ON H-SPACES OVER A BASE SPACE
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ABSTRACT:

Working in the category of k-spaces we study the question when the group
of vertical homotopy classes m5(SEC(B,E)) of sections of a group-like space
E — B over B is nilpotent. As an application we obtain e.g. that the group of
homotopy classes of fibre homotopy equivalences of a fibration X - B inducing
the identity on Hx (Xy; Z) is nilpotent, if B is a connected finite-dimensional
and the fibre X, is a connected nilpotent finite-dimensional CW-complex.
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0. INTRODUCTION

A look through the recent book [6] motivated me to reconsider the theory
of H-spaces over a base space. In particular, in section 1 we shall reformulate
theorem (7.41) of [6] in this setting. In section 2 we shall discuss the existence
of homotopy inverses; this section will be partly illustrative, partly will it pre-
pare for section 3. There we will obtain the most interesting application: we will
combine the theory with results of {4] to study more closely the nilpotency of
certain groups of fibre homotopy classes of fibre homotopy equivalences. In
section 4 we will reformulate theorem (7.43) of [6] by introducing ideals of
H-spaces.

We will work within the category of k-spaces (see [2], section 7.2). But all
the base spaces B occurring are supposed to be hausdorff. We denote by Tg the
category of spaces over B ([6], chap.3) and by Tg the category of sectioned spa-
ces over B ([6], chap.3). The corresponding morphism sets are denoted by
MAPg(X,Y) (resp. MAPE(X,Y)). :
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1. H-SPACES OVER A BASE SPACE

1.1. Definition: An H-space in Ty is a fibration n: E - B together with a section
o: B ~ E and a multiplication m: E xg E - E over B which has ¢ as a homotopy
unit over B, i.e. (m/E xg o(B) U o(B) xg E) is homotopic over B to the folding
map E xg ¢(B) U o(B) xg E > E given by (e,0(b)) > e and (o(b),e) ~>e.

The H-space is called “homotopy-associative”, if m is homotopy-associative
over B, it is called “group-like”, if it is homotopy-associative and admits a homo-
topy inverse over B.

Similarly we define an H-space (resp. group-like space) in TE (comp. [6],
(5.41) ff.); i.e. all maps and homotopies also have to respect the section o.

For b € B we denote by E;, the fibre of E - B over b.

Note that the multiplication of E restricts to a multiplication on each fibre
E;, such that Ey is an H-space in Tx (resp. T:); in both cases we will refer to Ey,
as an H-space.

Let SEC(B,E) be the set of sections of 7 and let my(SEC(B,E)) be the set of
vertical homotopy classes of sections. Two sections s,t: B = E can be multiplied
in the obvious way, ie. st: = m(s x t)A, where A: B > B x B is the diagonal,
s x t: B x B > E xg E is the cartesian product and m is the multiplication. This
multiplication induces a multiplication on my(SEC(B,E)).

1.2. Proposition: Let w: E ~ B be an H-space over B such that ny(SEC(B,E)) is a

group. Let SEC, (B,E) be the set of sections s such that for all b € B the points a(b)

and s(b) lie in the same path component of E,. Let B admit a numerable cove-

ring V,; U ... UV, by categorical subsets V; (i.e. the V; are contractible in B).
Then 7y (SEC, (B,E)) is nilpotent of class less than n.

Proof: The argument in the proof of (7.41) of [6] can be adapted in the obvious
way. But since the formulas have to be changed slightly, we will give it here.

We may assume that { V,,...,V_} is numerically defined, i.e. there is a
partition { @y, ..., } of unity with Vi:=a™" (0,1],i=1,... ,n. Define Uy: =
=V, U... UV and let Iy C my (SEC,(B,E)) be the subgroup of homotopy
classes represented by sections which are homotopic to ¢ over Uy, ,. Then
I'g = mo(SEC, (B,E)) by (6.58) of [6]; we have to show that the commutator of
¢ €Iy ; and Y € I'y is an element of 'y .

