $p_B(f_n(t)) \leq p_B(f(t))$ para todo $t \in \Omega$.

Tenemos entonces que

$$\{f_n\}^{(m,B)-\text{c.u.}}f,$$

luego para cada $k \in \mathbb{N}$ existe un conjunto $E_k \in \Sigma$, tal que $||m||_{B,r}(E_k) < 1/k$ y $p_B(f_n(t) - f(t)) \to 0$ uniformemente en $\Omega - E_k$.

La sucesión $\{E_k\}$ se puede elegir no creciente, y así, haciendo $E = \bigcap_{k=1}^{\infty} E_k$, tenemos que $\{E_k - E\} \downarrow \emptyset \subset \Sigma$, con $||m||_{B,r}(E) = 0$.

Por continuidad de $||m||_{B,r}(f,\cdot)$ obtenemos que

$$\lim ||m||_{B,r}(f, E_k - E) = 0,$$

luego existe $k_0 \in \mathbb{N}$ tal que $||m||_{B,r}(f, E_{k_0} - E) < \epsilon/4$, y como en $\Omega - E_{k_0}$ la convergencia de $p_B(f_n(t) - f(t)) \to 0$ es uriforme, existe un $n_0 \in \mathbb{N}$ tal que

$$\sup_{t \in \Omega - E_{k_0}} p_B(f_{n_0}(t) - f(t)) \le \frac{\epsilon}{2 \|m\|_{B,r}(\Omega)}.$$

De todo lo anterior resulta que:

$$||m||_{B,r}(f - f_{n_0}) \leq ||m||_{B,r}(f - f_{n_0}, \Omega - E_{k_0})$$

$$+ ||m||_{B,r}(f - f_{n_0}, E_{k_0} - E) + ||m||_{B,r}(f - f_{n_0}, E)$$

$$\leq \frac{\epsilon}{2 ||m||_{B,r}(\Omega)} ||m||_{B,r}(\Omega - E_{k_0})$$

$$+ ||m||_{B,r}(f, E_{k_0} - E) + ||m||_{B,r}(f_{n_0}, E_{k_0} - E) + 0$$

$$\leq \epsilon/2 + 2 ||m||_{B,r}(f, E_{k_0})$$

$$\leq \epsilon/2 + 2 (\epsilon/4) = \epsilon .$$

Luego f pertenece a la adherencia de las funciones simples, valoradas en X_B , en M_1^B .

Pasamos a definir los espacios L_1 , primeramente uno para cada $B \in \mathcal{B}$, llegando por último a la construcción del L_1 único.

3.5. Definición. Para cada $B \in \mathcal{B}$, definimos el espacio L_1^B como aquel subespacio de M_1^B formado por las funciones que tienen sus semivariaciones $||m||_{B,r}(\cdot,\cdot)$ continuas para todo $r \in R$, dotado de la topología inducida, a la que denotaremos por T_1^B . Definiremos asimismo el espacio \hat{L}_1^B , subespacio de L_1^B , formado por las funciones de M_1^B que tienen sus semivariaciones $||m||_{B',r}(\cdot,\cdot)$ continuas para todo $r \in R$ y todo $B' \in \mathcal{B}$ tal que $B \subset B'$, dotado igualmente de la topología inducida, a la que denotaremos por \hat{T}_1^B . Por último definimos el espacio L_1 como $\bigcup_{B \in \mathcal{B}} \hat{L}_1^B$, en el cual consideraremos la topología límite inductivo asociada a las inclusiones $(\hat{L}_1^B, \hat{T}_1^B) \to L_1$, a la que denotaremos por T_1 .

Todos los espacios definidos anteriormente son vectoriales, están formados por funciones m-integrables ((m, B)-integrables), tienen a las funciones simples (simples valoradas en X_B) como subconjunto denso y la aplicación que va de ellos a Z, definida a través de la integral, es continua.

Para definir los espacios L_p^B , \hat{L}_p^B y L_p , $1 , es suficiente con generalizar la definición 3.1., y realizar una construcción análoga a la expuesta anteriormente para los espacios <math>L_1^B$, \hat{L}_1^B , y L_1 .

