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ABSTRACT:

We define the approximation property and the local approximation pro-
perty of order p > 1 of a locally convex space. We prove that, if E = Iig)l E,isa
regular inductive limit of Frechet spaces E,, with the approximation property of
order p > 1, then E has this property.

1. INTRODUCTION

In [12], for every real number p > 1, Saphar defines the approximation
property of order p (in shortly APp) of a Banach space E. The approximation
property of order 1 for E is nothing but the classical approximation property
(AP) of Grothendieck. Every Banach space has AP, and every Banach space with
the AP has the AP, for all p > 1 In [11], Reinov notices that there are Banach
spaces with the AP, p > 2, without the AP and gives an example of a reflexive
separable Banach space E such that, for every p # 2, E does not have the APp.

It seems that there is no definition of the APp, p > 1, for locally convex
spaces. The purpose of this paper is to introduce the definition of the approxi-
mation property of order p > 1 of a locally convex space E and to developp a
theory similar to the classical one for p =1 as far as possible. This definition is
given in section 2. However, after the proof of some general properties, we shall
only consider in this paper the problem of the APP, p >1, of an inductive limit
of a sequence of Frechet spaces. Then, we obtain a theorem similar to a result
of Bierstedt and Meise ([2]) for the classical approximation property.

Our notation for separated locally convex spaces (in shortly l.c.s.) over the
field K of real numbers IR or complex numbers €, is standard and we refer the

(*) Supported by the Comisién Asesora.de Investigacién Cientifica y Técnica. Proyecto
0258/81.
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reader to [6] and [13]. Given a L.c.s. E, we shall denote by ‘U, (E) a basis of abso-
lutely convex closed O-neighbourhoods and by Ky (resp. KU) the canonical map
from E onto Ey; (resp. into EU) for eachUe U, (E).If E and F are l.cs., Z(E,F)
will be the space of all continuous linear maps from E into Fand 3, (E..F,)
will be the espace of all separately continuous bilinear forms on E; x F;, provi-
ded with the topology of the uniform convergence on the sets U° x V°, where
Ue W (E)and Ve W(F).

N is the set of positive natural numbers. If p € R, p 21, we define its conju-
gate number p'e[l,%¢] such that Yp + 1/p’ =1L If Eis al.c.s.and p >1,in [1] are
defined the spaces 2P(E) and £P[E] of weakly p-summable and absolutely
p-summable sequences (x;) of E, respectively, We shall consider P(E) (resp.
¢P[E]) endowed with the topology defined by the system of seminorms
{epu-Ue W(E) } (resp. { I, 5, U €W, (E) }) where

sup (Ell<xi,x'>lp)llp if1<p<o

x €U i=
Ep,U((Xi))

s;;ng "’s:go f<x;,x">| ifp=oo

1 X

o0

(2 eyt)P? if 1<p<eo
HP,U((Xl))

sup pu(x) if p=co

1€

We shall consider every finite sequence (x;.Xz,..,X,) as a sequence (X;) with
x; =0ifi>n.

If E and F are lcs., a map T ¢ /£ (E,F) is called p-absolutely summing
(1 < p < °9 and we will write T e SP(E,F), if for every (x;) € 2°(E), we have
(Tx;) € 2P[F]. If E is bornological, the continuity of T is a consequence of the
second condition. The proof is analogous to the proof of [6], pag. 428, in the
normed case. A map T € SP(E,F) such that the map 1: P(E) — 9P[F] defined
by means of T((x;)) = (Tx;), is continuous, will be called totally p-absolutely
summing. If E is metrizable or QP(E) is quasibarrelled, every T e SP(E,F) is to-
tally p-absolutely summing for all L.c.s. F. (The proof is a slight modification of
the proof given in [9], pag. 36 in the case p = 1). It is easy to prove that a mag
T € % (E,F) is totally p-absolutely summing if and only if for each V e W (F).
there is U € ‘W (E) such that for every n € IN and every finite set {X; X2, .. X, |
C E, we have
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Hp,v((TXi)) < ep,U((xi)).