Let { 8} be a numeration of the covering { Uy Visq | of Upy . Let G, be
a vertical homotopy between ¢ | Uy and o | Uy, let H, be a vertical homotopy
between ¥ |V, and o |V, . Define families of sections

K.L: IxIx(Ug NVy ) >E U NV,

by K(s,t,b): = m(H; (b), G(b)), L(s,t,b): = m(G,(b), H(b)).
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Let us first assume that o is a strict homotopy unit over B. Then a vertical
homotopy between ¢y 1U, ,, and ¢ ¢ 1'Uy 4, is given by the formulas

L (2t, 4ta(b), b) t< % 1
hi(b): = ) a(b)<7,beUkﬂVk+1,
K (221, da(b)-4ta(b),b) t3> 1.,
L (4t8(b), 2t, b) < % 1
h,(b): = ] a(b)>-5,beUkﬁVk+1,
K (4B(b) - 4tB(b), 2-2tb) t>
m (9, Hy (b)) <z
ht(b): = 1 be Vk+l\Uk
m (.0 0),00) 131, |
m(Gy (), ¥) 1<
ht(b): = 1 be Uk\Vk+1 .
m (¥ (b), Gz.zt (b)) t= 5

If o is only a unit up to homot?py we have to “insert” another homotopy
between the two parts h: with t <? and h? with t >3 of h; defined as above.

Let M, be a homotopy between m [E xg o(B) U o(B) xg E and the folding map.
Then a required homotopy'fit is obtained as follows:

hy, ) for 0<t<:11-,
e | Mo ®},, ®) for %< t <§-
M; 4 (hﬁl2 (b)) for = <t <7
h,., (0 for —i— <t<1.

1.3. The relation to theorem (7.41) of [6].

Let p: X > B and n: Y - B be spaces over B. Let mapg(X,Y) be the set over
B with fibres MAP(Xy,,Y,) topologized in the category of k-spaces as in [2],
section 7.

Then MAPy(X,Y) and SEC(B,map(X,Y)) are homeomorphic by [2], section
7.If p,n are fibrations, then mapg(X,Y) -> B is a fibration by [3], proposition 6.

In particular, if p is a fibration, then mapg(X,X) - B is'a fibration; the fi-
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brewise composition of maps defines a mapping (see [1], cor.1.3.) mapg(X,X)
xg mapg(X,X) - mapg(X,X) such that mapg(X,X) is an H-space in Tg.

Moreover, mapy(X,X) contains autg(X,X) with fibres (autg(X,X)), the
spaces of homotopy equivalences Xy, > X;. The map autg(X,X) - B is a fibra-
tion by [3], corollary 7.

Now, fibre homotopy classes of fibre homotopy equivalences of p corres-
pond to vertical homotopy classes of sections of autg(X,X) — B (see [3]). Thus,
if B has numerable category n, the group of homotopy classes of those fibre ho-
motopy equivalences of p which on each fibre are homotopic to the identity of
the fibre, is nilpotent of class less than n. Hence we recover theorem (7.41) of
[6]in case p: X = B is a fibration in the category of k-spaces.

1.4. Remark: Let B be paracompact and let p: X — B be a sectioned fibration
which is locally trivial as sectioned space. Let autg(X,X) —> B be the space over B
with fibre over b € B the set of pointed homotopy equivalences X;, = X,xBe-
cause of the local triviality of autg (X,X) — B and the paracompactness of B the
map auth(,X) — B is a fibration ([6], (7.48)). Therefore the discussion of 1.3
also applies to fibre homotopy equivalences of the sectioned space p: X - B
(Comp. [7], [10]).

Note that it would be useful to know when autg(X,X) — B is a fibration, if
p is just a fibration.

1.5. Application to groups of homotopy classes of maps into group-like spaces
over a base space.

Let p: X - B be a fibration (resp. a sectioned fibration over a paracompact
B which is locally trivial as sectioned space). Let m: E — B be a group-like space
in Ty (resp. a group-like space in Tg which is locally trivial as sectioned space).

