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ABSTRACT

An unusual enumeration of partial recursive functions is defined starting
from the equivalence between recursiveness and representability in Peano arithme-
tic. This allows us to obtain by a double diagonalization an undecidable formula
expressing a property of Peano arithmetic, equivalent to its consistency.

The basic idea in the proof of the G6del’s incompleteness theorem is the po-
sibility of defining primitive recursive functions in the Peano arithmetic. This
allows us to construct a formula which in some way expresses its own indemos-
trability, so that —under the assumption of the w-consistency of the arithmetic—
this formula cannot be proved, nor refuted.

Starting from a stronger representation theorem, we difine in this paper an
enumeration of the partial recursive functions from an enumeration of the
arithmetical formulae. The we construct by diagonalization a partial recursive
function and by a new diagonalization over its index we obtain an undecidable
formula asserting the consistency of the Peano arithmetic in a rather unnatural
way.

Let II be an axiomatization (without induction) of the Peano arithmetic.
For each natural number m let m be the numeral s™0 (0 =0, 1 =50, 2 =ss0
etc...).

>

Def.: A partial function ¥: w™ - w is definable in the Peano arithmetic if a for-
mula o with the free variables xo, X1, . . ., X, exists, such that foreverya,, . . ., a,,
b € w the following is verified:

(a) ifw(al:'---ran)=b’thennl_a(x():El,"-:ﬁn)(_)onh
(b) if ¢ (as,...,a ) %, then T H-Hxoa(Xo,a1,-..,2,).

TH 1 (representation theorem) If I is w-consistent, then a partial function is re-
cursive if and only if it is definable in II.
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A proof of TH 1 can be obtained by induction on the definition of partial
recursive functions (cfr. (Prd 1982), pp. 202-209).

Let o, of, o, . . . be an effective enumeration of the aritmetical formulae
with the free variables o, X1, . . ., X, and let ¢7: w" = w be the partial function

{<ag,...,ay,b>: 1 o (xo,21,..:,2,) <>%o =b}

It follows inmediatly from TH 1:

TH 2 {(enumeration theorem) If Il is w-consistent, then a partial function
¥: " - w is recursive if ad only if a kew exists, such that = O-

From this characterization of the partial recursive functions Gédel’s incom-
pleteness theorem follows inmediatly. Indeed, let r be an index of the partial re-
cursive function Y such that for every mew

0 if T — 13xe0p, (Xo,m)
Y(m) =

undefined otherwise.

The following propositions are obviously equivalent (second diagonaliza-
tion!):
) I+ T8xoed (xo.,0)
i) ¢f (D)4
iii) M +—Hxo0q (Xo,1)-

It follows inmediatly from the equivalence of i) and iii):

TH 3 (Gddel’s first incompleteness theorem) If 11 is w-consistent, then neither
T +— Hxo0} (Xo.1) nor I — T1dxea (Xo,1).

The second incompleteness therem can be obtained from the

LEMMA: The following are equivalent:
(2) IIisinconsistent

(b) T+ THx00} (xo.1)

© ¢k ()

In fact, obviously (a) implies (b), (b) implies (c) and (c) implies (a).

It follows from the definition of ¢; that the formula Sxoa} (x¢,b) asserts in
the language of the arithmetic that ¢} (b) is defined. Therefore the formula
T1dx00; (Xo,I) asserts that ¢} (r) t and hence, according with the lemma, that
11 is consistent. Let us call this formula “CONS”.
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Because of the equivalece of (a) and (b) we have:

TH 4 (Godel’s second incompleteness theorem) Il — CONS if and only if IT is
inconsistent.
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