ON H-SPACES OVER A BASE SPACE

H. SCHEERER

ABSTRACT:

Working in the category of k-spaces we study the question when the group of vertical homotopy classes $\pi_0(SEC(B,E))$ of sections of a group-like space $E \to B$ over B is nilpotent. As an application we obtain e.g. that the group of homotopy classes of fibre homotopy equivalences of a fibration $X \to B$ inducing the identity on $H_*(X_b; \mathbb{Z})$ is nilpotent, if B is a connected finite-dimensional and the fibre X_b is a connected nilpotent finite-dimensional CW-complex.

KEY WORDS: H-spaces over a base space, fibre homotopy equivalence, spaces of sections.

SUBJECT CODE CLASSIFICATIONS: 55P45, 55S37.

0. Introduction

A look through the recent book [6] motivated me to reconsider the theory of H-spaces over a base space. In particular, in section 1 we shall reformulate theorem (7.41) of [6] in this setting. In section 2 we shall discuss the existence of homotopy inverses; this section will be partly illustrative, partly will it prepare for section 3. There we will obtain the most interesting application: we will combine the theory with results of [4] to study more closely the nilpotency of certain groups of fibre homotopy classes of fibre homotopy equivalences. In section 4 we will reformulate theorem (7.43) of [6] by introducing ideals of H-spaces.

We will work within the category of k-spaces (see [2], section 7.2). But all the base spaces B occurring are supposed to be hausdorff. We denote by T_B the category of spaces over B ([6], chap.3) and by T_B^B the category of sectioned spaces over B ([6], chap.3). The corresponding morphism sets are denoted by $MAP_B(X,Y)$ (resp. $MAP_B^B(X,Y)$).

1. H-SPACES OVER A BASE SPACE

1.1. Definition: An H-space in T_B is a fibration $\pi \colon E \to B$ together with a section $\sigma \colon B \to E$ and a multiplication $m \colon E \times_B E \to E$ over B which has σ as a homotopy unit over B, i.e. $(m/E \times_B \sigma(B) \cup \sigma(B) \times_B E)$ is homotopic over B to the folding map $E \times_B \sigma(B) \cup \sigma(B) \times_B E \to E$ given by $(e, \sigma(b)) \to e$ and $(\sigma(b), e) \to e$.

The H-space is called "homotopy-associative", if m is homotopy-associative over B; it is called "group-like", if it is homotopy-associative and admits a homotopy inverse over B.

Similarly we define an H-space (resp. group-like space) in T_B^B (comp. [6], (5.41) ff.); i.e. all maps and homotopies also have to respect the section σ .

For b ϵ B we denote by E_b the fibre of $E \to B$ over b.

Note that the multiplication of E restricts to a multiplication on each fibre E_b such that E_b is an H-space in T_* (resp. T_*^*); in both cases we will refer to E_b as an H-space.

Let SEC(B,E) be the set of sections of π and let $\pi_0(SEC(B,E))$ be the set of vertical homotopy classes of sections. Two sections s,t: $B \to E$ can be multiplied in the obvious way, i.e. st: $= m(s \times t)\Delta$, where $\Delta : B \to B \times B$ is the diagonal, $s \times t : B \times B \to E \times_B E$ is the cartesian product and m is the multiplication. This multiplication induces a multiplication on $\pi_0(SEC(B,E))$.

1.2. Proposition: Let $\pi\colon E\to B$ be an H-space over B such that $\pi_0(SEC(B,E))$ is a group. Let $SEC_1(B,E)$ be the set of sections s such that for all $b\in B$ the points $\sigma(b)$ and s(b) lie in the same path component of E_b . Let B admit a numerable covering $V_1\cup\ldots\cup V_n$ by categorical subsets V_i (i.e. the V_i are contractible in B). Then $\pi_0(SEC_1(B,E))$ is nilpotent of class less than n.

Proof: The argument in the proof of (7.41) of [6] can be adapted in the obvious way. But since the formulas have to be changed slightly, we will give it here.