The multiplication of E obviously induces a group structure on the set
o (MAPR(X,E)) of homotopy classes of maps over B (resp. on the set
ﬂO(MAP%(X,E)) of homotopy classes of maps over and under B).

Proposition: If B has numerable category n, the subgroup of 7y(MAPy(X,E))
(resp. of nO(MAPg(C,E)) consisting of homotopy classes of maps which on each
fibre Xy are homotopic to the constant map onto o(b) is nilpotent of class less
than n.

Proof: It suffices to identify MAPg(X,E) (resp. MAPB(XE)) with
SEC(mapg(X,E)) (resp. SEC(mapg(X,E))) and to note that mapg(X,E) > B
(resp. mapg(X,E) —~ B) are H-spaces over B. E.g. the multiplication
mapg(X,E) xg mapg(X,E) > mapg(X,E) is defined as the composition of
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mapg(X,E) xg mapg(X,E) - mapg(X xg X, E xp E) given by the fibrewise car-
tesian product with A* and ms« where A: X > X xg X is the diagonal and
‘m: E xg E = E the multiplication.

1.6. The question arises what can be said about 7o(SEC(B,E)) more generally.

Proposition: Assume that B has finite numerable category. Let 7: E > B be a
group-like space over B such that my(Ey) is solvable for all b e B. Then
7o (SEC(B,E)) is solvable.

Proof: Let nO(SEC(B,E))(k) be the derived series of my(SEC(B,E)). For any
categorical subset UC B one has 7y (SEC(U, E | U)) = mo(Ey ) by (6.58) of [6].
Hence some member ﬂO(SEC(B,E))G) of the derived series is contained in
7y (SEC, (B,E)) which is nilpotent by 1.2 proposition.

Remark: Let m: E > B be an H-space over a pathwise connected base B. Then
all the H-spaces E, b € B, are H-equivalent. In particular, if 7 is group-like, all
the groups my(E, ) are isomorphic.

Remark: If in addition to the assumptions of the proposition one assumes that
my(Ey) is nilpotent for all b e B, it does in general not follow that 7,(SEC(B,E))
is nilpotent. An example is found in [11], p.72.

by

In section 3 we will discuss this matter further.

2. EXISTENCE OF HOMOTOPY INVERSES.

2.1. Lemma: Let m: E - B be a homotopy associative H-space in Ty such that
E,, is group-like for all b € B. Assume that B has a numerable covering by catego-
rical sets.

Then = is group-like in Tp.

Proof: The shearing map E xg E ~ E xg E, (x,y) = (x,m(x,y)), is a homotopy
equivalence on each fibre, hence it is a homotopy equivalence over B by 61,
(7.59). One can now argue as in the absolute (but unpointed) case (see e.g. [14],
chap. II1, (4.16) to obtain a homotopy inverse over B.

2.2. Remark: In [5] a criterion is given when a fibre homotopy equivalence of
sectioned spaces is actually an equivalence of sectioned spaces. Using this one
may obtain a similar result in the case of Tg.
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2.3. Definition: An H-space X with multiplication m: X x X = X is called “weakly
regular”, if all left and right translations L, : X =X, y = m(x,y), and Ry: X=X,
y = m(y,x), are homotopy equivalences.

2.4. Lemma: Let 7: E > B be a homotopy associative H-space over the CW-com-
plex B. Let each fibre Ey, be weakly regular. Then my(SEC(B,E)) is a group.

Proof: By [9] (where 2 weakly regular. H-space is called an “H’-space”) the
shearing map X : E xg E > E xg E, (x,y) = (x,m(x,y)) is a weak homotopy equi-
valence on each fibre. It follows from the exactness of the homotopy sequence
of the fibration E xp E - B that X is a weak homotopy equivalence. ,

Let now s: B > E be a section, let s": =s x 0: B> E xg E, b > (s(b), a(b)),
then there exists a map 7: B - E xg E with Xrhomotopic to s'. Let # be the pro-
jection E xp E — B; then @7 = #iX7 ~ s’ = idy; therefore there is 7' such that
7~ 7' and 77’ = idp. But the two sections X7, s’ being homotopic are vertically
homotopic ([6], (6.45)).

