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ABSTRACT

The purpose of this paper is to prove that some familiar classes of locally
convex spaces and, in particular, of Fréchet spaces, have the so-called three-space
property, and also to give counterexamples showing that some important classes,
which are often encountered in the applications, do not enjoy the above property.

We use standard notions and results from the theory of locally convex
spaces, for which we refer to [4] and [3]. We also make reference to [7] for what
concerns operator ideals on Banach spaces, ideals of locally convex spaces (space
ideals) and Grothendieck space ideals. Here we confine ourselves to recalling that
space ideals with the three-space property are termed three-space ideals. This
means that a class C of locally convex spaces is a three-space ideal if and only if
the following condifions are satisfied:

(i) The finite-dimensional spaces belong to C;

(ii) Cis stable under isomorphisms;

(iii) If EeC and F is a complemented subspace of E, then FeC;

(iv) Three-space property: If F is a subspace of E such that F,E/FeC, then
EeC.

1. GENERAL LOCALLY CONVEX CLASSES

In this section we shall show that some general classes of locally convex
spaces which are often encountered in the applications have the three-space
property. The results are meant to supplement those in [8].

We shall consider the following classes of locally convex spaces

(*) This author acknowledges partial support from the Italian Ministero della Pubblica
Istruzione.
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Nw = the class of spaces which do not contain a copy of w,

Ny¢< = the class of spaces which do not contain a complemented copy of ¢,
CON = the class of spaces with continuous norm,

Groth(#) = the Grothendieck space ideal generated by the operator ideal #&

(cf. [7].
1.1. Proposition. Nw is a three-space ideal,

Proof. Let E be a locally convex space and let F be a closed subspace of E
such that F and E/F eNw. Suppose that E contains w as a subspace. Then FNw
can be at most finite-dimensional, since F» w, and we may assume that
FNnw={0}. If q:E - E/F is the quotient map, then its restriction q,,to wis
a continuous bijection onto g(w). By a well-known property of w, q,,, must be
also open, hence an isomorphism and, therefore, E/F D g(w) =~ w. But this is a
contradiction and we conclude that EeNw.

1.2. Proposition. Ny < is a three-space ideal.

Proof. 1et E be such that F and E/FeNy< for some closed subspace F of E.
Supposing that ¢ < E, we denote by p:E - ¢ a continuous projection and let
pp be its restriction to F. If dim p(F)=¢°, then p(F)~¢. In this case
pg:F > p(F) is surjective and also ‘open, because ¢ has the finest locally convex
topology. But then ¢=~p(F) is a quotient of F and hence ¢ <F, as well known.
Since this contradicts our hypothesis on F, we must have dim p(F) < eo. Without
loss of generality we may then suppose that p(F) = 0. If q:E — E/F is the
quotient map, a map r : E/F - ¢ may then be defined by rq = p. Note that r is
well defined, since ker q Cker p, and is also continuous. Since r is surjective and
automatically open, we obtain that ¢ < E/F and again arrive at a contradiction.
Thus E e Np<.

1.3. Remark. In the above proof we have used the fact that N <=N¢Q (= the
class of spaces which do not have ¥ as a quotient). Thus, since Nw = Nw<
(because w is injective), we see that Propositions 1.1 and 1.2 are dual to each
other.

1.4. Proposition. CON is a three-space ideal.

Proof. Suppose that the locally convex space E contains a subspace F for which
F and E/F € CON and assume that E ¢ CON. By [9], Proposition 2, E contains
a non-trivial, very strongly convergent net (x,) (i.e., the net (£, x,) converges
to O for every net (£,) of scalars). Now observe that the subnet (xg) NF of
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(xo) cannot be cofinal for (xg), otherwise it would be non-trivial and very
strongly convergent in F, implying, again by Proposition 2 of [9], that F ¢ CON.
But then, if (xy) NF is not cofinal, its complement (x40 \ (x) NF must be
cofinal for (xa) and hence non-trivial and very strongly convergent. As a
consequence, its image in E/F is non-trivial and very strongly convergent. But
this is a contradiction, because it implies that E/F ¢ CON by the same Proposition
2 of [9].