We may assume that $\{V_1,\ldots,V_n\}$ is numerically defined, i.e. there is a partition $\{\alpha_1,\ldots,\alpha_n\}$ of unity with $V_i:=\alpha^{-1}$ (0,1], $i=1,\ldots,n$. Define $U_k:=V_1\cup\ldots\cup V_k$ and let $\Gamma_k\subset\pi_0$ (SEC₁(B,E)) be the subgroup of homotopy classes represented by sections which are homotopic to σ over U_{k+1} . Then $\Gamma_0=\pi_0(\text{SEC}_1(B,E))$ by (6.58) of [6]; we have to show that the commutator of $\phi\in\Gamma_{k-1}$ and $\psi\in\Gamma_0$ is an element of Γ_k .

Let $\{\alpha,\beta\}$ be a numeration of the covering $\{U_k,V_{k+1}\}$ of U_{k+1} . Let G_t be a vertical homotopy between $\phi \mid U_k$ and $\sigma \mid U_k$, let H_t be a vertical homotopy between $\psi \mid V_{k+1}$ and $\sigma \mid V_{k+1}$. Define families of sections

$$K,L: I \times I \times (U_k \cap V_{k+1}) \rightarrow E \mid U_k \cap V_{k+1}$$

by
$$K(s,t,b)$$
: = $m(H_s(b), G_t(b)), L(s,t,b)$: = $m(G_t(b), H_s(b))$.

Let us first assume that σ is a strict homotopy unit over B. Then a vertical homotopy between $\phi\psi$ $|U_{k+1}|$ and $\psi\phi$ $|U_{k+1}|$ is given by the formulas

$$\mathbf{h_{t}(b)} := \left\{ \begin{array}{ll} L\left(2t,4t\alpha(b),b\right) & t \leqslant \frac{1}{2} \\ K\left(2\text{-}2t,4\alpha(b)\text{-}4t\alpha(b),b\right) & t \geqslant \frac{1}{2} \end{array}, \, \alpha(b) \leqslant \frac{1}{2} \text{ , b } \epsilon \text{ U}_{k} \cap \text{V}_{k+1}, \end{array} \right.$$

$$\mathbf{h}_{\mathsf{t}}(\mathsf{b}) := \left\{ \begin{array}{l} L\left(4\mathsf{t}\beta(\mathsf{b}),\,2\mathsf{t},\,\mathsf{b}\right) & \mathsf{t} \leqslant \frac{1}{2} \\ K\left(4\beta(\mathsf{b})-4\mathsf{t}\beta(\mathsf{b}),\,2{-}2\mathsf{t},\!\mathsf{b}\right) & \mathsf{t} \geqslant \frac{1}{2} \ , \\ \end{array} \right. \\ \alpha(\mathsf{b}) \geqslant \frac{1}{2} \ , \, \mathsf{b} \in \mathbf{U}_{\mathsf{k}} \cap \mathbf{V}_{\mathsf{k+1}},$$

$$\mathbf{h}_{t}(\mathbf{b}) := \left\{ \begin{array}{ll} \mathbf{m}\left(\phi,\mathbf{H}_{2\,t}\left(\mathbf{b}\right)\right) & & t \leq \frac{1}{2} \\ \\ \mathbf{m}\left(\mathbf{H}_{2\,-2\,t}\left(\mathbf{b}\right),\phi(\mathbf{b})\right) & & t \geq \frac{1}{2} \end{array}, \right. \quad \mathbf{b} \in \mathbf{V}_{k+1} \backslash \mathbf{U}_{k}$$

$$\mathbf{h}_{\mathsf{t}}(\mathsf{b}) \colon= \left\{ \begin{array}{ll} \mathsf{m}\left(\mathsf{G}_{2\mathsf{t}}\left(\mathsf{b}\right), \psi(\mathsf{b})\right) & \mathsf{t} \leqslant \frac{1}{2} \\ \mathsf{m}\left(\psi\left(\mathsf{b}\right), \mathsf{G}_{2\text{-}2\mathsf{t}}\left(\mathsf{b}\right)\right) & \mathsf{t} \geqslant \frac{1}{2} \end{array}, \right. \mathsf{b} \in \mathsf{U}_{k} \backslash \mathsf{V}_{k+1}.$$

If σ is only a unit up to homotopy we have to "insert" another homotopy between the two parts h_t^1 with $t \leq \frac{1}{2}$ and h_t^2 with $t \geq \frac{1}{2}$ of h_t defined as above.