It follows that m,7' is a homotopy inverse of s over B, where 7,: E xg E-E
is the projection onto the second factor.

3. WEAKLY NILPOTENT H-SPACES. APPLICATIONS.

3.1. Lemma: Let X be a weakly regular homotopy-associative H-space. Then the
group my(X) operates canonically on the groups m,(X,*) where * is an element
of the identity component of m(X).

Proof: This has been shown in [9].

Let us recall the way the action is defined.

Let Xy be the path component of X containing # . The canonical map
a: my(X,*) = my(MAP(S™, X)) is bijective. For [x] € my(X) choose y € X with
[xlly] = [x]. Identifying a class [f] € m,(X,*) with its image a([f]) define
[x]. [f]: =[Ly R, f].

Then 7y(MAP(S" X)) is isomorphic to the semi-direct product T (X,%) xg
o (X).
3.2. Definition: A weakly regular homotopy associative H-space X is called
“weakly nilpotent”, if my(X) is nilpotent and operates nilpotently on all groups

7, (X,*) for n > 1. (Compare [11], [12]).

3.3. Remark: This condition is equivalent to the statement that mo(MAP(S" X))
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is nilpotent for all n > 1. For my(MAP(S®, X)) is isomorphic to the semi-direct
product m,(X,*) x¢ m5(X).

3.4. Remark: Let X be a weakly nilpotent H-space, let B be a finite dimensional
CW-complex. Then the H-space MAP(B X) is weakly nilpotent.

Proof: Since my(MAP(B,X)) is a group by [9], MAP(B,X) is weakly regular; it is
also homotopy associative, hence it remains to show that To(MAP(S® MAP(B,X)))
= my(MAP(S" x B,X)) is nilpotent. This follows from [12], Satz 1 (Note that it
is not necessary to assume that E is of the homotopy type of a CW-complex as it
was done there).

3.5. Proposition: Let B be of the homotopy type of a connected finite dimen-
sional CW-complex and let 7: E - B be a homotopy-associative H-space in Ty
such that one fibre Ey is (and hence all fibres are) weakly nilpotent.

Then mo(SEC(B,E)) is nilpotent.

Proof: The proof of 3.Satz in [13] works also under these slightly weaker
assumptions.” (Note also that 3.Lemma of [13] which is trivially false is not
needed in that proof).

Similarly to 3.4 remark one obtains.

3.6. Corollary: The H-space SEC(B,E) is weakly nilpotent.

3.7. Application to groups éf homofova classes of fibre homotopy equivalences.

Let B be of the homotopy type of a connected finite dimensional CW-com-
plex. Let p: X - B be a fibration with connected fibre.

Proposition: (a) Assume that the fibre of p is of the homotopy type of either a
finite dimensional CW-complex or of a~CW-complex whose homotopy groups
vanish above a certain degree. Let p be sectioned and locally trivial as sectioned
space and let B be paracompact. Let G™ be the group of homotopy classes of
homotopy equivalences of the sectioned space p: X - B which induce the iden-
tity on m« (X, ,*) for one fibre (and hence all fibres) Xy-

“Then G™ is nilpotent.

(b) Let the fibre of p be nilpotent and of the homotopy type of a finite di-
mensional CW-complex. Let GH be the group of homotopy classes of fibre ho-
motopy equivalences of p inducing the identity of Ha(Xy,; Z) for one fibre (and
hence all fibres) X, .