With the same method of [6] pag. 433, we can prove the following factorization
theorem which we shall use later:

PROPOSITION A: Let E,F be l.c.s.and T € (E,F) bea totally p-absolutely sum-
ming map (1< p < ). For each V € U;(F), there are U € W (E), a reflexive
Banach space M.a totally p-absolutely summing map J € L (EM) and a map
Be _Z’(MFV) such that

IfEand FareLc.s. and p = 1, the topology gp of Saphar in the tensor product
E ® F is defined by the family of seminorms { gpuyv-Ue€ W(E), Ve (F) }
where

. n
gpu,v(@) =inf { I, (%) - epv(i) [z = ; El X;®y;eE®F

taking the inf over all representations of z € E ® F. With this topology, E ® F is
denoted by E ® F and its completion by E éé F.In [11]it is proved that, if

P P
E and F are Banach spaces, (E ® F)' = SP' (F,E") where the isomorphism is
defined by

n n
<Tz>= 2 <x;,Ty;> VTeSP'(FE'), Vz= % x,®y,¢EQ®F.
i=1 i=1

It is easy to prove that these property also holds if F is a Frechet space.
In some cases, we shall identify E ® F with a subspace of linear mappings
from E' into F or from F' into E in the canonical way.

1. THE APPROXIMATION PROPERTY OI' ORDER p > | IN BANACH SPACES

In what follows, p will be always a real number p > 1. Let E,F be L.c.s. For
each Ve U, (F), (x;) € 2P(E) and T € SP(E,F), we define

P(xi),V(T) = I, v ((Tx;)).
We consider SP(E,F) endowed with the topology ©. defined by the system of

seminorms { P(xl),V’ (x;) € (E), V e W(F)}. Clearly 'G’p is a separated
topology.
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PROPOSITION 1: If E is a Frechet space and F is a Banach space, the topolo-
gical dual of [SP(E,F), G, |is a quotient of F' gé E.
pl

Proof. Let B be the closed unit ball of F. Every z € F’ gé E has the form
(see [4]) >

z= 21 y; ® x; with (y;) e 2P'[F'], (x;) € (E).

A

As SP(E,F) C (F’' 2 E)’, the linear form on SP(E,F)
pl

o0
wZ(T)=<¢Z,T>=<z,T>=_El <Txy,y;> ¥V TeSP(EF),

1

is well defined and, by Holder’s inequality
1<y, T>I< I, go (VAR P(xi),B(T)'

Hence ¢, € [SP(E,F), © ]
Conversely, let be an element of [SP(E,F), G ] Then there is
(x;) € 2P(E) such that

ly (T)I< 1 ifTe SP(EF) andP,_ . (T)K1
(x;),B

where B is the closed unit ball of F. The map G: [SP(E,F), G pl — 9P [F] such
that

G(T)=(Tx;)) VT e SP(EF)

is continuous. Its dual map G': &'[F'] — [SP(E)F), T, is weakly conti-
nuous. (See [7], pag. 359). If W is the closed unit ball of °'[F'], G'(W) is
o ([SP(E,F), 'G’p]', SP(E,F))-compact and convex. Let us prove that y e G'(W).
If not, by [6] pag. 131, there would be H e SP(E,F) such that I<H, ¢ >I>1
and |<H,n>I<1 for all n € G'(W). But, by [7], pag. 196, there is (y;) ¢ W such

that
P(xi),B(H) =< (Hx;), (y;) >= < G(H), (y;) >l=I< H,G'((y{)) >i<1

Then by hypothesis | ¢ (H)I<1 which is a contradiction. Then there is (z;) e W
such that ¥ = G'((z))). Now
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' E

1)

z= X z®x¢F

5>

and it is easy to see that < ¢,, T >=<T, y >for every T € SP(E,F). Then ¢ is

an epimorphism and [ SP(E,F), T ,]'=(F' & E)/Ker(»).
p’

PROPOSITION 2: Let E be a Frechet space. The following conditions are equi-
valent: .

1) For every Banach space F.E'® Fis G p,—dense in SP'(E,F).

2) For every Banach space F, the canonical map

xF:Fg%E —  Z(FE)

is injective, ,
3) For every Banach space F, the canonical map

VpF' ® E —  Z(FE)
is injective.

