PROPERTIES OF INTERSECTION IN THE GEOMETRY OF SEQUENCES IN BANACH SPACES

bу

FELICISIMO GARCIA-CASTELLON AND ESTEBAN INDURAIN

ABSTRACT:

We consider properties of sequences in a Banach space through the geometrical behaviour of the closed linear spans of their subsequences. We study new families of intersection properties, generalizing the results of Courage-Davis, Plans, and Reves.

We end with a table showing the structure of a sequence by means of its intersection properties. This table, in our opinion, closes the study of "finite" intersection properties of a sequence.

INTRODUCTION

Let B denote an infinite-dimensional Banach space, N the set of natural numbers, and [-] "closed linear span".

In the sequel we shall consider *complete* ([]] = B) sequences in B.

Definition: A sequence $f = (a_n)_{n \in \mathbb{N}}$ in a Banach space B verifies the *intersection* property relative to a certain condition C, if $[a_s; s \in S] \cap [a_t; t \in T] = [a_h; h \in S \cap T]$, provided that $S,T \subset N$ are restricted to the fixed condition C. Denote it by i. p. (C).

The idea of obtaining properties of a sequence by means of intersection properties of the closed linear spans of its subsequences began with Plans $|P|_1$ and Courage-Davis |C-D| who independently characterized M-bases by means of an i. p.

Later on, Plans and Reyes | P-R|, | R| gave a classification of sequences through intersection properties.

We consider new conditions on the pair (S,T) examining the sets S,T, $S \cup T$, $S \cap T$, S - T and T - S, and conclude with a table of characterizations, that, we think, gives a complete outlook of them and closes the problem of finite i.p.

Remark: — By "finite" i.p. we understand those expressed by $[a_s; s \in S_1 \cap ... \cap S_k] = [a_s; s \in S_1] \cap ... \cap [a_s; s \in S_k]$, with the family $(S_i)_{i=1}^k$ restricted to some fixed condition C.

(It is easy to relate them with properties where only two indices appear). The "infinite" intersection properties are quite different (see $|I|_1$).

1. DEFINITIONS AND PREVIOUS RESULTS.

Let $\int = (a_n)_{n \in \mathbb{N}}$ be a complete sequence in B. Given $S \subset \mathbb{N}$, call

$$W_S = [a_s; s \in S] \quad (W_\phi = \{0\})$$

and

$$W_{S}^{*} = \bigcap_{k \notin S} W_{N-\{k\}}.$$

We say that $S \in \sigma_1$ if S is finite, $S \in \sigma_2$ if N-S is finite, and $S \in \sigma_3$ if S and N-S are both infinite.

We associate to \int , in a natural way, the following closed subspaces: *Kernel* of \int :

$$K(f) = \bigcap_{n \in \mathbb{N}} [a_n, a_{n+1}, a_{n+2}, \ldots],$$

equivalently, $K(f) = \bigcap_{S \in \sigma_2} W_S$.

Strict kernel of ∫:

$$K_s(f) = \bigcap_{S \in \sigma_3} W_S$$
.

Let
$$M_{\int} = \{ n \epsilon N; a_n \epsilon W_{N-\{n\}} \}$$
.

Definition: $\[\]$ has absorbent kernel (respectively absorbent strict kernel) if $W_{M_{\[\]}} \subset K(\[\])$ (respectively $W_{M_{\[\]}} \subset K_s(\[\])$).

Theorem 1.1: (See | P-R | and | R |)

- (i) \int has absorbent kernel if and only if it verifies $W_S \cap W_T = W_{S \cap T}$ for every $S, T \in \sigma_2$.
- (ii) \int has absorbent strict kernel if and only if it verifies $W_S \cap W_T = W_{S \cap T}$ for every $S \epsilon \sigma_2$ and $T \epsilon \sigma_3$.

Definition: ∫ is *minimal* if it satisfies the following equivalent conditions:

- (m_1) $M_f = \phi$,
- (m_2) $W_S \cap W_T = W_{S \cap T}$ for every $S \in \sigma_1$ and $T \in \sigma_2$,
- (m₃) There exists a sequence $(a_n^*)_{n \in \mathbb{N}}$ in the Banach space B*(dual of B), such that $a_n^*(a_m) = \delta_{nm}$ (Kronecker delta of n,m).