Let M_t be a homotopy between $m \mid E \mid x_B \mid \sigma(B) \cup \sigma(B) \mid x_B \mid E$ and the folding map. Then a required homotopy \widetilde{h}_t is obtained as follows:

$$\widetilde{h}_{t}(b) := \begin{cases} h_{2t}^{1}(b) & \text{for } 0 \leq t \leq \frac{1}{4}, \\ M_{4t-1}(h_{1/2}^{1}(b)) & \text{for } \frac{1}{4} \leq t \leq \frac{1}{2}, \\ M_{3-4t}(h_{1/2}^{2}(b)) & \text{for } \frac{1}{2} \leq t \leq \frac{3}{4}, \\ h_{2t-1}^{2}(b) & \text{for } \frac{3}{4} \leq t \leq 1. \end{cases}$$

1.3. The relation to theorem (7.41) of [6].

Let $\rho: X \to B$ and $\eta: Y \to B$ be spaces over B. Let $map_B(X,Y)$ be the set over B with fibres $MAP(X_b, Y_b)$ topologized in the category of k-spaces as in [2], section 7.

Then $MAP_B(X,Y)$ and SEC(B,map(X,Y)) are homeomorphic by [2], section 7. If ρ, η are fibrations, then $map_B(X,Y) \to B$ is a fibration by [3], proposition 6. In particular, if ρ is a fibration, then $map_B(X,X) \to B$ is a fibration; the fi-

brewise composition of maps defines a mapping (see [1], cor.1.3.) $\max_B (X,X) \rightarrow \max_B (X,X)$ such that $\max_B (X,X)$ is an H-space in T_B^B .

Moreover, $\operatorname{map}_B(X,X)$ contains $\operatorname{aut}_B(X,X)$ with fibres $(\operatorname{aut}_B(X,X))_b$ the spaces of homotopy equivalences $X_b \to X_b$. The map $\operatorname{aut}_B(X,X) \to B$ is a fibration by [3], corollary 7.

Now, fibre homotopy classes of fibre homotopy equivalences of ρ correspond to vertical homotopy classes of sections of $\operatorname{aut}_B(X,X) \to B$ (see [3]). Thus, if B has numerable category n, the group of homotopy classes of those fibre homotopy equivalences of ρ which on each fibre are homotopic to the identity of the fibre, is nilpotent of class less than n. Hence we recover theorem (7.41) of [6] in case ρ : $X \to B$ is a fibration in the category of k-spaces.

1.4. Remark: Let B be paracompact and let $\rho: X \to B$ be a sectioned fibration which is locally trivial as sectioned space. Let $\operatorname{aut}_B^B(X,X) \to B$ be the space over B with fibre over b ϵ B the set of pointed homotopy equivalences $X_b \to X_b \times B$ cause of the local triviality of $\operatorname{aut}_B^B(X,X) \to B$ and the paracompactness of B the map $\operatorname{aut}_B^B(X,X) \to B$ is a fibration ([6], (7.48)). Therefore the discussion of 1.3 also applies to fibre homotopy equivalences of the sectioned space $\rho: X \to B$ (Comp. [7], [10]).

Note that it would be useful to know when $\operatorname{aut}_{B}^{B}(X,X) \to B$ is a fibration, if ρ is just a fibration.

1.5. Application to groups of homotopy classes of maps into group-like spaces over a base space.

Let $\rho: X \to B$ be a fibration (resp. a sectioned fibration over a paracompact B which is locally trivial as sectioned space). Let $\pi: E \to B$ be a group-like space in T_B (resp. a group-like space in T_B which is locally trivial as sectioned space).

The multiplication of E obviously induces a group structure on the set $\pi_0(MAP_B(X,E))$ of homotopy classes of maps over B (resp. on the set $\pi_0(MAP_B^B(X,E))$ of homotopy classes of maps over and under B).