Then GH is nilpotent.
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Proof: Let aut"(X) - B (resp. autH(X) - B) be the maps with fibres
aut™(X), = AUT"(X;,) (resp. AUTH(X,)) where AUT™(Xy) (resp. AUTH(X,))
consists of those pointed homotopy equivalences of X which induce the iden-
tity on 7« (Xy,*) (resp. of the homotopy equivalences of Xy, inducing the iden-
tity on H«(Xy; Z)). Both maps are fibrations; the first one, because it is locally
trivial and B paracompact; it follows from the proof of [3], corollary 7, that the
second one is a fibration. Hence aut” (X) > B and aut(X) - B are homotopy
associative H-spaces over B with weakly regular fibres. It has been shown in [4]
that the classifying spaces of AUT" (Xy,) and AUTH(Xb) are nilpotent spaces.
This is equivalent to AUT’T(Xb) and AUTH(Xb) being weakly nilpotent H-spaces.
Note that in [4] the compact-open topology is used; but if an H-space is weakly
nilpotent, it is also weakly nilpotent with its topology changed into the
k-topology.. The result now follows from 3.5 by the isomorphisms
G™ == 1, (SEC(B, aut"(X))) and GH = m(SEC(B, autt(X))).

Remark: In view of other results of [4] there are some possible variations of the
proposition.

4. IDEALS OF H-SPACES.

4.1. Defini’ﬁ'on: Let E > B be an H-space. Let C - B be a fibration such that C is
a subset of E and the inclusion C — E (over B) is continuous. Then C - B is called
an “ideal of E > B”, if the multiplication m of E induces maps E xg C = C and
Cxg E~>C.

The ideal is called “trivial on the right”, if for any b € B and each x € C, the
point m(x,y) does not depend on y € E;,.

4.2. Example: Let X be a space, then MAP(X,X) is an H-space with multiplica-
tion the composition of maps which contains X as the subspace of constant
maps. Obviously X is an ideal in MAP(X,X) which is trivial on the right.

The subspace of MAP(X,X) consisting of the maps inducing the zero map on
reduced homology is an ideal.

4.3. Proposition: Let : E — B be an H-space over B with ideal n-: C - B which
is trivial on the right. Let s;,...,s, € SEC(B,E) such that for all b ¢ B and
i=1,...,n there is a path from sy(b) to C, within E;.

Then, if n is the numerable category of B, the section (.. .y 52)...5,)is
homotopic to a section of n¢. '

Proof: The proof of theorem (7.43) of 6] is easily adapted. This time we only
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indicate the necessary changes and begin by giving the corresponding version of
lemma (7.42) of [6].

Lemma: Let B =U U V with { U,V } an open numerable covering. Let 6,$ be
sections of 7 such that 8 | U is vertically homotopic to a section 6 of C |U by a
homotopy K; and such that ¢ | V is vertically homotopic to a section § of C |V
by a homotopy L.

Then m(¢p x ) is homotopic to a section s: B> C.

Proof: Let {n,p} be a numeration of { U,V }. Define s by the formula

m(L, ) (b), 8 (b)) for beUNV,
s(b):=1 m(g(b),8 (b)) for beU\ V,
m(p (b), 8 (b)) for beV\ U.

The remaining task, i.e. to show that s is vertically homotopic to m(¢ x 6), can
now be accomplished using the procedure of (7.42) of [6].

Similarly, the proof of ‘the proposition now follows closely the proof of
(7.43) of [6].

4.4. Relation to theorem (7.43) of [6].

Let p: X > B be a fibration (resp. a locally trivial sectioned fibration over
paracompact B). Let E = B be the H-space mapg(X,X) - B (resp. mapB(X X) >
- B) over B. Let C be the subspace of E with fibres Cy, the set of constant maps
Xp > X}, (resp. the constant map Xy, ~{o(b)} C Xp)- Then C is an ideal of E
which is trivial on the right.

Let now s;,...,s; € MAP5(X,X) (resp. MAPg(X,X)) such that s; | X :
X3, > Xy, is nulhomotopic for each band i=1, . .. n; then the 81, ... ,8, COIres-
pond to sections of E > B to which the proposition may be applied. Hence
(.- (51 82) ... sy) is nulhomotopic over B (Comp. [8], [10]).
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