Proof: 1 = 2.Let ¢ be the map from F” @ E onto [SP’ (E,F"), © ]' of the
proposition 1. Letze F ® E be such that xF(z) 0.If

oo
zZ= Z y1®x1
i=1

with (y;) € P[F] and (x;) e 2’ (E), we can consider z as an element of F"' éé E.
Then, for every y' € F' and every x' € E' we have

=]

0=<xg @), x'>= 2 1 <ypy™> <x;x">=<p(2),x' ® y'>.
is

Then, since E' ® F' is T ,-dense on SP'(E,F), ¢ (z) =0 on SP'(E, F) =
=(F ® E)'. Now, for everyTeSp'(EF)

<zT>= 2 <Tx,y>=<¢(), T>=0
(2

and hence z =0 and X[, is injective.
2) = 3). Given

z= 21 yi ® x;¢F' gé E (vj) e P[F], (x;) € %' (E),
-

e~
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themap S = y.(z) ¢  (F,E)isthe restriction to F of the map Xp(z)e Z (F"E).
Moreover, for each x" ¢ E'

B()=7= T <xx'>y|

is a convergent series in F'. Given y" e F", there is a net {y,,a € A} inF
o (F", F')-convergent to y". Then for every x' ¢ E'

I<Xp, (@) (") = Xp, (@) (3,), X' >1= I<y" —y,, g(x") >

and

Xp, (2) ()= lim Xp/(2) (y,) = lim y.(2)(y,) in o(EE).
a€A a€A

A

Then, if ze F' ® E is such that Y(z) = 0, we have X, €) = 0 in Z(F" E).
p
By hypothesis z=0 and ll/ is injective.

3) = 1). Let G e [Sp' (EJF), B ] be such that G(z) = 0 for every
ze E' ® F. By proposition 1, there is

z= E yi®x, e FF ® E
i=1 Ep

such that

<GT>= 2 <Tx,y,> VT e SP'(E,F).
=1

i

Then, for every x' ¢ E' and every y ¢ F

0=<G,x® y>= ¥ <x %> <y, ¥, >=<yYp(2) (), x' >.
i=1

Hence Y(z) =0 in % (F,E) and by 3), z=0. Then G =0 and E' ® F is
G, -dense in SP' (E,F).

PROPOSITION 3: IfEisalc.s., the foIIawing conditions are equivalent:
1) For every Banach space F, E' ® Fis '6' ~dense in SP'(E,F).
2) Forevery lcs. F.E'® Fis 'G -densemSp (E,F).

Proof: 1) = 2). Let us suppose that T, e SP'(EF), (x;) € 2’ (E) and
Ve ‘W (F). Given € > 0 we consider the T pr-heighbourhood of T,
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W= TeSP (BF)/ P ((T-T))<e}.

AsKyT, e SP' (E,Fy), by 1) there is

h ' 1 - ' - .

such that P, | v(KyT, —T)<e/2.Foreachj=1,,.. ,h we have

o0
Nj=( Z I<x,x>P)WP <o
i=1

Let us define Mj = Nj if Nj # 0 and Mj =1if Nj =0. Now, we choose yj€ F such

that -
Vi=12,..h

Pv(Wj - Kv(yj)) < e/;(thj)

and we define

h
S= 2z xj'®yjeE'®F.
<1

Then,
pag h ’ 7 2 ! !
PhpvS-T) =0 2 oy 2 <3 > Ky () - Ry To) ) LS

=) h , _ prl/p’
<(i§1(pV(jEI<xj’xi>(KV(yj)_wj))) ) +

® h , . "1/p' g
FZ Oy (2 <K% >w = Ky To) )P )
i= ji=

(

g , _ pril/p
1 i§1 (l<xj’xi>lpV(Kv(Yj)—Wj))) ) +

M

< .
i

+ P(xi),V(KVTO - T)<e.

Hence Se W.

2) = 1). Trivial.

It is known (see [3], [6], [8]) that the AP of a Banach space E is equivalent
to the fact that, for every Banach space F, the canonical map from F ? E into
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% (F'E) in injective. As the projective tensor topology m coincides with the
tensor topology g, of Saphar, Reinov ([11]) (and Saphar ([12]) with a slightly
different formulation) gave the following definition:

DEFINITION A: A Banach space E has the AP (p = 1) if, for every Banach
space F the canonical map Xg fromF ® E into .7 (F' E) is injective.