3.6. Definición. Sean $B \in \mathcal{B}$, $r \in R$, $E \in \Sigma$, y f una función (m, B)-medible. Se define la p-semivariación $(1 \le p < \infty)$ de la medida m para la función f y el conjunto E como:

$$||m||_{B,r}^p(f,E) = \sup_g \left(r\left(\int_E g_n dm\right)\right)^{1/p}$$

donde el supremo se toma sobre las funciones g(m, B)-medibles tales que $p_B(g(t)) \le p_B^p(f(t))$ para todo $t \in E$.

La norma $L_p^{B,r}$ será entonces:

$$||m||_{B,r}^p(f)=||m||_{B,r}^p(f,\Omega).$$

4. Teoremas de convergencia

En Sivasankhara [6] (2.47.) se expone un teorema de la convergencia acotada exigiéndole a la medida m que satisfaga la **-propiedad (2.25.), propiedad más fuerte que la *-propiedad.

Pasamos a desarrollar un teorema de la convergencia dominada restringiéndonos al ámbito de los espacios construidos en las secciones anteriores.

4.1. Teorema. Sean $B \in \mathcal{B}$, $1 \leq p < \infty$, $\{f_n\}$ una sucesión de funciones (m, B)-medibles y f una función (m, B)-medible tal que

$$\{f_n\}$$
 $\xrightarrow{(m,B)-\text{c.t.p.}} f$.

Sea $g \in L_p^B$ una función tal que existe $F \in \Sigma$ con $||m||_{B,r}(F) = 0$ para cada $r \in R$ y $p_B(f_n(t)) \le p_B(g(t))$ para todo $t \in \Omega - F$ y todo $n = 1, 2, \ldots$ (1)

Entonces:

i. $f y f_n$, (n = 1, 2, ...), son funciones de L_p^B .

ii.

$$\{f_n\} \xrightarrow{L_p^B} f.$$

iii.

$$\int_{E} f_n dm \longrightarrow \int_{E} f dm$$

uniformemente en $E \in \Sigma$.

Demostración. Realizaremos la demostración en el caso p=1. En el caso general la demostración sería análoga.

La condición (1) implica, aplicando 3.2.d), que

$$||m||_{B,r}(f_n,E) \le ||m||_{B,r}(g,E)$$

cualesquiera que sean $r \in R$, $E \in \Sigma$ y n = 1, 2, ..., de lo que se deduce que $||m||_{B,r}(f_n, \cdot) << ||m||_{B,r}(g, \cdot)$, y por tanto que $f_n \in L_1^B$ para cada n = 1, 2, ...

Por ser

$$\{f_n\} \xrightarrow{(m,B)-\mathrm{c.t.p.}} f$$

se tiene que $p_B(f(t)) \le p_B(g(t))$ para todo $t \in \Omega - F'$, con $||m||_{B,r}(F') = 0$ para todo $r \in R$, y razonando como anteriormente obtenemos que $f \in L_1^B$.

Pasemos a comprobar que

$$\{f_n\} \xrightarrow{L_1^B} f.$$

Fijados $r \in R$ y $\epsilon > 0$, por ser

$$\{f_n\}^{(m,B)-\mathrm{c.u.}}f,$$

existe una sucesión $\{E_k\}\subset \Sigma$ no creciente tal que $E=\cap_{k=1}^\infty E_k$ cumple que

$$||m||_{B,r}(E)=0,$$

у

$$p_B(f_n(t) - f(t)) \to 0$$

uniformemente para $t \in \Omega - E_k$, para todo $k = 1, 2, \ldots$

De la continuidad de $||m||_{B,r}(g,\cdot)$ se sigue la existencia de un $k_0 \in \mathbb{N}$ tal que $||m||_{B,r}(g,E_{k_0}-E) \leq \epsilon/4$, y de la convergencia uniforme de $p_B(f_n(t)-f(t)) \to 0$ en $\Omega - E_{k_0}$, se sigue la existencia de un $n_0 \in \mathbb{N}$ tal que para todo $n \geq n_0$ se verifica que

$$p_B(f_n(t) - f(t)) \le \frac{\epsilon}{2 ||m||_{B,r}(\Omega)}$$

para todo $t \in \Omega - E_{k_0}$.