Proposition: If B has numerable category n, the subgroup of $\pi_0(MAP_B(X,E))$ (resp. of $\pi_0(MAP_B^B(C,E))$ consisting of homotopy classes of maps which on each fibre X_b are homotopic to the constant map onto o(b) is nilpotent of class less than n.

Proof: It suffices to identify $MAP_B(X,E)$ (resp. $MAP_B^B(X,E)$) with $SEC(map_B(X,E))$ (resp. $SEC(map_B^B(X,E))$) and to note that $map_B(X,E) \rightarrow B$ (resp. $map_B^B(X,E) \rightarrow B$) are H-spaces over B. E.g. the multiplication $map_B(X,E) \times_B map_B(X,E) \rightarrow map_B(X,E)$ is defined as the composition of

 $\operatorname{map}_B(X,E) \times_B \operatorname{map}_B(X,E) \to \operatorname{map}_B(X \times_B X, E \times_B E)$ given by the fibrewise cartesian product with Δ^* and m_* where $\Delta \colon X \to X \times_B X$ is the diagonal and $\operatorname{m} \colon E \times_B E \to E$ the multiplication.

1.6. The question arises what can be said about $\pi_0(SEC(B,E))$ more generally.

Proposition: Assume that B has finite numerable category. Let $\pi \colon E \to B$ be a group-like space over B such that $\pi_0(E_b)$ is solvable for all b ϵ B. Then $\pi_0(SEC(B,E))$ is solvable.

Proof: Let $\pi_0(SEC(B,E))^{(k)}$ be the derived series of $\pi_0(SEC(B,E))$. For any categorical subset $U \subset B$ one has $\pi_0(SEC(U, E \mid U)) \cong \pi_0(E_b)$ by (6.58) of [6]. Hence some member $\pi_0(SEC(B,E))^{(j)}$ of the derived series is contained in $\pi_0(SEC_1(B,E))$ which is nilpotent by 1.2 proposition.

Remark: Let $\pi: E \to B$ be an H-space over a pathwise connected base B. Then all the H-spaces E_b , b ϵ B, are H-equivalent. In particular, if π is group-like, all the groups $\pi_0(E_b)$ are isomorphic.

Remark: If in addition to the assumptions of the proposition one assumes that $\pi_0(E_b)$ is nilpotent for all $b \in B$, it does in general not follow that $\pi_0(SEC(B,E))$ is nilpotent. An example is found in [11], p.72.

In section 3 we will discuss this matter further.

- 2. Existence of homotopy inverses.
- 2.1. Lemma: Let $\pi \colon E \to B$ be a homotopy associative H-space in T_B such that E_b is group-like for all $b \in B$. Assume that B has a numerable covering by categorical sets.

Then π is group-like in T_B .

Proof: The shearing map $E \times_B E \to E \times_B E$, $(x,y) \to (x,m(x,y))$, is a homotopy equivalence on each fibre, hence it is a homotopy equivalence over B by [6], (7.59). One can now argue as in the absolute (but unpointed) case (see e.g. [14], chap. III, (4.16) to obtain a homotopy inverse over B.

2.2. Remark: In [5] a criterion is given when a fibre homotopy equivalence of sectioned spaces is actually an equivalence of sectioned spaces. Using this one may obtain a similar result in the case of T_R^B .

- 2.3. Definition: An H-space X with multiplication m: $X \times X \to X$ is called "weakly regular", if all left and right translations $L_X: X \to X$, $y \to m(x,y)$, and $R_X: X \to X$, $y \to m(y,x)$, are homotopy equivalences.
- 2.4. Lemma: Let $\pi: E \to B$ be a homotopy associative H-space over the CW-complex B. Let each fibre E_b be weakly regular. Then $\pi_0(SEC(B,E))$ is a group.

Proof: By [9] (where a weakly regular H-space is called an "H'-space") the shearing map $\chi: E \times_B E \to E \times_B E$, $(x,y) \to (x,m(x,y))$ is a weak homotopy equivalence on each fibre. It follows from the exactness of the homotopy sequence of the fibration $E \times_B E \to B$ that χ is a weak homotopy equivalence.