Then, the proposition 2 is a new characterization of the AP,p>1 of a
Banach space E.

2. THE APPROXIMATION PROPERTY OF ORDER p > 1 IN LOCALLY CONVEX
SPACES

Motivated by propositions 2 and 3, we shall give the following definition:
(alwaysp>1)

DEFINITION 1: A Lc.s. E is said to satisfy the AP, if for every l.c.s. F, E'® F
is G ,densein SP'(EF).

By propositions 3 and 2, this definition is consistent with the definition A of
Reinov in the case of Banach spaces E.

PROPOSITION 4: Let E be a L.c.s. with the AP, If H is a dense subspace of E,H
has the AP

Proof: Since &' (H) C 2P’ (E), the proof is inmediate.
Consequently, if the completion E of a L.c.s. E has the APp, E has also the

AP_. Now, we introduce the concept of local approximation property of order
(local APP):

DEFINITION 2: A l.cs. E is said to satisfy the local AP if there is a basis of
O-neighbourhoods “U,(E) such that the Banach space E has the AP for each
Ue W (E).

In this case, according to proposition 4, each E{; has the APp.

PROPOSITION 5: Let E be a l.c.s. with the local AP and such that, for every
Les. F,every T e SP' (E,F) is totally p'-absolutely summmg Then E has the AP,

Proof: Given a Lcs. F, (x;) € ' (E), Ve WU (F) and T e SP' (E,F), there is
Ue W (E) such taht
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Hp',V((Tti)) < epl,U((ti)) th Sda, .. ,tn € E, Vn eN

Then, the map T: E; — F,, defined by T(K,,(x)) = (K, T) (x) for all x € E,
U v U v

is well defined and T e SP’ (Ey:Fy)- As(Ky (xp) € 2 (E(;), by proposition 4,
given € > 0, there is

h
i:jz:l X ® Kv(yj)eEUo® Fy

such that P < €. Then, for

&y, v(T =2

h
z= 2 xjf ® y;¢E'® F,
j=1
P(xi),V(T — z) holds and E has the APp.

In [9], Nelimarkka has shown that in each Frechet space F si/ith a Schauder
basis, there is a system U, (F) such that for every U e U (F), Fy; has the AP.
Hence, every Frechet space with a Schauder basis has the AP for every p> 1.

THEOREM 1. Let EF be lc.s. such that F has the Iocal AP or F is a Frechet
space with the APy,. Then E'® Fliso((E ® F),E ® F}dense in (E ® F).

Proo_f Let us suppose that F is a L.c.s. with the local APp andz,i=1,2;.
are in E g® F.Given T € (E ® F)', there are Ue U (E) and V e U (F) such
that the lifear form T on Ey ® Fy defined by

<(Ky.® K) (@), T>=<zT> VzeEQ®F,

is well defined an T € (E ®F)—-(E ®F) Lettpe(EUeaFV)be
such that ¢ (E 0 ® FVO) Op but v # 0. By proposmon 2, the canomcal map
: EU ée;’ FV Y(EUO, y) is injective. Then, there are x € EUo and

y' € Fy0 such that 0 # <X (¢) (x'),y' >=<¢,x' ® y'>, which is a contradic-
tion. Hence Ejo® Fio is o ((Ey ? Fy), (E; ? F,))-dense in
P

(E ® FV)’. P
&p
Now, let K & K be the canonical map from E ® F into E, ® Fy
Ep
= Ey ® F. Given e > 0, there is w ¢ EUo ® FV° CE®F such that
Ep

|<T—w,(KU ® KV),(zi)> I=I<T-w,z;>I<e i=12,..n
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and the proof is complete. If F is a Frechet space with the\APp, the proof i
similar replacing Fy; by F and using the propositions 3 and 2.

COROLLARY 1: Let E,Fbel.c. 5. such that F has the local AP or F is a Frechei

space with the AP Then<E ® F,E' ® F' > isadual pair.
p

Proof: Inmediate, by theorem 1.

COROLLARY 2. Let E,F be L.c.s. such that F has the local APp or F is a Frechei
Space with the APp. Then the canonical map

A:EE%F; — &, (E,,F)
is injective.