De lo anterior resulta que para $n \ge n_0$ se cumple que:

$$||m||_{B,r}(f - f_n) \leq ||m||_{B,r}(f - f_n, \Omega - E_{k_0}) + ||m||_{B,r}(f - f_n, E_{k_0} - E) + ||m||_{B,r}(f - f_n, E) \leq \frac{\epsilon}{2 ||m||_{B,r}(\Omega)} ||m||_{B,r}(\Omega - E_{k_0}) + 2 ||m||_{B,r}(g, E_{k_0}) + 0 \leq \epsilon/2 + 2(\epsilon/4) = \epsilon.$$

La demostración de iii. es inmediata por ser:

$$r\left(\int_{E} f_n dm - \int_{E} f dm\right) \le ||m||_{B,r}(f_n - f, E) \le ||m||_{B,r}(f_n - f)$$

para todo $E \in \Sigma$ y todo $r \in R$.

Resultados análogos a este teorema se pueden enunciar para los espacios \hat{L}_p^B y L_p .

Vamos a desarrollar seguidamente otros resultados de convergencia que mejoran los anteriores, aunque en el caso particular de que el espacio Z sea de Fréchet.

Supondremos a partir de ahora que Z es un espacio de Fréchet, y denotaremos por $\{r_n\}_{n=1}^{\infty}$ a una familia de seminormas que genera la topología de Z, y tal que $r_n \leq r_{n+1}$ para cada $n=1,2,\ldots$ La distancia en Z vendrá dada por

$$d(x,y) = \sum_{n=1}^{\infty} \frac{1}{2^n} \frac{r_n(x-y)}{1 + r_n(x-y)} ,$$

para todo par de elementos $x, y \in Z$.

4.2. Teorema. Sean $B \in \mathcal{B}$ y $\{f_n\}$ una sucesión de funciones (m, B)-integrables tales que:

i

$$\{f_n\}^{(m,B)-\text{c.t.p.}}f,$$

 $e \operatorname{Im}(f) \subset X_B$.

ii. Dados $\epsilon>0$ y $r\in R$, existe $\delta>0$ tal que si $E\in \Sigma$ cumple que $||m||_{B,r}(E)<\delta$ entonces

$$r\left(\int_{E} f_n \, dm\right) < \epsilon$$

para todo $n = 1, 2, \ldots$

Entonces f es una función (m, B)-integrable y

$$\lim_{n} \int_{E} f_{n} \, dm = \int_{E} f \, dm$$

uniformemente en $E \in \Sigma$.

Demostración. Para cada $n=1,2,\ldots$, por ser f_n una función (m,B)-integrable, existe una sucesión $\{g_k^n\}_{k=1}^{\infty}$ de funciones simples valoradas en X_B que asegura la (m,B)-integrabilidad de f_n . Tenemos entonces que

$$\{g_k^n\} \stackrel{(m,B)-\text{c.u.}}{\longrightarrow} f_n$$

y, por 2.35. de [6], que

$$\lim_{k} \int_{E} g_{k}^{n} dm = \int_{E} f_{n} dm$$

uniformemente en $E \in \Sigma$. De lo anterior se deduce inmediatamente que para cada $n=1,2,\ldots$, podemos encontrar un conjunto $E_n \in \Sigma$ y una función simple g_n valorada en X_B , tales que $p_B(f_n(t)-g_n(t))<1/n$ para todo $t\in \Omega-E_n$, con $||m||_{B,r_n}(E_n)<2^{-n}$, y

$$d\left(\int_E f_n \, dm, \int_E g_n \, dm\right) < 2^{-n} \ .$$

Por un razonamiento habitual se comprueba que $\{g_n\}$ es una sucesión de funciones simples valoradas en X_B que converge puntualmente a f para todo $t \in \Omega - E$, siendo

$$E = \bigcap_{k=1}^{\infty} \bigcup_{n=k}^{\infty} E_n$$

que verifica $||m||_{B,r_n}(E)=0$ para todo $n=1,2,\ldots$ Luego

$$\{g_n\} \stackrel{(m,B)-\text{c.t.p.}}{\longrightarrow} f.$$

Pasamos a comprobar que $\{g_n\}$ satisface la condición ii. de la definición 2.2..