Let now s: $B \to E$ be a section, let $s' := s \times \sigma$: $B \to E \times_B E$, $b \to (s(b), \sigma(b))$, then there exists a map τ : $B \to E \times_B E$ with $\chi \tau$ homotopic to s'. Let $\hat{\pi}$ be the projection $E \times_B E \to B$; then $\hat{\pi}\tau = \hat{\pi}\chi\tau \sim \hat{\pi}s' = \mathrm{id}_B$; therefore there is τ' such that $\tau \sim \tau'$ and $\hat{\pi}\tau' = \mathrm{id}_B$. But the two sections $\chi\tau'$, s' being homotopic are vertically homotopic ([6], (6.45)).

It follows that $\pi_2 \tau'$ is a homotopy inverse of s over B, where $\pi_2 \colon E \times_B E \to E$ is the projection onto the second factor.

3. WEAKLY NILPOTENT H-SPACES. APPLICATIONS.

3.1. Lemma: Let X be a weakly regular homotopy-associative H-space. Then the group $\pi_0(X)$ operates canonically on the groups $\pi_n(X,*)$ where * is an element of the identity component of $\pi_0(X)$.

Proof: This has been shown in [9].

Let us recall the way the action is defined.

Let X_* be the path component of X containing * . The canonical map a: $\pi_n(X,*) \to \pi_0(MAP(S^n,X_*))$ is bijective. For $[x] \in \pi_0(X)$ choose $y \in X$ with [x][y] = [x]. Identifying a class $[f] \in \pi_n(X,*)$ with its image a([f]) define $[x] \cdot [f] := [L_x R_y f]$.

Then $\pi_0(MAP(S^n,X))$ is isomorphic to the semi-direct product $\pi_n(X,*) \times_s \pi_0(X)$.

- 3.2. **Definition:** A weakly regular homotopy associative H-space X is called "weakly nilpotent", if $\pi_0(X)$ is nilpotent and operates nilpotently on all groups $\pi_n(X,*)$ for $n \ge 1$. (Compare [11], [12]).
- 3.3. Remark: This condition is equivalent to the statement that $\pi_0(MAP(S^n,X))$

is nilpotent for all $n \ge 1$. For $\pi_0(MAP(S^n, X))$ is isomorphic to the semi-direct product $\pi_n(X, *) \times_S \pi_0(X)$.

3.4. Remark: Let X be a weakly nilpotent H-space, let B be a finite dimensional CW-complex. Then the H-space MAP(B,X) is weakly nilpotent.

Proof: Since $\pi_0(MAP(B,X))$ is a group by [9], MAP(B,X) is weakly regular; it is also homotopy associative, hence it remains to show that $\pi_0(MAP(S^n,MAP(B,X))) \cong \pi_0(MAP(S^n \times B,X))$ is nilpotent. This follows from [12], Satz 1 (Note that it is not necessary to assume that E is of the homotopy type of a CW-complex as it was done there).

3.5. Proposition: Let B be of the homotopy type of a connected finite dimensional CW-complex and let $\pi\colon E\to B$ be a homotopy-associative H-space in T_B such that one fibre E_b is (and hence all fibres are) weakly nilpotent.

Then $\pi_0(SEC(B,E))$ is nilpotent.

Proof: The proof of 3.Satz in [13] works also under these slightly weaker assumptions. (Note also that 3.Lemma of [13] which is trivially false is not needed in that proof).

Similarly to 3.4 remark one obtains.

- 3.6. Corollary: The H-space SEC(B,E) is weakly nilpotent.
- 3.7. Application to groups of homotopy classes of fibre homotopy equivalences.

Let B be of the homotopy type of a connected finite dimensional CW-complex. Let $\rho: X \to B$ be a fibration with connected fibre.

Proposition: (a) Assume that the fibre of ρ is of the homotopy type of either a finite dimensional CW-complex or of a CW-complex whose homotopy groups vanish above a certain degree. Let ρ be sectioned and locally trivial as sectioned space and let B be paracompact. Let G^{π} be the group of homotopy classes of homotopy equivalences of the sectioned space $\rho: X \to B$ which induce the identity on $\pi_*(X_b,*)$ for one fibre (and hence all fibres) X_b .