Proof: It is easy to see that every p € B (E F, ) can be identified with ¢

bilinear form on E' x F'. Let ze¢ E ® F be such that A (z) = 0. There is a net
P
{ za, ae Alin E g® F convergent to z in the completion. Then for every

x'eE'andy' e F'. P
<zx'®y'>=lim <z,x'8y>=lm A(z),y)=A@)x,y)=0.
a€A a€eA
By theorem1,z=0 and A is injective.

COROLLARY 3: Let F,G be complete Lc.s. such that G has the local APp orG
is a Frechet space with the APP. Let H be a l.c.s. and T a continuous injective
linear map from G into H. If I is the identity map on F, the continuous linea
map :

"I®T:F® G ———— F
Ep

s'®
jus)

is injective.

Proof: The space B, (F,, G,) is complete (see [8] pag. 167). We consider
the canonical continuous linear maps

AI:Fg%G — %, (F,,G.) and Azng%H — B (F,, Hy)

as in corollary 2. If z ¢ F g@ G is such that (I ® T) (z) = 0, we take a net
; gy » , :
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z,= X xX*®y? ,a€eA
i=1 ! !

inF ® G convergenttozinF g@ G. Since A, (I & T) (2)=0, given (x’,h') e F'x H,
P

n
0=lim | & <x*x'><Tyd,W>I= lim (A, (z,)(x, Th)l=
a€A i=1 ! ! a€A :

=1A; (z) (x', T'h) I.

Since T is injective, T' (H') is ¢ (G', G)-dense in G". AsA, (z)e B, (F,,G.),
we have A, (z)=0on F’ x G'. By corollary 2, z=0and I & T is injective.

3. THE APPROXIMATION PROPERTY OF ORDER p> 1 IN INDUCTIVE LIMITS

We begin with a previous result which seems to be interesting in itself.

PROPOSITION 6: Let E be a l.c.s. and (x;) € % (E). Then there is a bounded set
B in E such that B is contained in the closed linear span of {x;,ie N} and
(x) e P (Ep)-

Proof: Set

n n !
F={ 2 bx / bjeK,i=12,..,n;neN and ( £ 1bIP)1/P <
i=1 i=1

and

MUY= sup (2 1<x,x" > PP <o YV Ue U (E).
x€U? ji=1 :

By Hoélder’s inequality, every z € F lies in A(U)U°® =(U) U for each U e WU (E).
Then F is bounded and its closed convex hull B is also bounded and is contained
in the closed linear span of { x;,ieIN } .

Let us see that (x;) e °(Ep). Let z’ be in (Eg)' such that | 'l < 1 and let V
be the closed unit ball of &7 Given (b;) € V, there is (c))e K™ such that | cl=1
and ¢;b; <x;,z' >=|b; <x;,2 >Iforallie IN. Then for every n ¢ NN,

n
) bicixie FCB

and

n n . n
2 I<x, 2> Ibjl= T bie;<x;,2>=< 2 bex,z><2
i=1 i=1

. ivi%e
i=1
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Consequently
( zl I<x;,z' > P P=sup L | = b,<x,2>i,(b)eV ! <l
i= i=1

and (x;) € 2 (Ep).
* In the case p = 1, this result has been obtained by Hollstein in [5].
For our study of the APp on inductive limits, we shall need the following
lemmas:

LEMMA 1: Let E be a Frechet space and (x;) € ' (E). The closed absolutely
convex cover of the set

t t
K=1 2 bx/beKi=12. .t teN and (2 Ip,1P)/P <1
i= i=1

is o (E,E')-compact.

Proof: By the theorems of Krein an Eberlein ([7], pdg. 325 and 313), it is
enough to see that each sequence

z= % blx;, bl=0ifi>t; , jeN,

inK hasao (E,E')-con\(ergent subsequence.