Definition: \int is an *M-basis* (Markusevich basis) of B, if it is minimal and $K(f) = \{0\}$, equivalently (see |C-D| and $|P|_1$) if $W_S \cap W_T = \{0\}$ whenever S and T are disjoint.

Definition: \int is a strong M-basis if $W_S^* = W_S$, for every $S \subset N$.

Theorem 1.2:

The following statements are equivalent for a sequence f:

- (i) $W_S \cap W_T = W_{S \cap T}$ for every $S,T \subset N$,
- (ii) $W_S \cap W_T = W_{S \cap T}$ for every $S, T \in \sigma_3$,
- (iii) ∫ is a strong M-basis.

Proof: See | P-R | and | R |.

Remark: It is clear that Strong M-basis = => M-basis = => minimal = => Absorbent strict kernel = => Absorbent kernel.

The converse implications are not true. (See |S|).

Definiton: \int is called σ_1 -sequence (respectively σ_2 -sequence, σ_3 -sequence) if it verifies $W_S^* = W_S$ for every $S\epsilon\sigma_1$ (r. $S\epsilon\sigma_2$, $S\epsilon\sigma_3$).

Propositon 1.3:

- (i) \int is a σ_1 -sequence if and only if it is an M-basis.
- (ii) \int is a σ_2 -sequence if and only if it has absorbent kernel.

Proof:

(i) Suppose that \int is a σ_1 -sequence. Let $S \in \sigma_1$ and $T \in \sigma_2$. Then $W_S \cap W_T = W_S^* \cap W_T \subset W_S^* \cap W_T^* = W_S^* \cap T = W_S \cap T$, so \int is minimal. Since $K(f) \subset W_{\phi}^* = W_{\phi} = \{0\}$, \int is an M-basis.

The converse is obvious.

(ii) Suppose that \int is a σ_2 -sequence. Let $S, T \in \sigma_2$. It follows that $W_S \cap W_T = W_S^* \cap W_T^* = W_{S \cap T}^* = W_{S \cap T}^*$, so, by 1.1, \int has absorbent kernel.

For the converse, let $S \in \sigma_2$, $N-S = \{q_1, \ldots, q_k\}$.

So
$$W_S^* = \bigcap_{i=1,...k} W_{N-\{q_i\}} = W_S$$
, by 1.1. Therefore \int is a σ_2 -sequence.

2. CONDITIONS ON SUT.

Theorem 2.1:

For $\int = (a_n)_{n \in \mathbb{N}}$ in B:

- (i) $\int \text{verifies } W_S \cap W_T = W_{S \cap T}$ whenever $S \cup T \epsilon \sigma_1$ if and only if \int is a linearly independent set of vectors.
- (ii) $\int \text{verifies } W_S \cap W_T = W_{S \cap T}$ whenever $S \cup T \epsilon \sigma_2$ if and only if \int is a strong M-basis

Proof:

- (i) It is obvious.
- (ii) Suppose $W_S \cap W_T = W_{S \cap T}$ whenever $S \cup T \epsilon \sigma_2$.

Let $P,R \subset N$ and consider P_1 , $R_1 \subset N$ such that $P_1 \cup R_1 \in \sigma_2$ and $P_1 \cap R_1 = P \cap R$. We have

 $W_{P \cap R} \subset W_{P} \cap W_{R} \subset W_{P_{1}} \cap W_{R_{1}} = W_{P_{1} \cap R_{1}} = W_{P \cap R}$, so f is a strong M-basis

The converse is obvious. \square

Definition: Given a property H on sequences, we say that a sequence $\int = (a_n)_{n \in \mathbb{N}}$ is almost-H if every subsequence $(a_s)_{s \in \mathbb{S}}$, with $S \in \sigma_3$, verifies H, in the Banach subspace $[a_s; s \in S]$.

Remark: Almost properties on a sequence f have been studied in $|I|_2$, and the structure induced in the sequence f is given in terms of "unitarian position", improving the result in Theorem 4.1 of |R|.

