NEW CHARACTERIZATIONS OF To-SPACES

JOSEP GUIA, RAFAEL LLEDO, ISABEL SEGURA

ABSTRACT

Making use of the essential derived operator, we present some new characterizations of T_0 -spaces in the same way that the already known for T_D and ET_D -spaces. It is also proved that an analogous treatment for T_1 , $ET_1 = R_0$, T_{IID} and ET_{IID} spaces is not valid.

1. T_{α} -SPACES ($\alpha = 1$, D, UD, O)

(1.1) DEFINITION. In a topological space (X, τ) , we call essential derived set of a subset A of X, the set $DA = \overline{A} \setminus \cup \{ \langle x \rangle / x \in A \setminus dA \}$, where \overline{A} is the closure of A, dA is the derived set of A and $\langle x \rangle$ is the covering of x, that is $\langle x \rangle = \{ \overline{x} \} \cap (\cap \{ 0/0 \in \tau , x \in 0 \})$.

(1.2) **PROPOSITION.** In a topological space (X, τ) , if A is subset of X, then $DA = \bigcup \{F/F \text{ closed}, F \subset dA\}$.

PROOF. Let x be a point of \cup { F/F closed, F \subset dA }, then x belongs to \overline{A} and $\langle x \rangle \subset \{\overline{x}\} \subset F \subset dA$ for a closed set F included in dA. On the other hand, $\langle x \rangle \neq \langle y \rangle$ for every point y of dA \ A and $\langle x \rangle \cap (\cup \{\langle y \rangle / y \in A \setminus dA \}) = \emptyset$, hence $x \in \overline{A} \setminus \cup \{\langle y \rangle / y \in A \setminus dA \}$.

Conversely, let us assume that there is a point x in DA such that $\{\overline{x}\} \not\subset dA$, then $\{\overline{x}\} \cap (\overline{A} \backslash dA)$ is not empty and for every point y in $\{\overline{x}\} \cap (\overline{A} \backslash dA)$, x belongs to every open set containing y and there exists $O_y \in \mathcal{T}$ such that $O_y \cap A = \{y\}$. On the other hand, y belongs to $\{x\}$, otherwise there would exist an open set O_x with $x \in O_x$ and $y \notin O_x$ and thus, $O_x \cap O_y$ would be an open set containing x for which $O_x \cap O_y \cap A = \emptyset$, against the fact that $x \in dA \subset \overline{A}$. Therefore $\{\overline{x}\} \subset DA$ for every $x \in DA$ and consequently $DA \subset \bigcup \{F/F \text{ closed}, F \subset dA\}$. #

Ì

(1.3) **DEFINITION**. [1]. A topological space (X, T) is a T_1, T_D, T_{UD} or T_0 -space if, for every point x of X, the correspondent following assertion holds:

```
(T_1) d \{x\} is empty.
```

- (T_D) d $\{x\}$ is closed.
- (T_{UD}) d $\{x\}$ is a union of disjoint closed sets.
- (T_0) d $\{x\}$ is a union of closed sets.

(1.4) PROPOSITION. [1]. A topological space (X, T) is T_D iff, for every subset A of X, dA is closed.

- (1.5) **PROPOSITION.** A topological space (X, T) is T_0 iff one of the following conditions holds:
 - 1) For every point x of X, d(x) = D(x)
 - 2) For every subset A of X, dA = DA
 - 3) For every subset A of X, dA is a union of clossed sets.

PROOF. From (1.2) it is immediate that $d\{x\} = D\{x\}$ for every point x of X, iff (X, τ) is T_0 . If (X, τ) is T_0 , that is $\{x\} = \{x\}$ for every point x of X, then $DA = \overline{A} \setminus \{x/x \in A \setminus A\} = dA$ for each subset A of X. If dA = DA, $A \subseteq X$, it follows from (1.2) that dA is a union of closed sets. Finally, the last statement implies trivially that (X, τ) is T_0 . #

The third characterization of T_0 -spaces given in (1.5) may be obtained without taking into account the essential derived operator, as we prove in the following proposition.

(1.6) PROPOSITION. A topological space (X, \mathcal{T}) is T_0 iff, for every subset A of X, dA is a union of closed sets.

PROOF. If A is a subset of the T_0 -space (X, \mathcal{T}) such that dA is not a union of closed sets, there exists a point $x \in dA$ for which $\{\overline{x}\} \cap (\overline{A} \backslash dA)$ is not empty. The same reasoning that the one followed in the proof of (1.2) would prove the existence of a point y in $\langle x \rangle$ different from x, against the fact that (X, \mathcal{T}) is a T_0 -space.