Sean $\epsilon > 0$ y $r_n \in R$, y elijamos $k_0 \in \mathbb{N}$ tal que $2^{n-k_0} < \epsilon/(2+\epsilon)$. Sea también, para $k = 1, 2, \ldots, k_0 - 1$, $M_k = ||g_k||_{\infty}^B$, y $\delta' > 0$ el delta correspondiente a $\epsilon/2$ de la condición ii. de las hipótesis. Veamos que

$$\delta = \min\{\delta', \epsilon/M_1, \dots, \epsilon/M_{k_0-1}\}\$$

satisface la condición 2.2.ii..

Sea $E \in \Sigma$ tal que $||m||_{B,r}(E) < \delta$.

Si $k = 1, \ldots, k_0 - 1$ se verifica

$$r_n\left(\int_E g_k dm\right) \le M_k \, \delta < \epsilon \, ,$$

y para $k \geq k_o$ se tiene:

$$\begin{split} r_n\left(\int_E g_k \, dm\right) &\leq r_n\left(\int_E f_k \, dm - \int_E g_k \, dm\right) + r_n\left(\int_E f_k \, dm\right) \\ &\leq \frac{2^n \, d\left(\int_E f_k \, dm \, , \int_E g_k \, dm\right)}{1 - 2^n \, d\left(\int_E f_k \, dm \, , \int_E g_k \, dm\right)} + r_n\left(\int_E f_k \, dm\right) \\ &\leq \frac{2^{n-k}}{1 - 2^{n-k}} + \frac{\epsilon}{2} \\ &\leq \frac{\epsilon/(2 + \epsilon)}{1 - \epsilon/(2 + \epsilon)} + \frac{\epsilon}{2} \\ &= \epsilon/2 + \epsilon/2 \; , \end{split}$$

luego la sucesión $\{g_n\}$ asegura la (m, B)-integrabilidad de f, y tenemos así, por 2.35. de [6] y (1), que:

$$\int_{E} f \, dm = \lim_{n} \int_{E} g_{n} \, dm = \lim_{n} \int_{E} f_{n} \, dm$$

uniformemente en $E \in \Sigma$.

En el caso de ser Z un Fréchet, siguiendo el teorema 7 de [4], se puede demostrar el siguiente resultado de completitud para los espacios (L_p^B, T_p^B) , a partir del cual por técnicas habituales se puede llegar comprobar un nuevo teorema de convergencia.

- **4.3.** Teorema. Sea Z un espacio de Fréchet. Para cada $B \in \mathcal{B}$ y cada $p, 1 \leq p < \infty$, se verifica que el espacio (L_p^B, T_p^B) es completo.
- **4.4. Teorema.** Sea $\{f_n\}$ una sucesión de funciones de L_p^B , $B \in \mathcal{B}$ y $1 \leq p < \infty$, que converge (m, B)-c.t.p. a una función f, con $\mathrm{Im}(f) \subset X_B$. Entonces la sucesión $\{f_n\}$ converge a f en (L_p^B, T_p^B) si y sólo si para cada $r \in R$ las semivariaciones $||m||_{B,r}^p(f_n, \cdot)$, $n = 1, 2, \ldots$, son uniformemente continuas.

Referencias

- R. G. BARTLE, A general bilinear vector integral, Studia Math. 15 (1956), 337-352.
- [2] R. Bravo, Tópicos en integración bilineal vectorial, Tesis Doctoral, UNED, Madrid, 1986.
- [3] I. Dobrakov, On integration in Banach spaces, Czech. Math. J. 20 (1970), 511-536.
- [4] I. Dobrakov, On integration in Banach spaces, II, Czech. Math. J. 20 (1970), 680-695.
- [5] R. RAO CHIVUKULA AND A. S. SASTRY, Product vector measures via Bartle integrals, J. Math. Anal. 96 (1983), 180-195.
- [6] S. A. SIVASANKHARA, Vector integrals and product of vector measures, Ph. D. Thesis, Univ. Microfilm Inter. Michigan, 1983.

Received 10/NOV/87

Rafael Bravo de la Parra Departamento de Matemática Fundamental Facultad de Ciencias U. N. E. D. (Madrid)