Theorem 2.2.

 \int verifies $W_S \cap W_T = W_{S \cap T}$ whenever $S \cup T \epsilon \sigma_3$ if and only if it is almost-strong M-basis.

Proof: It is analogous to 2.1 (ii).

3. CONDITIONS ON S∩T.

Let $\int = (a_n)_{n \in \mathbb{N}}$ be a complete sequence in B.

Theorem 3.1:

- (i) $\int \text{verifies } W_S \cap W_T = W_{S \cap T} \text{ whenever } S \cap T \epsilon \sigma_1 \text{ if and only if } f \text{ is an M-basis.}$
- (ii) $\int \text{verifies } W_S \cap W_T = W_{S \cap T}$ whenever $S \cap T \in \sigma_2$ if and only if \int has absorbent kernel.

Proof:

- (i) It is analogous to the characterization of M-bases given in $|P|_1$ or |C-D|.
- (ii) If $S \cap T \epsilon \sigma_2$, then $S, T \epsilon \sigma_2$ and conversely. Apply now 1.1. \square

Lemma 3.2:

Let f be a sequence having absorbent kernel. Then, for every $R\epsilon\sigma_1\cup\sigma_3$ there exist R_1 , $R_2\epsilon\sigma_3$, $R_1\cap R_2=R$, such that $W_R^*=W_{R_1}\cap W_{R_2}$.

Proof: It is a strengthening of Proposition 5.1 in | R|.

Theorem 3.3.

 $\int = (a_n)_{n \in N} \text{ verifies } W_S \cap W_T = W_{S \cap T} \text{ whenever } S \cap T \epsilon \sigma_3 \text{ if and only if it is a } \sigma_3 - \text{sequence.}$

Proof:

===>) If \int verifies $W_S \cap W_T = W_{S \cap T}$ whenever $S \cap T \epsilon \sigma_3$, by 1.1 it has absorbent strict kernel, and therefore, absorbent kernel.

Let $R\epsilon\sigma_3$. By 3.2 take R_1 and R_2 such that $W_R^* = W_{R_1} \cap W_{R_2}$.

By hypothesis, $W_{R_1} \cap W_{R_2} = W_{R_1 \cap R_2} = W_R$. Thus, \int is a σ_3 -sequence.

< = = =) Given S \cap T $\epsilon \sigma_3$, it follows that

$$W_S \cap W_T \subset W_S^* \cap W_T^* = W_{S \cap T}^*.$$

But, by hypothesis, $W_{S \cap T}^* = W_{S \cap T}$. \square

4. CONDITIONS ON S-T AND T-S.

Consider now sequences $\int = (a_n)_{n \in \mathbb{N}}$ verifying intersection properties according to the cardinality (in terms of σ_1 , σ_2 , σ_3) of the sets S, T, S \cap T, S-T and T-S.

There are four main cases. (The remaining cases can be dealt with by means of these, or using the scheme in |R|).

Case 1: $W_S \cap W_T = W_{S \cap T}$ for every $S, T \in \sigma_3$ such that S - T, $T - S \in \sigma_3$ and $S \cap T \in \sigma_1$.

Case 2: $W_S \cap W_T = W_{S \cap T}$ for every $S, T \in \sigma_3$ such that $S - T, T - S \in \sigma_1$ and $S \cap T \in \sigma_3$.

Case 3: $W_S \cap W_T = W_{S \cap T}$ for every $S, T \in \sigma_3$ such that $S - T \in \sigma_1$ and $T - S, S \cap T \in \sigma_3$.

Case 4: $W_S \cap W_T = W_{S \cap T}$ for every $S, T \in \sigma_3$ such that S - T, T - S and $S \cap T \in \sigma_3$.

Definition: \int is called *M-basoidic* (see $|P|_2$ and $|T|_1$) if it can be represented by $\int = \{b_1, \ldots, b_k\} \cup \int_1$, where $\int_1 = (b_{k+n})_{n \in \mathbb{N}}$ is an M-basis, $[b_1, \ldots, b_k] \subseteq [\int_1]$, and $[b_1, \ldots, b_k] \cap (W_S + W_{N-(S \cup \{1, \ldots, k\})}) = \{0\}$, for every $S \subseteq N - \{1, \ldots, k\}$, $S \in \sigma_3$.