Foreveryje N, (bji)l.o:1 belongs to the closed unit ball B of °. Then there is
a subsequence (again denoted by (b’i)) weakly convergent in 2P to a sequence
(b;) € B. Since (x;) € 2’ (E), it is easy to see that

z= 2 bixie E.
i=1

Then, given x' € E’, the sequence (< x;, X’ >)?Z1 € %' and hence, z = lim z;in
o (E,E"). This completes the proof. e

LEMMA 2: Let E be a reflexive Banach space, F a l.c.s. and (x;) € ' (F). Let B
be the closed unid ball of %P. Then, the set

i=1

is contained in E g® Fandis o (E g@’ F,(E gé F))-relatively compact.
p P P
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Proof: 1t is easy to see that

Z g f, ®x, Il<1 VieN, (3)eB
i=1

is convergent in E gé F. As this space is complete, it will be also complete for
P
the finer topology 7 (E gé F,(E gé F)"). By Eberlein’s theorem ([7], pag. 313)
p p
the lemma will be proved if we show that each sequence

‘nelN,

in H has a weakly convergent subnet. Let U be the closed unit ball of E endowed
with the induced topology by o (E,E'). We consider on B the induced topology

by o (%P, 2°"). Then the topological space

X=BXUXUXUXU ...

endowed with the product topology, is compact. Given the sequence on X

f,... ), neN,

w, =((@"), f':,f;‘, RPN

there is a subnet { W.gyd€D } such that

lim @"9)=(a)eB in o (%P, P 1)
deD 1
and
lim ff‘(d)=fjeU in 0(EE') VijeN. @)
deD !
Let us see that
Z g f® xi=dgrg o)

i=1

® F)). Let v e (E gé F)'. There is V € W (F) such that the
P

ino(E ® F,(E
Ep Ep

linear form

n n n
<o, T x®K (y)>=<y, Elxit& y;>, V Elxi® Ky(y;)eE®F,,
i=1 i= i=
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is well defined and ¢ € SP’ (IA*“V,E' )- As (Ky(x) e £ (lsv), we have
(I J(Kv(xi)ll ) € 22, Given € >0, by (1), (2) and the inequalities of Holder and
Minskowski, there are r ¢ IN, t € IN and d, € D such thatif d >d

i=i

1< = @@ 0D _a) @ x,0> 1<

I o
<z <@ —a) D, PR (x)) > 1+

1

+1 2 <@ —a) DGR () > 1+

i=r1+l

t _
+ 1 21 <y (f?(d) — ), ¢ (K (x) > +
i=

+1 2 <a (MY £), oK (x))> I<e

i=t+1

and the proof is complete.

LEMMA 3: Let M be a reflexive Banach space and let E = liin E, be an inductive
limit of Frechet spaces E_ such that each E_ has the APp. Then, for every n e N,
E'® Mis G, dense in Ep,® M.

Proof: We fix n ¢ IN. If I is the identity map on M,I' is its dual identity mag
on M’ and I, is the inclusion of E into E, by corollary 3, the canonical mag

I'é1,;:M ®E, — M 8E
P P

is injective. We define
H={zeM & E/ <z,M&E >=0 } =M®EY, inM SE,
P P

and we consider the canonical quotient map Ky; from M' & E onto the quo:

tient space N = (M’ g@ E)/H. Each Ky(z) € N defines an elerfient ¢, of the alge

braic dual (M ® E")* gy means of <y, u>=<z,u>forallue M ® E'. By the
definition of H, if Ky (2) = Ky(w), we have v, = ¢,. Moreover, the mar
D:Ky(z) — v, is injective because v, = 0 implies z € H, that is, Ky (z) =0.

Let us see that J = DKy(I' & I,) is also injective. Let us suppose thal
J(z) =0. Then (I' ® 1) (z) € H and for every m ¢ M and every x' ¢ E' we have

0=<I®I)@m®x'>=<z,(I'® L) (m®x)>=<z,me [ (x)>(
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Now, given m € My’ € E], and

W=_
J

48

1 m]f ®eeM g% E, with (m;) ¢ % [M'Jand (¢) e &' (E,))  (2)

(see [4]), since I;(E") is o(Ey E,)-dense in E; (and hence 7 (E/ ,E_)-dense), by
lemma 1, there is a net { x,,ae A } in E' such that, given ¢ >0,
sup |< z bJeJ, ~L(x)> I/bj eKj=12,.. t;teN;
(% Ib;1P)1/P < } <e
ji=1

for every a € A such that a > a, for some a, € A. In this case, for every he N,
by (2), we have

| E <m m><e,y —In(xa)>|=l< E <m m>e Y —Ixy) >l
j=1

<e(1+( T I< ! m> P)L/py,
e+( 3 1<m),m> IP)l/P)