1.5. Remark. Note that CON gNw (cf., e.g., [9], Example 1).

1.6. Remark. The ideal Ny< is injective and surjective, while Nw and CON are
injective but not surjective.

Now let E be a locally convex space and let U be an absolutely convex
0-neighbourhood in E. If py is the associated seminorm, we denote, as usual, by
Ey the completion of the space E/ker Py normed by the norm induced by py;.

1.7. Remark. Let F be a closed subspace of E,let V=V NFand letq: E = E/F
be the quotient map. Then Fy, =F NE; and (E/F)q(U) =Ey/Fy, ie. Fy isa
closed subspace of E; and (E/ F)q(U) is a quotient of Ey;.

Following [7] we denote by JC the ideal of operators between Banach spaces
that factor through a Hilbert space. Recall that Greth(JC) is the Grothendieck
ideal of hilbertian locally convex spaces. The following result implies that most
Grothendieck ideals have the three-space property.

1.8. Theorem. Let # be an arbitrary operator ideal on Banach spaces and let
E e Groth(JC). If F is a closed subspace of E such that F and E[F e Groth(#),
then E e Groth(#).

Proof. With reference to Remark 1.7 we observe that, if Uy is an absolutely
convex O-neighbourhood in E contained in U, then the following self-explanatory,
diagrams commute:

Puou Puou

Up U EUo EU

io i o q

By — Fy E/F)gowe — EFy,
Dyov P a0Waam
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where i,,i are the canonical embeddings and qg,q the quotient maps. Now, since
E € Groth(J€), we may assume that both E and EUo are Hilbert spaces. Then

Ey =Fy ® (B/F) q;, and By =Fy @ (E/F), .

Hence, if U and Uy are chosen so that QVOV and @ e A , we have that

q0(Uo)a(U)
also ¢U0U € # and the assertion follows.

1.9. Corollary. Let # be an operator ideal on Banach spaces. If Groth( #&) is
contained in the ideal of nuclear spaces, then Groth( A& ) is a three-space ideal.

Proof. It is known that the nuclear spaces form a three-space ideal (cf. [8],
Proposition 3.8). Thus if F and E/F e Groth(#), then E is nuclear, hence
hilbertian and Theorem 1.8 applies.

1.10. Corollary. The M-nuclear spaces (as defined in [5]) and, in particular, the
O-nuclear spaces and the strongly-nuclear spaces form a three-space ideal.

1.11. Remark. We note that also the ideal Groth("W) (W = the weakly compact
operators) of infra-Schwartz spaces is a three-space ideal, since it is well known
that reflexive Banach spaces enjoy,the three-space property. This is also true of
the ideal Groth(J,) ( J& = the compact operators) of Schwartz spaces (cf. [8],
Proposition 3.7).

1.12. Remark. In general, if # is an operator ideal on Banach spaces, the locally
convex space ideal Space (#£) is defined as follows: E e Space ( #) if (and only
if) E has a basis U of absolutely convex O-neighbourhoods such that Iye A
for each U € U, where I, is the identity of the Banach space EU associated
to U. In many cases Space(#) is a three-space ideal (cf. [2]). Note that
Groth(W) = Space(‘W).

1.13. Remark. Finally, we observe that the assumption E e Groth(JC) in
Theorem 8 is necessary, since Groth(JC) itself is not a three-space ideal (cf. [1]
and also Corollaries 2.4, 2.5 and Theorem 2.7 below).

We conclude this section with the following curious application:

1.14. Proposition. Let F be a Schwartz (in particular, nuclear) subspace of
(22N, Then ( 22)N/F ~ (22N,

Proof. Tt is easy to see that any quotient of ( 22)]N
wx 22 or (22N,

is isomorphic to w, 22,
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We consider the various possibilities.
@ (eHNFrw.

This case is impossible because, as remarked in 1.11, Schwartz spaces are a
three-space ideal.