It is not difficult to see that the intersection property in Case 1 is equivalent to the following: $W_S \cap W_T = W_{S \cap T}$, for every disjoint S, $T \in \sigma_3$, but this property characterizes the M-basoidic sequences (see $|P|_2$ and $|T|_1$).

With respect to cases 2 and 3 it is straightforward to see that they characterize, respectively, the sequences almost—"with absorbent kernel" and almost—"with absorbent strict kernel".

We study now Case 4.

Lemma 4.1:

Let $f = (a_n)_{n \in \mathbb{N}}$ be a complete sequence in B, and $x \in B$.

Then, there exist $S, T \in \sigma_3$ (which depend on x) such that $x = x_1 + x_2$, with $x_1 \in W_S$ and $x_2 \in W_T$.

Proof: See $|T|_2$.

Lemma 4.2:

Let $\int = (a_n)_{n \in N}$ be a sequence verifying $W_S \cap W_T = W_{S \cap T}$, for every $S, T \in \sigma_3$ such that S-T, T-S and $S \cap T \in \sigma_3$. (I)

Then, for every $S \in \sigma_3$, $W_S \cap W_{N-S} \subseteq K_s(f)$.

Proof:

Let $Se\sigma_3$ and $x \in W_S \cap W_{N-S}$. Fix $Re\sigma_3$. We can find $R_1 \in \sigma_3$ such that $S \cup R_1$ and $(N-S) \cup R_1 \in \sigma_3$, with $R_1 \subseteq R$. So, we have $x \in W_{S \cup R_1} \cap W_{(N-S) \cup R_1} = W_{R_1} \subseteq W_R$ (for every $Re\sigma_3$)

Therefore $x \in K_{\epsilon}(f)$. \square

Lemma 4.3:

If $\int =(a_n)_{n\in\mathbb{N}}$ verifies (I), then it has absorbent strict kernel.

Proof:

Suppose, for instance, $a_1 \in W_{N-\left\{1\right\}}$. By 4.1 we can find $S, T \in \sigma_3$, $S, T \subseteq N-\left\{1\right\}$ such that $a_1 = u + v$, with $u \in W_S$, $v \in W_T$.

The following possibilities arise:

(a) $S \cap T$, S - T and $T - S \in \sigma_3$.

Then $a_1 - u \in W_{S \cup \{1\}} \cap W_T = W_{S \cap T}$, and thus $a_1 \in W_S$. On the other hand, since $1 \not\in S$, $a_1 \in W_{N-S}$. So, by 4.2, $a_1 \in K_s(f)$. (b) $S-T\epsilon\sigma_1$, $S\cap T$ and $T-S\epsilon\sigma_3$. Then $S\cup T\epsilon\sigma_3$ and $a_1 \in W_{S\cup T}$.

Since $1 \notin S \cup T$, it follows that $a_1 \in W_{N-(S \cup T)}$, so by 4.2, $a_1 \in K_s(f)$.

- (c) S-T, T-S $\epsilon \sigma_1$; S \cap T $\epsilon \sigma_3$. It is similar to (b).
- (d) S-T, T-S $\epsilon \sigma_3$; S \cap T $\epsilon \sigma_1$.

Then
$$\mathbf{W}_{\mathbf{S}} = \mathbf{W}_{\mathbf{S} - \mathbf{T}} + \mathbf{W}_{\mathbf{S} \cap \mathbf{T}}$$
 and $\mathbf{W}_{\mathbf{T}} = \mathbf{W}_{\mathbf{T} - \mathbf{S}} + \mathbf{W}_{\mathbf{S} \cap \mathbf{T}}$

Take $a \in W_{S-T}$, $b \in W_{S \cap T}$ and $c \in W_{T-S}$ such that $a_1 = a + b + c$.

We have
$$a_1 - a \in W_T \cap W_{\{1\} \cup (S-T)}$$
. So, by 4.2, $a_1 - a \in K_s(f) \subseteq W_{S-T}$.