The inverse is immediate. #

(1.7) REMARK. The statement "for every subset A of X, dA is a union of disjoint closed sets" is strictly stronger than the $T_{\rm UD}$ -axiom, as it is shown in the following example. The spaces defined by the above statement will be called $T_{\rm UD}^{\rm A}$ -spaces.

- (1.8) EXAMPLE. Let X be the set of real numbers and let the closed sets be X, \emptyset , $\{x\}$ ($0 < x \le 1$), $\{-x,x\}$ ($0 < x \le 1$), [x,1] (x < -1), [x,1] ($x \le -1$), [0,x] ($x \ge 1$) and their finite unions. This space is a T_{UD} -space but, for $A = \{0\} \cup [1,2]$, dA is not a union of disjoint closed sets.
- (1.9) REMARK. The statement "for every subset A of X, dA is empty" is strictly stronger than the T_1 -axiom. In fact, it characterizes the discrete spaces [3].
- 2. ET_{α} -SPACES ($\alpha = 1, D, UD, 0$)
- (2.1) **DEFINITION.** A topological space (X, T) is a ET_1 ("essentially T_1 "), ET_D , ET_{UD} or ET_0 -space if its T_0 -identification space [5] is a T_1 , T_D , T_{UD} or T_0 -space, respectively.
- (2.2) REMARK. It is known that ET_1 -spaces and ET_0 -spaces are respectively the classes of R_0 -spaces [3] and all topological spaces [4].
- (2.3) PROPOSITION [2]. A topological space (X, τ) is a ET_1 , ET_D , ET_{UD} or ET_0 -space iff, for every point x of X, the correspondent following assertion holds:
 - (ET_1) D $\{x\}$ is empty.
 - (ET_D) $D\{x\}$ is closed.
 - $(ET_{UD}) D \{x\}$ is a union of disjoint closed sets.
 - (ET_0) D(x) is a union of closed sets.
- (2.4) PROPOSITION. A topological space (X, τ) is either ET_D or ET_o iff, for every subset A of X, the respective following assertion holds:
 - (ET_D) DA is closed.
 - (ET₀) DA is a union of closed sets.
- **PROOF.** The first assertion is stated in [2]. The other one follows from (2.1). #
- (2.5) REMARK. The statement "for every subset A of X, DA is a union of disjoint closed sets" is strictly stronger than the $\mathrm{ET}_{\mathrm{UD}}$ -axiom, as it is shown in the following example. The spaces defined by the above statement will be called $\mathrm{ET}_{\mathrm{UD}}^{\mathrm{A}}$ -spaces.
- (2.6) **EXAMPLE.** Let X be the set of real numbers and let the closed sets be $X, \emptyset, \{x \} (0 \le x \le 1), \{-x, x \} (0 \le x \le 1), [-1, 1], [-x, -1] \cup [0, x] (x > 1),$

 $[-x, -1[\ \cup\]0, x]$ ($x \ge 1$) and their finite unions. This space is a ET_{UD} -space but not T_{UD} and, for $A = \{0\} \cup [1,2]$, DA is not a union of disjoint closed sets.

(2.7) **REMARK.** The statement "for every subset A of X, DA is empty" is istrictly stronger than the ET_1 -axiom. In fact, it characterizes the E-discrete spaces [3].

In the following diagram are related all axions mentioned in the present paper:

REFERENCES

- [1] C.E. Aull W.J. Thron.: "Separation axioms between T_0 and T_1 ". Indag. Math. 24(1962) 26-37.
- [2] J. Guia. "Axioms weaker than R_0 ". Matematicki vesnik 36(1984) 195-205.
- [3] J. Guia.: "Some new set topological operators". Communicated at the Sixth Prague Topological Symposium (Praga, August 1986).
- [4] D.W. Hall A.K. Murphy W.P. Rozycki.: "On spaces which are Essentially T₁". J. Austr. Math. Soc. 12(1971) 451-455.
- [5] M.H. Stone.: "Applications of Boolean algebras to topoloy". Mat. Sb. 1(1936) 765-771.
- [6] W.J. Thron.: Topological Structures. Holt, Rinehart and Winston. New York, 1966.

Department of Algebra, University of Valencia, Burjassot (Valencia), Spain

1980 Mathematics Subject Classification. Primary 54D10; Secondary 54B15. Key words and phrases. Essential derived operator, separation axioms, T_0 -identification spaces.