Then G^{π} is nilpotent.

(b) Let the fibre of ρ be nilpotent and of the homotopy type of a finite dimensional CW-complex. Let G^H be the group of homotopy classes of fibre homotopy equivalences of ρ inducing the identity of $H_*(X_b; \mathbb{Z})$ for one fibre (and hence all fibres) X_b .

Then GH is nilpotent.

Proof: Let $\operatorname{aut}^{\pi}(X) \to B$ (resp. $\operatorname{aut}^{H}(X) \to B$) be the maps with fibres $\operatorname{aut}^{\pi}(X)_b = \operatorname{AUT}^{\pi}(X_b)$ (resp. $\operatorname{AUT}^{H}(X_b)$) where $\operatorname{AUT}^{\pi}(X_b)$ (resp. $\operatorname{AUT}^{H}(X_b)$) consists of those pointed homotopy equivalences of X_b which induce the identity on $\pi_*(X_b, *)$ (resp. of the homotopy equivalences of X_b inducing the identity on $\operatorname{H}_*(X_b; \mathbb{Z})$). Both maps are fibrations; the first one, because it is locally trivial and B paracompact; it follows from the proof of [3], corollary 7, that the second one is a fibration. Hence $\operatorname{aut}^{\pi}(X) \to B$ and $\operatorname{aut}^{H}(X) \to B$ are homotopy associative H-spaces over B with weakly regular fibres. It has been shown in [4] that the classifying spaces of $\operatorname{AUT}^{\pi}(X_b)$ and $\operatorname{AUT}^{H}(X_b)$ are nilpotent spaces. This is equivalent to $\operatorname{AUT}^{\pi}(X_b)$ and $\operatorname{AUT}^{H}(X_b)$ being weakly nilpotent H-spaces. Note that in [4] the compact-open topology is used; but if an H-space is weakly nilpotent, it is also weakly nilpotent with its topology changed into the k-topology. The result now follows from 3.5 by the isomorphisms $\operatorname{G}^{\pi} \cong \pi_0(\operatorname{SEC}(B, \operatorname{aut}^{\pi}(X)))$ and $\operatorname{G}^{H} \cong \pi_0(\operatorname{SEC}(B, \operatorname{aut}^{H}(X)))$.

Remark: In view of other results of [4] there are some possible variations of the proposition.

4. IDEALS OF H-SPACES.

4.1. Definition: Let $E \to B$ be an H-space. Let $C \to B$ be a fibration such that C is a subset of E and the inclusion $C \to E$ (over B) is continuous. Then $C \to B$ is called an "ideal of $E \to B$ ", if the multiplication E of E induces maps $E \times_B C \to C$ and $E \times_B C \to C$.

The ideal is called "trivial on the right", if for any $b \in B$ and each $x \in C_b$ the point m(x,y) does not depend on $y \in E_b$.

4.2. Example: Let X be a space, then MAP(X,X) is an H-space with multiplication the composition of maps which contains X as the subspace of constant maps. Obviously X is an ideal in MAP(X,X) which is trivial on the right.

The subspace of MAP(X,X) consisting of the maps inducing the zero map on reduced homology is an ideal.

4.3. Proposition: Let $\pi: E \to B$ be an H-space over B with ideal $\pi_C: C \to B$ which is trivial on the right. Let $s_1, \ldots, s_n \in SEC(B,E)$ such that for all $b \in B$ and $i = 1, \ldots, n$ there is a path from $s_i(b)$ to C_b within E_b .

Then, if n is the numerable category of B, the section $(...(s_1 \ s_2)...s_n)$ is homotopic to a section of π_C .

Proof: The proof of theorem (7.43) of [6] is easily adapted. This time we only

indicate the necessary changes and begin by giving the corresponding version of lemma (7.42) of [6].

Lemma: Let $B = U \cup V$ with $\{U,V\}$ an open numerable covering. Let θ,ϕ be sections of π such that $\theta \mid U$ is vertically homotopic to a section $\overline{\theta}$ of $C \mid U$ by a homotopy K_t and such that $\phi \mid V$ is vertically homotopic to a section $\overline{\phi}$ of $C \mid V$ by a homotopy L_t .