Therefore $a_1 \in W_{S-T}$.

On the other hand $a_1 \ \varepsilon \ W_{\left\{1\right\} \cup (T-S)},$ so we conclude that $a_1 \ \varepsilon \ K_s(f).$

Consequently, ∫ has absorbent strict kernel. □

Theorem 4.4:

A sequence $\int = (a_n)_{n \in \mathbb{N}}$ verifies (I) if and only if it is a σ_3 -sequence.

Proof: It follows from 1.1, 3.3 and 4.3.

5. Structure of σ_3 –sequences.

We consider now some properties of the kernel and strict kernel of a complete sequence f, which characterize f as a σ_3 -sequence.

Lemma 5.1:

For a sequence $\int = (a_n)_{n \in \mathbb{N}}$,

$$\mathtt{K}(\mathfrak{f})\,\subset\,\bigcup_{\mathrm{F}\,\boldsymbol{\epsilon}\sigma_3}\,\,(\mathtt{W}_{\mathrm{F}}\!\cap\!\mathtt{W}_{\mathrm{N-F}})$$

Proof: See | P-R |.

Corollary 5.2:

Let
$$\textbf{f}=(\textbf{a}_n)_{n\in N}$$
 be a $\sigma_3-sequence. Then $K(\textbf{f})=K_s(\textbf{f}).$$

Proof: It is a consequence of 4.2 and 5.1.

Lemma 5.3:

An M-basis $\int = (a_n)_{n \in \mathbb{N}}$ is a strong M-basis if and only if it verifies (I).

Proof: It follows from 1.2, 3.1, 3.3 and 4.4.

Proposition 5.4:

Let $f = (a_n)_{n \in \mathbb{N}}$ be a σ_3 -sequence. Consider, in the Banach space B/K(f), the set $f_{K(f)} = \{a_k + K(f); a_k \notin K(f)\}_{k \in \mathbb{N}}$. Then we have

- (i) If $\int_{K(f)}$ is finite, it is a linearly independent set in B/K(f),
- (ii) If $\int_{K(f)}$ is infinite, it is a strong M-basis in B/K(f).

Proof:

- (i) It follows from the fact of \int having absorbent kernel.
- (ii) Since \int has absorbent kernel, $\int -K(\int)$ is a minimal sequence, and $\int_{K(\int)}$ is an M-basis.

Let $\int_{K(f)} = \{a_{q_n} + K(f)\}_{n \in \mathbb{N}}$ and take S,Te σ_3 such that S-T, T-S and S\cap Te\sigma_3.

Let $x \in B$, we have, applying (I)

$$\begin{split} &x+K(f)\,\epsilon\,[a_{q_S}+K(f);s\epsilon S]\cap[a_{q_f}+K(f);t\epsilon T]<==>\\ &<==>x\,\epsilon\,[\,\{a_{q_S};s\epsilon S\}\,,K(f)]\cap[\,\{a_{q_f};t\epsilon T\}\,,K(f)]=\ (*)\\ &=[a_{q_h};h\epsilon S\cap T]<==>x+K(f)\,\epsilon\,[a_{q_h}+K(f);h\epsilon S\cap T].\ (**)\\ &So\,\int_{K(f)}is\,also\,strong.\ \Box \end{split}$$

Theorem 5.5:

 $\int = (a_n)_{n \in \mathbb{N}}$ is a σ_3 -sequence if and only if it verifies the conditions

- (i) $K(f) = K_s(f)$ and
- (ii) The set $\int_{K(f)}$ is a) linearly independent, if finite,
 - b) A strong M-basis in B/K(f), if infinite.