This provesthatm ® y' = lim m ® [/ (x})in o (M’ & E ), M ® E.). Then,
a€A Ep Ep

by (1),<z,M ® E; >=0. By theorem 1, z=0 and J is injective.
It is easy to see that J is continuous from M’ @ E, into (M ® E)* when

this space 1s endowed w1th the topology o (M ® E"*, M ® E'). Then, 'M ® E)
1so((M ® E)), M ® E )densem(M ® E,) and also is 7 ((M’ é E),

M & e n)dense.

We consider now

k
z= X x,®m,eE ® M, A= 3 m®x, eM®E,
r=1 1=1
(x;) € %' (E,) and € > 0. By lemma 2, the set
P= E alf'®x/a eK Vle]N( E |a|p)1/p LIl <1 Vie]N}

iso (M g® E,), (M gé E,)")-relatively compact. Then, there are
P P
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w=h21u{1® VheE'®M and w'= % y, ®u eM®E
= h=1

such that

sup 1<zt — T (wh),v>l=sup I<zl,v>—<Iw),wt> I=
vVEP VEP

=sup I<z'—whv>I<e 3)
veEP

Now, we choose, for every i ¢ IN, an element Ee M' such that IIEII <1 and
I - wh)El=<@ —whH () >=<z' —w', f @ x,>.

Then, by (3)

(= Il(zt—wt)(xi)llp')llp'=sup{l z a I —wh el |/
i=1 i=1
/(iz)1 laiIP)l/P<1}=sup{l<zt—wt,izllaifi®xi>|/
> I‘ai|P)1/P<1] <e
i=1

-and the lemma is proved with help of w.

THEOREM 2: Let E = 1i_111 E, be a regular inductive limit of Frechet spaces E |
such that every E | has the APp. Then E has the APp.

Proof: Given a Lcs. F, v € SP' (E,F), (x;) € ' (E), Ve W(F)ande >0,
we must show that there is w ¢ E' ® F such that P(X.)’v(tp —w)<e.

By proposition 6, there is a bounded set B in E such that (%;) € ' (Ep).
Since E is regular, there is n € IN such that B C Eg C E;, and B is bounded in E ,.
Then (x; )€ %' (E,) and the restriction ¢, of ¢ to E, belongs to SP’ (E,F). By
proposition A, there are a reflexive Banach space M, a map A e SP’ (E,,M) and a
map B, e & (M,f*‘v) such that KV ¢, =B, A. Moreov_ef,_ we can suppose that
A(E,) =M restricting B, to the reflexive Banach space A(E ) if necessary.

Let || B,ll be the norm of the map B,,. Since E, has the AP, there is
ze B ® M such that

( _iz°1 I AGx) —z ()IPHL/P’ <e/3 (1 + IB, I,
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By lemma 3, there is

’ ’

i=1 )| i
such that
(El Iz —1) () 1Y/ < /3 (1 + I B, ). )
If we define
=l +J'ZS1 (El |<xj, ;> PP, 0]

since A(E,) is dense in M, we choose e € E,,j=1,2,. k, such that
! A(g) —myll <e/3n(1+ 1B, 1) Vi=12,..k - 3)
Then, if

X ®¢, (e)eE'® F,

we have

P(Xi),V(‘p —w)= P(xi),V(KV oo~ Kyw) =
® k
=(Z oy BoA) () - 2 <x;,%>B, AlePHM P’ <
s i =
g X n1/pr
SUBI( Z MA(x) - 2‘,1<xjf,xi>A(ej) 1Pl/e <
i=1 j=
g oo
<IBI( z I AQx) —zZ(x)IPHYP + B I = 1z(x) — t(x) PP +
i= i=1

[+ ] k [
+IBI(Z I 2 <fo,xj>(mj—A(ej)) IPHl/e <
i=1 j=1

by Minkowski’s inequality and (1), (2) and (3). Then, the proof is complete.
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