Then $m(\phi \times \theta)$ is homotopic to a section s: $B \to C$.

Proof: Let $\{\eta, \rho\}$ be a numeration of $\{U, V\}$. Define s by the formula

$$s\left(b\right) := \left\{ \begin{array}{ll} m(L_{\rho\left(b\right)}\left(b\right),\overline{\theta}\left(b\right)) & \text{for } b \in U \cap V \,, \\ \\ m(\psi\left(b\right),\overline{\theta}\left(b\right)) & \text{for } b \in U \setminus V \,, \\ \\ m(\overline{\phi}\left(b\right),\theta\left(b\right)) & \text{for } b \in V \setminus U \,. \end{array} \right.$$

The remaining task, i.e. to show that s is vertically homotopic to $m(\phi \times \theta)$, can now be accomplished using the procedure of (7.42) of [6].

Similarly, the proof of the proposition now follows closely the proof of (7.43) of [6].

4.4. Relation to theorem (7.43) of [6].

Let $\rho\colon X\to B$ be a fibration (resp. a locally trivial sectioned fibration over paracompact B). Let $E\to B$ be the H-space $\operatorname{map}_B(X,X)\to B$ (resp. $\operatorname{map}_B^B(X,X)\to B$) over B. Let C be the subspace of E with fibres C_b the set of constant maps $X_b\to X_b$ (resp. the constant map $X_b\to \{\sigma(b)\}\subset X_b$). Then C is an ideal of E which is trivial on the right.

Let now $s_1, \ldots, s_n \in MAP_B(X,X)$ (resp. $MAP_B^B(X,X)$) such that $s_i \mid X_b$: $X_b \rightarrow X_b$ is nulhomotopic for each b and $i=1,\ldots,n$; then the s_1,\ldots,s_n correspond to sections of $E \rightarrow B$ to which the proposition may be applied. Hence $(\ldots(s_1\ s_2)\ldots s_n)$ is nulhomotopic over B (Comp. [8], [10]).

REFERENCES

- 1. Booth, P.I.: The exponential law of maps II. Math. Z. 121 (1971), 311 319.
- 2. Booth, P.I., Brown, R.: Spaces of partial maps, fibred mapping spaces and the compact-open topology. General Top. and its Applic. 8 (1978), 181 195.
- Booth, P.I., Heath, Ph.R., Piccinini, R.A.: Fibre preserving maps and funtional spaces. Lecture Notes in Math. 673. Algebraic Topology, Proceedings, Vancouver 1977, 158-167. Springer-Verlag, Berlin Heidelberg, New York, 1978.
- 4. Dror, E., Zabrodsky, A.: Unipotency and nilpotency in homotopy equivalences. Top. 18 (1979), 187 197.
- 5. Eggar, M.: The piecing comparison theorem. Indag. Math. 35 (1973), 320 330.
- James, I.M.: General Topology and Homotopy Theory. Springer-Verlag, New York Berlin Heidelberg Tokyo 1984.
- James, I.M.: On fibre spaces and nilpotency II. Math. Proc. Camb. Phil. Soc. 86 (1979), 215 - 217.
- James, I.M.: On fibre spaces and nilpotency. Math. Proc. Camb. Phil. Soc. 84 (1978), 57-60.
- 9. James, I.M.: Quasigroups and topology. Math. Z. 84 (1964), 329 342.
- Meiwes, H.: On fibrations and nilpotency some remarks upon two articles by I.M. James. manuscr. math. 39 (1982), 263 - 270.
- 11. Roitberg, J.: Note on nilpotent spaces and localization. Math. Z. 137 (1974), 67 74.
- 12. Scheerer, H.: Bemerkungen über Gruppen von Homotopieklassen. Archiv der Math. 28 (1977), 301 307.
- 13. Scheerer, H.: Lokalisierung von Schnitträumen. Comp. Math. 40 (1980), 269 281.
- Whitehead, G.W.: Elements of homotopy theory. Springer-Verlag, New York et al. 1978.

Mathematisches Institut Freie Universität Berlin Arnimallee 2 - 6 1000 Berlin 33 West-Germany