) (N/F~ 22,

Put X = 22 for all n and write ( 22N = HX . Because F is Schwartz,

dim(X /X NF) = o for all n and hence we can choose elements x neXn\Xn NF
for each n. Denoting by H the closed linear span of the sequence (x| )in ( @ 2N,
it is clear that H = w and that dim(H/HNF) = oo It follows that if G is any
topological complement of HNF in H, then G ~ w and GNF ={0}. If q:
( )N > (2 2)N/F is the quotient map, then its restriction to G is a continous
bijection onto q(G) and hence an 1somorph1sm Thus ( £ 2)lN [F D qG) =

and we get a contradiction.

©) (2*)N/F=~wx g2

With q as above, we see that g} (w) =F © G with G =~ w, hence q'(w)isa
Schwartz space such that (22)N/q1(w) = €2, which is impossible by
case (b).

The only possible case left is ( £ 2)]N JE=>=(2 2)]N , as claimed.

2. SPECIAL CLASSES
The classes considered here will be the following ones:

QUO =the class of quojections,

PRO = the class of countable products of Banach spaces,

SUM = the class of countable direct sums of Banach spaces,

Groth( J€ © J0 ) = the Schwartz-Hilbert class, i.e. the class of locally convex
spaces that are both Schwartz and hilbertian,

and we shall show that of the above classes, only QUO is a three-spaceideal.
Recall that a quojection is the projective limit of a sequence of Banach spaces
with respect to surjective maps and that, by [6], PRO C QUO. A space
EeQUONPRO is called fwisted.
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2.1. Proposition. QUO is a three-space ideal.

Proof. Let E be a locally convex space having a subspace F such that F and
E/FeQUO. By Propositions 1.3 and 2.1 of [8] E is Fréchet. Let (p,) be an
increasing sequence of seminorms defining the topology of E.If E_ =E/ker p 0
then E is a Fréchet space when endowed with the quotient topology from E.
Moreover, the E n have continuous norms and the canonical maps (Dn: Er1+1 g En
are surjective.

Put F = F/(FNker p_); then F_ is a subspace of E on which the induced
topology coincides with the quotient topology from F. Now'F  has a continuous
norm under the former topology, while it is a quojection (for so is F by
assumption) under the latter. Therefore, each F 5 is Banach.

Next, denote by G the quotient E/F and by (q,) the sequence of seminorms
on G that are quotients of the p . Putting G =G/ker q , one has that G =E /F
algebraically and the closed graph theorem shows that on G_ the quotient
topology from G is identical to the quotient topology from E_. Then, again,
each G is a quojection with a continuous norm and hence is Banach. Thus each
E_ has a Banach subspace F such that E /F  is Banach: it follows from [8],
Theorem 3.2, that the E  are Banach and, therefore, EeQUO.

2.2. Theorem. PRO does not have the three-space property.

Proof. We construct a counterexample based on the method of [6]. Let X = £2
be a Banach space and let Y be a non-complemented subspace of X. Put

El =(X/Y & X/Y @ .. .)2
and, foreachn>1,

E =(Xe ..eXoX/YoX/Yo. ).

n-1
Clearly the quotient map q : X = X/Y induces, together with the identity of
X/Y, obvious quotient maps Q nEpn; — E,, so that the projective limit

E = proj (E ,Q,) is a quojection. As in [6] E is twisted, hence E ¢ PRO.
Now put

F1=({0}@{0}$...)2

and, foreachn>1,
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F=(Yo..eoYeo{0}o{0}e. .,

n-1

Clarly each F_ is a closed subspace of E, and the restriction R_ of Q to'F_, is
onto F . It follows that F = proj n(Fn ,Rn) is a closed subspace of E and that

F~YN 5o that FePRO.
Next, observe that

En/Fn =(X/Y @ XY ©...),
for all n, from which
E/F =proj (B [F)=(X/Y © X/Y) @ ..),

ie., E/ F is Banach and hence belongs to PRO. However, E¢ PRO, as we have
seen above.