Proof:

= = =) It follows from 5.2 and 5.4.

$$< = = =)$$
 Let S,T $\epsilon \sigma_3$ such that S-T, T-S and S \cap T $\epsilon \sigma_3$, let x ϵ B.

$$\begin{split} &x \epsilon \left[a_s; s \epsilon S \right] \cap \left[a_t; t \epsilon T \right] <==> x \epsilon \left[\left\{ a_s; s \epsilon S \right\}, K_s(f) \right] \cap \\ &\cap \left[\left\{ a_t; t \epsilon T \right\}, K_s(f) \right] <==> x \epsilon \left[\left\{ a_s; s \epsilon S \right\}, K(f) \right] \cap \\ &\cap \left[\left\{ a_t, t \epsilon T \right\}, K(f) \right] <==> x + K(f) \epsilon \left[a_s + K(f); s \epsilon S \right] \cap \\ &\cap \left[a_t + K(f); t \epsilon T \right] <==> x + K(f) \epsilon \left[a_h + K(f); h \epsilon S \cap T \right] <==> \\ &<=> x \epsilon \left[\left\{ a_h; h \epsilon S \cap T \right\}, K(f) \right] = \left[a_h; h \epsilon S \cap T \right]. \ \Box \end{split}$$

- (*) Apply here that $K(\int) = K_s(\int)$.
- (**) Observe that [-] stands here for closed linear span in $B/K(\int)$ and also in B.

6. TABLE.

We conclude with the following scheme for intersection properties:

$\mathbf{W}_{\mathbf{S}} \cap \mathbf{W}_{\mathbf{T}} = \mathbf{W}_{\mathbf{S}} \cap \mathbf{T}$						
S	Т	S∪T	S∩T	ST	T-S	KIND OF SEQUENCE
_	_	_	_	_	-	strong M-basis
σ_1		_	_	-	-	minimal
σ_2	_	_	_	_	_	minimal
σ_3	_	_	_	_	_	strong M-basis
_	_	σ_1		_	_	linearly independent
_	_	σ_2	_	_	_	strong M-basis
_	_	σ_3	_		_	almost strong M-basis
	-	_	σ_1	_		M-basis
_	_	_	σ_2	_	_	absorbent kernel
	_	_	σ_3	_	_	σ_3 —sequence
σ_1	σ_{i}	_	_	_	_	linearly independent
σ_1	σ_2		_	_	_	minimal
σ_1	σ_3	_	_	_		almost minimal
σ_2	σ_2	_		_	_	absorbent kernel
σ_2	σ_3	_	_	_	_	absorbent strict kernel
σ_3	σ_3	_	_		_	strong M-basis
σ_3	σ_3	_	σ_{i}	_	_	M-basoidic
σ_3	σ_3	_	σ_3	σ_1	σ_1	almost absorbent kernel
σ_3	σ_3	_	σ_3	σ_1	σ_3	almost absorbent strict kernel
σ_3	σ_3	_	σ_3	σ_3	σ_3	σ_3 —sequence
	_	σ_3	σ_1	_	_	almost M-basis

REFERENCES

- C-D COURAGE and DAVIS: A characterization of M-bases. Math. Ann. 197, 1-4 (1972).
- IIi INDURAIN, E.: A generalization of strong M-basic sequences. Atti Sem. Mat. Fis. Univ. Modena, 34, (1985-86) (to appear).
- INDURAIN, E.: Properties induced by subsequences with infinite complement in Banach spaces Pub. S. Mat. G² Galdeano Serie 2 n^o 66 Zaragoza 1985.
- |P|₁ PLANS, A.: Dependencias lineales en el espacio de Hilbert. Pub. S. M. G^a Galdeano 10, 153-161. Zaragoza 1969.
- |P|₂ PLANS, A.: Sistemas de vectores con núcleo nulo en el espacio de Hilbert. XII RAME. 1976.
- |P-R | PLANS and REYES: On the geometry of sequences in Banach spaces. Arch. Math. 40, 452-458 (1983).
- RI REYES, A.: On a classification of the sequences in Banach spaces. Arch. Math. 43, 535-541 (1984).
- IS | SINGER, I.: Bases in Banach spaces II. Springer. 1981.
- T I TERENZI, P.: Biorthogonal systems in Banach spaces. Riv. Mat. Univ. Parma (4) 4, 165-204 (1978).
- TERENZI, P.: Representation of the space spanned by a sequence in a Banach space. Arch. Math. 43, 448-459 (1984).

Departamento de Geometría y Topología. Facultad de Ciencias. 50009 - ZARAGOZA (SPAIN).