2.3. Corollary. There exists a twisted quojection E containing a subspace ¥ ePRO
and such that EJF is Banach.

2.4. Corollary. There exists a twisted-quojection E ;ontaining a subspace F such
that F =~ ( 2 2)N and EJF =~ 22. Moreover, E¢ Groth( JE).

Proof. Let X be the Banach space Z in [1] having a subspace Y = 22 such that
X/Y = £2,but X # 22, Clearly Y cannot be complemented in X and we obtain
the desired result by taking this X and this Y in the proof of Theorem 2.2.

Now dualizing Corollary 2.4 we get

2.5. Corollary. There éxists a strict (LB)-space E¢SUM containing a subspace G
such that G~ 22 and B/G ~ (R2)®™) (= the direct sum of countably many
copies of 2 2). Moreover, E¢ Groth(JC).

2.6. Remark. By [6] the space E in Corollary 2.4 (resp., in Corollary 2.5) cannot
have an unconditional basis, although, of course, both F and E/F (resp., G and
E/G) have unconditional bases.

To conclude the paper, we recall that the Schwartz spaces form a three-space
ideal, while the hilbertian ones do not. What happens for the Schwartz-Hilbert
class, which is intermediate between the two? The answer is provided by the
following
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2.7. Theorem. The Schwartz-Hilbert ideal Groth(JCoJG) does not have the
three-space property.

Proof. The counterexample will be based on the Enflo-Lindenstrauss-Pisier space
Z [1] already used in the proof of Corollary 2.4. ForeachnletZ = Q: ® Q:z

with the norm |11 FI1 asin [1], p. 209. Put Y, = %23; then Y , under the
norm induced by Z , is isométric to a Hilbert space and the same is true of
Z_[Y . Furthermore, for any projection Pof (Z , I |1 1)onto (Y , 11t 111)
one has

*) IP 11> ¢ (log n)*2

for a suitable ¢ > 0. Let Z = (:3 Z_)2;Z contains Y = (fYnh which is isometric
to 2. Moreover, Z/Y is isometric to (& 2),, which is also isometric to 22,
n

but Z is not even isomoprhic to £ 2 since Y is not complemented in Z.
Now for each n let I be the identity of z; obviously InlY is the identity
of Y . Choose a sequence of real numbers o, > 0 such that B

k
Q
(*%) lima =c and lLm (@,)

= Oforallk,
n n logn

and define the operator T : Z > Z by

_ -1
T= %(an) L.

Clearly T is compact and has a dense range. Moreover, T maps Y into Y with a
dense range and also induces a compact map Ty:Z/Y — Z/Y which has a dense
range too. Let E be the projective limit with respect to the powers TC of T,
ie. E = proj, (Z,T). If F = proj, (Y,T), then F is a closed subspace of E and
E/F = projk(Z/Y,To) by construction. Further, E,F and E/F are Schwartz,
because T and T, are compact, while, clearly, F and E/F are also hilbertian.
Thus, F and E/F € Groth(J€oJ0) and it remains to show that E¢Groth(JC).
This will be achieved by the following

2.8. Lemma. For any k,T X does not factor through 22.

Proof. Supposing the contrary, for some k we have the diagram
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T
Z
\

L

k

z
/.(
2

ie. TS = RS and we may assume I S| < 1. Then, putting R_ =R ISz and
S, = SIZn , from Tk\Zn = (an)"kln we have the diagram ' -

(o )*L_

Zn Zn
Sn\ /Rn
Q 2

ie. (ocn)'kln =R S, where we have set R =0 on the orthogonal complement
of S(Z,)in 2>.Putting A= IR II> IR _I, one has, for each xeZ_,

Al ™®IxI<tlix 111, <A(e)Ixl,
n Z, ., 'n

where || | is the hilbertian norm on Z . But then, since there is a norm-one
projection from (Z_, Il I) onto (Y, I II), there must be a projection P :
@y, VI 1T = (Y, HE 11 such that [P, 111 A2(an)2k. However,

this is absurd, by (*) and (**).
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